Eigenvalue Problems

Chia－Ping Chen

Department of Computer Science and Engineering National Sun Yat－sen University

Linear Algebra

Outline

- Eigenvalues and eigenvectors
- Eigen-decomposition and diagonalization
- Difference equation
- Differential equation
- Complex matrices
- Similar matrices
- Change of basis

NOTATION

- $\boldsymbol{A} \boldsymbol{x}=\lambda \boldsymbol{x}$: eigenvalue equation of matrix \boldsymbol{A}
- $|\boldsymbol{A}-\lambda \boldsymbol{I}|=0$: characteristic equation
- λ_{i} : eigenvalue
- $\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$: spectrum (the set of eigenvalues)
- s_{i} : eigenvector corresponding to λ_{i}
- $\mathbb{E}_{\lambda_{i}}$: eigenspace corresponding to eigenvalue λ_{i}
- c^{*} : complex conjugate of c
- \boldsymbol{A}^{H} : Hermitian of \boldsymbol{A}
- $\boldsymbol{A} \sim \boldsymbol{B}$: similar matrices

Eigenvalue Equations

DEFINITION (EIGENVALUE PROBLEM)

Let \boldsymbol{A} be a square matrix.

- The eigenvalue equation or eigenvalue problem of \boldsymbol{A} is

$$
\boldsymbol{A} \boldsymbol{x}=\lambda \boldsymbol{x}
$$

- \boldsymbol{x} is unknown vector, λ is unknown scalar
- Solutions of λ and $\boldsymbol{x} \neq \mathbf{0}$ are called eigenvalues and eigenvectors

DEFINITION (CHARACTERISTIC EQUATION/POLYNOMIAL)

Let \boldsymbol{A} be a square matrix.

- The eigenvalue equation $\boldsymbol{A} \boldsymbol{x}=\lambda \boldsymbol{x}$ can be written as

$$
(\boldsymbol{A}-\lambda \boldsymbol{I}) \boldsymbol{x}=\mathbf{0}
$$

- The characteristic equation of \boldsymbol{A} is

$$
|\boldsymbol{A}-\lambda \boldsymbol{I}|=0
$$

- The characteristic polynomial of \boldsymbol{A} is

$$
f(\lambda)=|\boldsymbol{A}-\lambda \boldsymbol{I}|
$$

Lemma (eigenvalue and characteristic equation)

Let \boldsymbol{A} be a square matrix. A scalar λ_{i} is an eigenvalue of \boldsymbol{A} if and only if $\left|\boldsymbol{A}-\lambda_{i} \boldsymbol{I}\right|=0$.

$$
\begin{aligned}
\left|\boldsymbol{A}-\lambda_{i} \boldsymbol{I}\right|=0 & \Leftrightarrow\left(\boldsymbol{A}-\lambda_{i} \boldsymbol{I}\right) \text { is singular } \\
& \Leftrightarrow \exists \boldsymbol{x} \neq \mathbf{0},\left(\boldsymbol{A}-\lambda_{i} \boldsymbol{I}\right) \boldsymbol{x}=\mathbf{0} \\
& \Leftrightarrow \exists \boldsymbol{x} \neq \mathbf{0}, \boldsymbol{A} \boldsymbol{x}=\lambda_{i} \boldsymbol{x} \\
& \Leftrightarrow \lambda_{i} \text { is an eigenvalue of } \boldsymbol{A}
\end{aligned}
$$

Definition (EIGENSPACE)

Let \boldsymbol{A} be a square matrix and λ_{i} be an eigenvalue of \boldsymbol{A}. The eigenspace of \boldsymbol{A} corresponding to λ_{i} is the set of vectors

$$
\mathbb{E}_{\lambda_{i}}=\left\{\boldsymbol{x} \mid \boldsymbol{A} \boldsymbol{x}=\lambda_{i} \boldsymbol{x}\right\}
$$

- $\mathbb{E}_{\lambda_{i}}$ is the nullspace of $\left(\boldsymbol{A}-\lambda_{i} \boldsymbol{I}\right)$

$$
\begin{aligned}
\mathbb{E}_{\lambda_{i}} & =\left\{\boldsymbol{x} \mid \boldsymbol{A} \boldsymbol{x}=\lambda_{i} \boldsymbol{x}\right\}=\left\{\boldsymbol{x} \mid\left(\boldsymbol{A}-\lambda_{i} \boldsymbol{I}\right) \boldsymbol{x}=\mathbf{0}\right\} \\
& =\mathcal{N}\left(\boldsymbol{A}-\lambda_{i} \boldsymbol{I}\right)
\end{aligned}
$$

- If \boldsymbol{A} is of order $n \times n, \mathbb{E}_{\lambda_{i}}$ is of dimension $n-\boldsymbol{\operatorname { r a n k }}\left(\boldsymbol{A}-\lambda_{i} \boldsymbol{I}\right)$

$$
\boldsymbol{\operatorname { d i m }}\left(\mathbb{E}_{\lambda_{i}}\right)=\operatorname{dim}\left(\mathcal{N}\left(\boldsymbol{A}-\lambda_{i} \boldsymbol{I}\right)\right)=n-\boldsymbol{\operatorname { r a n k }}\left(\boldsymbol{A}-\lambda_{i} \boldsymbol{I}\right)
$$

DEFINITION (SPECTRUM)

Let \boldsymbol{A} be a square matrix. The spectrum of \boldsymbol{A} is the set of the eigenvalues of \boldsymbol{A}.

- The spectrum of \boldsymbol{A} is the set of solutions to $|\boldsymbol{A}-\lambda \boldsymbol{I}|=0$
- Let \boldsymbol{A} be a square matrix of order $n \times n$. Then $|\boldsymbol{A}-\lambda \boldsymbol{I}|$ is a polynomial of order n, and $|\boldsymbol{A}-\lambda \boldsymbol{I}|=0$ is an equation of order n.
- By the fundamental theorem of algebra, we have

$$
\operatorname{spectrum}(\boldsymbol{A})=\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}
$$

and

$$
k \leq n
$$

Lemma (eigenvectors of distinct eigenvalues)

Let \boldsymbol{A} be a square matrix. Let s_{1} (resp. s_{2}) be an eigenvector of \boldsymbol{A} with eigenvalue λ_{1} (resp. λ_{2}), where $\lambda_{1} \neq \lambda_{2}$. Then s_{1} and s_{2} are linearly independent.

Suppose $c_{1} \boldsymbol{s}_{1}+c_{2} \boldsymbol{s}_{2}=\mathbf{0}$. Then

$$
\lambda_{1}\left(c_{1} \boldsymbol{s}_{1}+c_{2} \boldsymbol{s}_{2}\right)=\mathbf{0}
$$

and

$$
\boldsymbol{A}\left(c_{1} \boldsymbol{s}_{1}+c_{2} \boldsymbol{s}_{2}\right)=c_{1} \lambda_{1} \boldsymbol{s}_{1}+c_{2} \lambda_{2} \boldsymbol{s}_{2}=\mathbf{0}
$$

By subtraction, we have $c_{2}\left(\lambda_{2}-\lambda_{1}\right) s_{2}=\mathbf{0}$. It follows that $c_{2}=0$ and $c_{1}=0$. Hence \boldsymbol{s}_{1} and s_{2} are linearly independent.

EXAMPLE (EIGENVALUE PROBLEM)

$$
\boldsymbol{A}=\left[\begin{array}{ll}
4 & -5 \\
2 & -3
\end{array}\right]
$$

$$
|\boldsymbol{A}-\lambda \boldsymbol{I}|=0 \Rightarrow \lambda^{2}-\lambda-2=0 \Rightarrow \lambda_{1}=2, \lambda_{2}=-1
$$

For $\lambda_{1}=2$, the eigenspace is

$$
\left[\begin{array}{ll}
2 & -5 \\
2 & -5
\end{array}\right] \boldsymbol{s}_{1}=\mathbf{0} \Rightarrow \mathbb{E}_{\lambda_{1}}=\left\{\boldsymbol{s}_{1} \left\lvert\, \boldsymbol{s}_{1}=c\left[\begin{array}{c}
\frac{5}{2} \\
1
\end{array}\right]\right.\right\}
$$

For $\lambda_{2}=-1$, the eigenspace is

$$
\left[\begin{array}{cc}
5 & -5 \\
2 & -2
\end{array}\right] \boldsymbol{s}_{2}=\mathbf{0} \Rightarrow \mathbb{E}_{\lambda_{2}}=\left\{\boldsymbol{s}_{2} \left\lvert\, \boldsymbol{s}_{2}=c\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right.\right\}
$$

EXAMPLE (EIGENVALUE PROBLEM: PROJECTION MATRIX)

$$
\boldsymbol{P}=\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right]
$$

$$
|\boldsymbol{P}-\lambda \boldsymbol{I}|=0 \Rightarrow \lambda^{2}-\lambda=0 \Rightarrow \lambda_{1}=1, \lambda_{2}=0
$$

$$
\left(\boldsymbol{P}-\lambda_{1} \boldsymbol{I}\right) \boldsymbol{s}_{1}=\left[\begin{array}{cc}
-\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2}
\end{array}\right] \boldsymbol{s}_{1}=\mathbf{0} \Rightarrow \mathbb{E}_{\lambda_{1}}=\left\{\boldsymbol{s}_{1} \left\lvert\, \boldsymbol{s}_{1}=c\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right.\right\}
$$

$$
\left(\boldsymbol{P}-\lambda_{2} \boldsymbol{I}\right) \boldsymbol{s}_{2}=\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right] \boldsymbol{s}_{2}=\mathbf{0} \Rightarrow \mathbb{E}_{\lambda_{2}}=\left\{\boldsymbol{s}_{2} \left\lvert\, \boldsymbol{s}_{2}=c\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right.\right\}
$$

EXAMPLE (COMPLEX EIGENVALUES)

$$
\boldsymbol{K}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

$$
|\boldsymbol{K}-\lambda \boldsymbol{I}|=0 \Rightarrow \lambda^{2}+1=0 \Rightarrow \lambda_{1}=i, \lambda_{2}=-i
$$

$\left(\boldsymbol{K}-\lambda_{1} \boldsymbol{I}\right) \boldsymbol{s}_{1}=\left[\begin{array}{cc}-i & -1 \\ 1 & -i\end{array}\right] \boldsymbol{s}_{1}=\mathbf{0} \Rightarrow \mathbb{E}_{\lambda_{1}}=\left\{\boldsymbol{s}_{1} \left\lvert\, \boldsymbol{s}_{1}=c\left[\begin{array}{l}i \\ 1\end{array}\right]\right.\right\}$
$\left(\boldsymbol{K}-\lambda_{2} \boldsymbol{I}\right) \boldsymbol{s}_{2}=\left[\begin{array}{cc}i & -1 \\ 1 & i\end{array}\right] \boldsymbol{s}_{2}=\mathbf{0} \Rightarrow \mathbb{E}_{\lambda_{2}}=\left\{\boldsymbol{s}_{2} \left\lvert\, \boldsymbol{s}_{2}=c\left[\begin{array}{c}-i \\ 1\end{array}\right]\right.\right\}$

LEMMA (BOUND ON THE NUMBER OF EIGENVALUES)

Let \boldsymbol{A} be a square matrix of order $n \times n$. \boldsymbol{A} has at most n distinct eigenvalues.

- A polynomial of order n cannot have more than n roots

$$
|\boldsymbol{A}-\lambda \boldsymbol{I}|=\left|\begin{array}{ccc}
a_{11}-\lambda & \ldots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \ldots & a_{n n}-\lambda
\end{array}\right|
$$

- A space of dimension n cannot accommodate more than n linearly independent eigenvectors

ThEOREM (SUM OF EIGENVALUES $=$ TRACE)

Let \boldsymbol{A} be a square matrix.

- The trace of \boldsymbol{A} is the sum of diagonal elements
- Sum of the eigenvalues of \boldsymbol{A} equals the trace of \boldsymbol{A}

Factorize the polynomial $|\boldsymbol{A}-\lambda \boldsymbol{I}|$ by its roots

$$
\left|\begin{array}{ccc}
a_{11}-\lambda & \ldots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \ldots & a_{n n}-\lambda
\end{array}\right|=c\left(\lambda-\lambda_{1}\right) \ldots\left(\lambda-\lambda_{n}\right)
$$

For the λ^{n} and λ^{n-1} terms, the equality requires $c=(-1)^{n}$ and

$$
\begin{gathered}
(-1)^{n-1}\left(a_{11}+\cdots+a_{n n}\right) \lambda^{n-1}=(-1)^{n}\left(\left(-\lambda_{1}\right)+\cdots+\left(-\lambda_{n}\right)\right) \lambda^{n-1} \\
\lambda_{1}+\cdots+\lambda_{n}=a_{11}+\cdots+a_{n n}
\end{gathered}
$$

THEOREM (PRODUCT OF EIGENVALUES $=$ DETERMINANT) Let \boldsymbol{A} be a square matrix. Product of the eigenvalues of \boldsymbol{A} is equal to the determinant of \boldsymbol{A}.

The characteristic polynomial of \boldsymbol{A} can be factorized by its roots

$$
|\boldsymbol{A}-\lambda \boldsymbol{I}|=(-1)^{n} \prod_{i=1}^{n}\left(\lambda-\lambda_{i}\right)
$$

Setting λ of both sides to 0 , we get

$$
|\boldsymbol{A}|=(-1)^{n} \prod_{i=1}^{n}\left(-\lambda_{i}\right)=\prod_{i=1}^{n} \lambda_{i}
$$

The equality holds for repeated eigenvalues.

TIPS FOR FINDING EIGENVALUES

Let \boldsymbol{A} be a square matrix. Eigenvalues of \boldsymbol{A} may be found without solving the characteristic equation of \boldsymbol{A}.

- If \boldsymbol{A} is singular, 0 is an eigenvalue
- If \boldsymbol{A} has a constant row sum (or column sum), that constant is an eigenvalue
- If \boldsymbol{A} is a triangular matrix, the diagonal elements of \boldsymbol{A} are eigenvalues

Eigen-decomposition and Diagonalization

DEFINITION (ALGEBRAIC/GEOMETRIC MULTIPLICITY)

Let \boldsymbol{A} be a square matrix with spectrum $\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$.

- The characteristic polynomial of \boldsymbol{A} can be expressed as

$$
|\boldsymbol{A}-\lambda \boldsymbol{I}|=c \prod_{i=1}^{k}\left(\lambda-\lambda_{i}\right)^{\gamma_{i}}
$$

- γ_{i} is called the algebraic multiplicity of λ_{i}
- The dimension of eigenspace $\mathbb{E}_{\lambda_{i}}$ is called the geometric multiplicity of λ_{i}, denoted by g_{i}

Suppose \boldsymbol{A} is of order $n \times n$.

- The sum of algebraic multiplicities $\sum_{i} \gamma_{i}$ is exactly n
- The sum of geometric multiplicities $\sum_{i} g_{i}$ is at most n

DEFINITION (DEFECTIVE MATRIX)

Let \boldsymbol{A} be a square matrix of order $n \times n$ with spectrum $\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$. \boldsymbol{A} is defective if

$$
g_{1}+\cdots+g_{k}<n
$$

Consider

$$
\boldsymbol{A}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad \boldsymbol{B}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

\boldsymbol{A} is defective
$n=2, \lambda_{1}=0, \sum_{i} g_{i}=g_{1}=\overbrace{n-\boldsymbol{\operatorname { r a n k }}\left(\boldsymbol{A}-\lambda_{1} \boldsymbol{I}\right)}^{\boldsymbol{\operatorname { d i m } \mathcal { N } (\boldsymbol { A } - \lambda _ { 1 } \boldsymbol { I })}}=2-1=1<n$
\boldsymbol{B} is non-defective
$n=2, \lambda_{1}=0, \sum_{i} g_{i}=g_{1}=n-\boldsymbol{\operatorname { r a n k }}\left(\boldsymbol{B}-\lambda_{1} \boldsymbol{I}\right)=2-0=2=n$

Definition (EIGENBASIS)

An eigenbasis of \boldsymbol{A} is a basis containing eigenvectors of \boldsymbol{A}.
For a non-defective matrix \boldsymbol{A} of order $n \times n$, we can construct an eigenbasis as follows.

- Let $\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$ be the spectrum of \boldsymbol{A}
- Let $\mathcal{B}_{1}, \ldots, \mathcal{B}_{k}$ be bases of eigenspaces $\mathbb{E}_{\lambda_{1}}, \ldots, \mathbb{E}_{\lambda_{k}}$
- Let $\mathcal{B}=\mathcal{B}_{1} \cup \cdots \cup \mathcal{B}_{k}$
- \mathcal{B} is an eigenbasis: it is linearly independent and contains
$\sum_{i=1}^{k} g_{i}=n$ eigenvectors of \boldsymbol{A}

DEFINITION (EIGENVECTOR AND EIGENVALUE MATRIX)

Let \boldsymbol{A} be a non-defective matrix of order $n \times n$.

- From eigenbasis $\left\{s_{1}, \ldots, s_{n}\right\}$ of \boldsymbol{A}, we can construct eigenvector matrix

$$
\boldsymbol{S}=\left[\begin{array}{lll}
& & \\
\boldsymbol{s}_{1} & \ldots & \boldsymbol{s}_{n}
\end{array}\right]
$$

- Let λ_{i} be the eigenvalue corresponding to \boldsymbol{s}_{i}. We can construct eigenvalue matrix

$$
\boldsymbol{\Lambda}=\boldsymbol{\operatorname { d i a g }}\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

THEOREM (EIGEN-DECOMPOSITION)

Let \boldsymbol{A} be a non-defective matrix. \boldsymbol{A} can be decomposed by

$$
\boldsymbol{A}=\boldsymbol{S} \boldsymbol{\Lambda} \boldsymbol{S}^{-1}
$$

This is eigenvalue decomposition or simply eigen-decomposition.
$\begin{aligned} \boldsymbol{A}\left[\begin{array}{lll}\boldsymbol{s}_{1} & \ldots & \boldsymbol{s}_{n}\end{array}\right. & =\left[\begin{array}{lll}\boldsymbol{A} \boldsymbol{s}_{1} & \ldots & \boldsymbol{A} \boldsymbol{s}_{n}\end{array}\right]=\left[\begin{array}{lll} & \\ \lambda_{1} \boldsymbol{s}_{1} & \ldots & \lambda_{n} \boldsymbol{s}_{n} \\ & \\ & =\left[\begin{array}{lll}\boldsymbol{s}_{1} & \ldots & \boldsymbol{s}_{n}\end{array}\right]\left[\begin{array}{lll}\lambda_{1} & \\ & \ddots & \\ & & \lambda_{n}\end{array}\right]\end{array} . \quad \begin{array}{ll}\end{array}\right]\end{aligned}$
It follows from $\boldsymbol{A} \boldsymbol{S}=\boldsymbol{S} \boldsymbol{\Lambda}$ that $\boldsymbol{A}=\boldsymbol{S} \boldsymbol{\Lambda} \boldsymbol{S}^{-1}$

Corollary (DiAgonalization of a matrix)

A non-defective square matrix can be diagonalized by its eigenvector matrix.

It follows from eigen-decomposition $\boldsymbol{A}=\boldsymbol{S} \boldsymbol{\Lambda} \boldsymbol{S}^{-1}$ that

$$
\boldsymbol{S}^{-1} \boldsymbol{A} \boldsymbol{S}=\boldsymbol{\Lambda}=\boldsymbol{\operatorname { d i a g }}\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

This is the diagonalization of \boldsymbol{A}.

ExAMPLE (DIAGONALIZATION OF MATRIX)

$$
\begin{gathered}
\boldsymbol{P}=\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right], \quad\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]^{-1}\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right] \\
\boldsymbol{K}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right], \quad\left[\begin{array}{cc}
i & -i \\
1 & 1
\end{array}\right]^{-1}\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
i & -i \\
1 & 1
\end{array}\right]=\left[\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right]
\end{gathered}
$$

Difference Equations (with an Eigenvalue Approach)

Definition (Fibonacci recurrence and numbers)

- Fibonacci recurrence

$$
F_{k+1}=F_{k}+F_{k-1}
$$

- Initial Fibonacci numbers

$$
F_{0}=0, \quad F_{1}=1
$$

- Fibonacci sequence

$$
\begin{array}{lllllllll}
0 & 1 & 1 & 2 & 3 & 5 & 8 & 13 & \ldots
\end{array}
$$

DEFinition (Fibonacci vectors and matrix)

- Fibonacci vectors

$$
\boldsymbol{u}_{k}=\left[\begin{array}{c}
F_{k+1} \\
F_{k}
\end{array}\right]
$$

- Fibonacci matrix

$$
\boldsymbol{A}=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]
$$

k-STEP RECURRENCE

- Fibonacci recurrence by matrix and vector

$$
\left[\begin{array}{c}
F_{k+1} \\
F_{k}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
F_{k} \\
F_{k-1}
\end{array}\right]
$$

That is

$$
\boldsymbol{u}_{k}=\boldsymbol{A} \boldsymbol{u}_{k-1}
$$

- k-step recurrence

$$
\boldsymbol{u}_{k}=\boldsymbol{A} \boldsymbol{u}_{k-1}=\boldsymbol{A}\left(\boldsymbol{A} \boldsymbol{u}_{k-2}\right)=\cdots=\boldsymbol{A}^{k-1} \boldsymbol{u}_{1}=\boldsymbol{A}^{k} \boldsymbol{u}_{0}
$$

That is

$$
\left[\begin{array}{c}
F_{k+1} \\
F_{k}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]^{k}\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

POWER OF A NON-DEFECTIVE MATRIX

Let \boldsymbol{A} be a non-defective matrix with eigen-decomposition $\boldsymbol{A}=$ $\boldsymbol{S} \boldsymbol{\Lambda} \boldsymbol{S}^{-1}$. Then

$$
\boldsymbol{A}^{k}=\boldsymbol{S} \boldsymbol{\Lambda}^{k} \boldsymbol{S}^{-1}
$$

$$
\begin{aligned}
\boldsymbol{A}^{k} & =\left(\boldsymbol{S} \boldsymbol{\Lambda} \boldsymbol{S}^{-1}\right)^{k} \\
& =\left(\boldsymbol{S} \boldsymbol{\Lambda} \boldsymbol{S}^{-1}\right)\left(\boldsymbol{S} \boldsymbol{\Lambda} \boldsymbol{S}^{-1}\right) \ldots\left(\boldsymbol{S} \boldsymbol{\Lambda} \boldsymbol{S}^{-1}\right) \\
& =\boldsymbol{S} \boldsymbol{\Lambda}\left(\boldsymbol{S}^{-1} \boldsymbol{S}\right) \boldsymbol{\Lambda}\left(\boldsymbol{S}^{-1} \boldsymbol{S}\right) \ldots\left(\boldsymbol{S}^{-1} \boldsymbol{S}\right) \boldsymbol{\Lambda} \boldsymbol{S}^{-1} \\
& =\boldsymbol{S} \boldsymbol{\Lambda} \boldsymbol{S}^{k} \boldsymbol{S}^{-1}
\end{aligned}
$$

Note $\boldsymbol{S} \boldsymbol{\Lambda}^{k} \boldsymbol{S}^{-1}$ is easier to compute than \boldsymbol{A}^{k}.

formula for Fibonacci vectors

- Fibonacci matrix \boldsymbol{A} is non-defective
- Simplification of k-step recurrence

$$
\begin{aligned}
& \boldsymbol{u}_{k}=\boldsymbol{A}^{k} \boldsymbol{u}_{0}=\boldsymbol{S} \boldsymbol{\Lambda}^{k} \boldsymbol{S}^{-1} \boldsymbol{u}_{0} \\
& =\left[\begin{array}{ll}
\boldsymbol{s}_{1} & \boldsymbol{s}_{2} \\
&
\end{array}\right]\left[\begin{array}{ll}
\lambda_{1}^{k} & \\
& \lambda_{2}^{k}
\end{array}\right]\left[\begin{array}{ll}
\boldsymbol{s}_{1} & \left.\boldsymbol{s}_{2}\right]^{-1} \boldsymbol{u}_{0}
\end{array}\right. \\
& =c_{1} \lambda_{1}^{k} \boldsymbol{s}_{1}+c_{2} \lambda_{2}^{k} \boldsymbol{s}_{2}
\end{aligned}
$$

where

$$
\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{ll}
\boldsymbol{s}_{1} & \left.\boldsymbol{s}_{2}\right]^{-1} \boldsymbol{u}_{0},{ }^{-1}
\end{array}\right.
$$

- We have \boldsymbol{u}_{k} expressed by λ_{i} and s_{i}

Eigenvalue problem of Fibonacci matrix

Recall $\boldsymbol{A}=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$.

- Eigenvalues: solve $|\boldsymbol{A}-\lambda \boldsymbol{I}|=0$

$$
\lambda_{1}=\frac{1+\sqrt{5}}{2}, \quad \lambda_{2}=\frac{1-\sqrt{5}}{2}
$$

- Eigenvectors: solve $\boldsymbol{A} \boldsymbol{s}_{i}=\lambda_{i} \boldsymbol{s}_{i}$

$$
\begin{gathered}
\left(\boldsymbol{A}-\lambda_{i} \boldsymbol{I}\right) \boldsymbol{s}_{i}=\left[\begin{array}{cc}
1-\lambda_{i} & 1 \\
1 & -\lambda_{i}
\end{array}\right] \boldsymbol{s}_{i}=\mathbf{0} \\
\Rightarrow \boldsymbol{s}_{i}=\left[\begin{array}{c}
\lambda_{i} \\
1
\end{array}\right], i=1,2
\end{gathered}
$$

EXPLOITING THE INITIAL CONDITION

With $\boldsymbol{u}_{k}=c_{1} \lambda_{1}^{k} s_{1}+c_{2} \lambda_{2}^{k} \boldsymbol{s}_{2}$, we still need to decide c_{1} and c_{2}.

- Initial condition

$$
\boldsymbol{u}_{0}=c_{1} \lambda_{1}^{0} \boldsymbol{s}_{1}+c_{2} \lambda_{2}^{0} \boldsymbol{s}_{2}=c_{1} \boldsymbol{s}_{1}+c_{2} \boldsymbol{s}_{2}
$$

- Substitution of $\boldsymbol{s}_{1}, \boldsymbol{s}_{2}$ and \boldsymbol{u}_{0}

$$
\left[\begin{array}{cc}
\lambda_{1} & \lambda_{2} \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

- Solve c_{1} and c_{2}

$$
\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{cc}
\lambda_{1} & \lambda_{2} \\
1 & 1
\end{array}\right]^{-1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{\lambda_{1}-\lambda_{2}} \\
-\frac{1}{\lambda_{1}-\lambda_{2}}
\end{array}\right]
$$

FORMULA FOR THE Fibonacci numbers

- k th Fibonacci vector

$$
\begin{aligned}
\boldsymbol{u}_{k} & =c_{1} \lambda_{1}^{k} \boldsymbol{s}_{1}+c_{2} \lambda_{2}^{k} \boldsymbol{s}_{2} \\
& =\frac{1}{\lambda_{1}-\lambda_{2}} \lambda_{1}^{k}\left[\begin{array}{c}
\lambda_{1} \\
1
\end{array}\right]-\frac{1}{\lambda_{1}-\lambda_{2}} \lambda_{2}^{k}\left[\begin{array}{c}
\lambda_{2} \\
1
\end{array}\right] \\
& =\frac{1}{\lambda_{1}-\lambda_{2}}\left[\begin{array}{c}
\lambda_{1}^{k+1}-\lambda_{2}^{k+1} \\
\lambda_{1}^{k}-\lambda_{2}^{k}
\end{array}\right]=\left[\begin{array}{c}
F_{k+1} \\
F_{k}
\end{array}\right]
\end{aligned}
$$

- k th Fibonacci number

$$
\begin{aligned}
F_{k} & =\frac{1}{\lambda_{1}-\lambda_{2}}\left(\lambda_{1}^{k}-\lambda_{2}^{k}\right) \\
& =\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{k}-\left(\frac{1-\sqrt{5}}{2}\right)^{k}\right]
\end{aligned}
$$

Example (a Markov process)

Suppose $\frac{1}{10}$ of the population outside Asia move in and $\frac{2}{10}$ of the population inside Asia move out every year. What is the inside-Asia/outside-Asia population at the end of year k ?

Let y_{k} (resp. z_{k}) be the population outside (resp. inside) Asia at the end of year k.

- Recurrence of population

$$
\begin{aligned}
& y_{k+1}=0.9 y_{k}+0.2 z_{k} \\
& z_{k+1}=0.1 y_{k}+0.8 z_{k}
\end{aligned}
$$

- In vector and matrix

$$
\left[\begin{array}{l}
y_{k+1} \\
z_{k+1}
\end{array}\right]=\left[\begin{array}{ll}
0.9 & 0.2 \\
0.1 & 0.8
\end{array}\right]\left[\begin{array}{l}
y_{k} \\
z_{k}
\end{array}\right]
$$

- Population vectors and matrix

$$
\boldsymbol{x}_{k}=\left[\begin{array}{l}
y_{k} \\
z_{k}
\end{array}\right], \quad \boldsymbol{A}=\left[\begin{array}{ll}
0.9 & 0.2 \\
0.1 & 0.8
\end{array}\right]
$$

- Year-to-year evolution of population

$$
\boldsymbol{x}_{k+1}=\boldsymbol{A} \boldsymbol{x}_{k}
$$

- Population vector at the end of year k

$$
\boldsymbol{x}_{k}=\boldsymbol{A} \boldsymbol{x}_{k-1}=\boldsymbol{A}\left(\boldsymbol{A} \boldsymbol{x}_{k-2}\right)=\cdots=\boldsymbol{A}^{k} \boldsymbol{x}_{0}
$$

- Eigen-decomposition of \boldsymbol{A}

$$
\boldsymbol{A}=\boldsymbol{S} \boldsymbol{\Lambda} \boldsymbol{S}^{-1}=\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & 0.7
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{3} & \frac{1}{3} \\
-\frac{1}{3} & \frac{2}{3}
\end{array}\right]
$$

- Put the pieces together

$$
\begin{aligned}
\boldsymbol{x}_{k} & =\boldsymbol{A}^{k} \boldsymbol{x}_{0}=\boldsymbol{S} \boldsymbol{\Lambda}^{k} \boldsymbol{S}^{-1} \boldsymbol{x}_{0} \\
\Rightarrow \quad\left[\begin{array}{c}
y_{k} \\
z_{k}
\end{array}\right] & =\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & 0.7
\end{array}\right]^{k}\left[\begin{array}{cc}
\frac{1}{3} & \frac{1}{3} \\
-\frac{1}{3} & \frac{2}{3}
\end{array}\right]\left[\begin{array}{l}
y_{0} \\
z_{0}
\end{array}\right] \\
& =\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{c}
\frac{1}{3}\left(y_{0}+z_{0}\right)(1)^{k} \\
-\frac{1}{3}\left(y_{0}-2 z_{0}\right)(0.7)^{k}
\end{array}\right] \\
& =\left(y_{0}+z_{0}\right)(1)^{k}\left[\begin{array}{l}
\frac{2}{3} \\
\frac{1}{3}
\end{array}\right]+\left(y_{0}-2 z_{0}\right)(0.7)^{k}\left[\begin{array}{c}
\frac{1}{3} \\
-\frac{1}{3}
\end{array}\right]
\end{aligned}
$$

STATIONARY EIGENVECTOR

Consider population matrix \boldsymbol{A}.

- Non-negative
- Every column sums to 1
- Has eigenvalue 1
- Stationary eigenvector: let $\boldsymbol{\pi}$ be an eigenvector of \boldsymbol{A} with eigenvalue 1

$$
\begin{gathered}
\boldsymbol{A} \boldsymbol{\pi}=1 \cdot \boldsymbol{\pi}=\boldsymbol{\pi} \\
\boldsymbol{x}_{0}=\boldsymbol{\pi} \Rightarrow \boldsymbol{x}_{1}=\boldsymbol{A} \boldsymbol{x}_{0}=\boldsymbol{\pi} \Rightarrow \cdots \Rightarrow \cdots \Rightarrow \boldsymbol{x}_{n}=\boldsymbol{\pi}
\end{gathered}
$$

Linear Algebra and Differential Equations

LINEAR DIFFERENTIAL EQUATION

Consider a linear differential equation

$$
\frac{d u}{d t}=a u
$$

where $u=u(t)$ is an unknown function of t and a is a constant.

- The equation is linear
- Let the initial condition be $u(0)=u_{0}$. The solution is

$$
u(t)=u_{0} e^{a t}=e^{a t} u_{0}
$$

SYSTEM OF LINEAR DIFFERENTIAL EQUATIONS

Consider a system of linear differential equations

$$
\left\{\begin{array}{l}
\frac{d v}{d t}=a v+b w \\
\frac{d w}{d t}=c v+d w
\end{array}\right.
$$

Define $\boldsymbol{u}=\left[\begin{array}{c}v \\ w\end{array}\right]$ and $\boldsymbol{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. The system can be written as

$$
\begin{aligned}
\frac{d \boldsymbol{u}}{d t} & =\frac{d}{d t}\left[\begin{array}{c}
v \\
w
\end{array}\right]=\left[\begin{array}{l}
\frac{d v}{d t} \\
\frac{d w}{d t}
\end{array}\right]=\left[\begin{array}{l}
a v+b w \\
c v+d w
\end{array}\right] \\
& =\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{c}
v \\
w
\end{array}\right] \\
& =\boldsymbol{A} \boldsymbol{u}
\end{aligned}
$$

DECOMPOSITION WITH EIGENBASIS

Let \boldsymbol{A} be a non-defective $n \times n$ matrix. Consider

$$
\frac{d \boldsymbol{u}}{d t}=\boldsymbol{A} \boldsymbol{u}
$$

- \boldsymbol{A} has an eigenbasis, say $\left\{\boldsymbol{s}_{1}, \ldots, \boldsymbol{s}_{n}\right\}$
- A solution, say \boldsymbol{u}, can be expressed as

$$
\boldsymbol{u}(t)=c_{1}(t) \boldsymbol{s}_{1}+\cdots+c_{n}(t) \boldsymbol{s}_{n}
$$

- $\boldsymbol{u}(t)$ varies with time and $\boldsymbol{s}_{1}, \ldots, \boldsymbol{s}_{n}$ are time-invariant, so the coefficients $c_{1}(t), \ldots, c_{n}(t)$ must vary with time

MODE

Let \boldsymbol{A} be a non-defective $n \times n$ matrix. Consider

$$
\frac{d \boldsymbol{u}}{d t}=\boldsymbol{A} \boldsymbol{u}
$$

- A solution that aligns with an eigenvector of \boldsymbol{A} is a mode
- Let $\boldsymbol{u}(t)=c(t) \boldsymbol{s}$ be a mode, where \boldsymbol{s} is an eigenvector of \boldsymbol{A} with eigenvalue λ

$$
\begin{aligned}
\frac{d \boldsymbol{u}}{d t}=\boldsymbol{A} \boldsymbol{u} & \Rightarrow \frac{d(c(t) \boldsymbol{s})}{d t}=\boldsymbol{A}(c(t) \boldsymbol{s})=\lambda(c(t) \boldsymbol{s}) \\
& \Rightarrow \frac{d c(t)}{d t}=\lambda c(t) \\
& \Rightarrow c(t)=e^{\lambda t} c(0)
\end{aligned}
$$

- So a mode is proportional to $e^{\lambda t} \boldsymbol{s}$

MIXTURE OF MODES

A general solution is a linear combination of modes.

- A general solution can be written as

$$
\boldsymbol{u}(t)=c_{1}(t) \boldsymbol{s}_{1}+\cdots+c_{n}(t) \boldsymbol{s}_{n}
$$

- Substitute into the differential equation

$$
\begin{aligned}
\frac{d \boldsymbol{u}}{d t}=\boldsymbol{A} \boldsymbol{u} & \Rightarrow \frac{d\left(\sum_{i} c_{i}(t) \boldsymbol{s}_{i}\right)}{d t}=\sum_{i} \lambda_{i}\left(c_{i}(t) \boldsymbol{s}_{i}\right) \\
& \Rightarrow \sum_{i}\left(\frac{d c_{i}(t)}{d t}-\lambda_{i} c_{i}(t)\right) \boldsymbol{s}_{i}=\mathbf{0}
\end{aligned}
$$

- Linear independence of s_{1}, \ldots, s_{n} requires

$$
\frac{d c_{i}(t)}{d t}=\lambda_{i} c_{i}(t) \Rightarrow c_{i}(t)=e^{\lambda_{i} t} c_{i}(0)
$$

INDEPENDENCE OF MODES

- We have

$$
\begin{aligned}
\boldsymbol{u}(t) & =\sum_{i=1}^{n} c_{i}(t) \boldsymbol{s}_{i} \\
& =c_{1}(0) e^{\lambda_{1} t} \boldsymbol{s}_{1}+\cdots+c_{n}(0) e^{\lambda_{n} t} \boldsymbol{s}_{n}
\end{aligned}
$$

- Each mode evolves with time exponentially and independently of the other modes.

MATRIX REPRESENTATION

- Eigenvector matrix of \boldsymbol{A}

$$
\boldsymbol{S}=\left[\begin{array}{lll}
& & \\
\boldsymbol{s}_{1} & \ldots & \boldsymbol{s}_{n}
\end{array}\right]
$$

- Define

$$
\boldsymbol{D}(t)=\operatorname{diag}\left(e^{\lambda_{1} t}, \ldots, e^{\lambda_{n} t}\right), \boldsymbol{c}_{0}=\left[\begin{array}{c}
c_{1}(0) \\
\vdots \\
c_{n}(0)
\end{array}\right]
$$

- We have

$$
\begin{aligned}
\boldsymbol{u}(t) & =c_{1}(0) e^{\lambda_{1} t} \boldsymbol{s}_{1}+\cdots+c_{n}(0) e^{\lambda_{n} t} \boldsymbol{s}_{n} \\
& =\boldsymbol{S} \boldsymbol{D}(t) \boldsymbol{c}_{0}
\end{aligned}
$$

Theorem (SOLVING linear differential equations)

Let \boldsymbol{A} be a matrix with eigen-decomposition $\boldsymbol{A}=\boldsymbol{S} \boldsymbol{\Lambda} \boldsymbol{S}^{-1}$. The solution to differential equation

$$
\frac{d \boldsymbol{u}}{d t}=\boldsymbol{A} \boldsymbol{u}
$$

with initial condition $\boldsymbol{u}(0)=\boldsymbol{u}_{0}$ is

$$
\boldsymbol{u}(t)=\boldsymbol{S} \boldsymbol{D}(t) \boldsymbol{S}^{-1} \boldsymbol{u}_{0}
$$

where $\boldsymbol{D}(t)=\boldsymbol{d i a g}\left(e^{\lambda_{1} t}, \ldots, e^{\lambda_{n} t}\right)$.
We have $\boldsymbol{u}(t)=\boldsymbol{S} \boldsymbol{D}(t) \boldsymbol{c}_{0}$. At $t=0$

$$
\boldsymbol{D}(0)=\boldsymbol{I} \Rightarrow \boldsymbol{u}_{0}=\boldsymbol{S} \boldsymbol{c}_{0} \Rightarrow \boldsymbol{c}_{0}=\boldsymbol{S}^{-1} \boldsymbol{u}_{0}
$$

Therefore

$$
\boldsymbol{u}(t)=\boldsymbol{S} \boldsymbol{D}(t) \boldsymbol{S}^{-1} \boldsymbol{u}_{0}
$$

EXAMPLE (LINEAR DIFFERENTIAL EQUATION SYSTEM)

Solve

$$
\frac{d \boldsymbol{u}}{d t}=\boldsymbol{A} \boldsymbol{u}, \quad \boldsymbol{u}=\left[\begin{array}{c}
v(t) \\
w(t)
\end{array}\right], \quad \boldsymbol{A}=\left[\begin{array}{cc}
4 & -5 \\
2 & -3
\end{array}\right]
$$

with initial condition $v(0)=8$ and $w(0)=5$.

$$
\begin{aligned}
|\boldsymbol{A}-\lambda \boldsymbol{I}| & =0 \Rightarrow \lambda_{1}=2, \lambda_{2}=-1 \Rightarrow \boldsymbol{s}_{1}=\left[\begin{array}{l}
\frac{5}{2} \\
1
\end{array}\right], \boldsymbol{s}_{2}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
\boldsymbol{u} & =\boldsymbol{S} \boldsymbol{D} \boldsymbol{S}^{-1} \boldsymbol{u}_{0}=\left[\begin{array}{ll}
\frac{5}{2} & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
e^{2 t} & 0 \\
0 & e^{-t}
\end{array}\right]\left[\begin{array}{cc}
\frac{5}{2} & 1 \\
1 & 1
\end{array}\right]^{-1}\left[\begin{array}{l}
8 \\
5
\end{array}\right] \\
& =2 e^{2 t}\left[\begin{array}{l}
\frac{5}{2} \\
1
\end{array}\right]+3 e^{-t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{aligned}
$$

DEFINITION (MATRIX AS AN EXPONENT)

Let \boldsymbol{A} be a square matrix. Define

$$
e^{\boldsymbol{A}} \triangleq \boldsymbol{I}+\boldsymbol{A}+\frac{\boldsymbol{A}^{2}}{2!}+\frac{\boldsymbol{A}^{3}}{3!}+\ldots
$$

This is an extension of scalar exponential

$$
e^{a}=1+a+\frac{a^{2}}{2!}+\frac{a^{3}}{3!}+\ldots
$$

A DIAGONAL MATRIX AS AN EXPONENT

Let $\boldsymbol{B}=\boldsymbol{\operatorname { d i a g }}\left(d_{1}, \ldots, d_{n}\right)$ be a diagonal matrix.

$$
e^{\boldsymbol{B}}=\boldsymbol{\operatorname { d i a g }}\left(e^{d_{1}}, \ldots, e^{d_{n}}\right)
$$

$$
\begin{aligned}
e^{\boldsymbol{B}} & =\boldsymbol{I}+\boldsymbol{B}+\frac{\boldsymbol{B}^{2}}{2!}+\ldots \\
& =\boldsymbol{\operatorname { d i a g }}(1, \ldots, 1)+\boldsymbol{\operatorname { d i a g }}\left(d_{1}, \ldots, d_{n}\right)+\boldsymbol{\operatorname { d i a g }}\left(\frac{d_{1}^{2}}{2!}, \ldots, \frac{d_{n}^{2}}{2!}\right)+\ldots \\
& =\boldsymbol{\operatorname { d i a g }}\left(\left(1+d_{1}+\frac{d_{1}^{2}}{2!}+\ldots\right), \ldots,\left(1+d_{n}+\frac{d_{n}^{2}}{2!}+\ldots\right)\right) \\
& =\boldsymbol{\operatorname { d i a g }}\left(e^{d_{1}}, \ldots, e^{d_{n}}\right)
\end{aligned}
$$

A NON-DEFECTIVE MATRIX AS AN EXPONENT

Let \boldsymbol{A} have eigen-decomposition $\boldsymbol{A}=\boldsymbol{S} \boldsymbol{\Lambda} \boldsymbol{S}^{-1}$.

$$
e^{\boldsymbol{A}}=\boldsymbol{S} e^{\boldsymbol{\Lambda}} \boldsymbol{S}^{-1}
$$

$$
\begin{aligned}
e^{\boldsymbol{A}} & =\boldsymbol{I}+\boldsymbol{A}+\frac{\boldsymbol{A}^{2}}{2!}+\ldots \\
& =\boldsymbol{I}+\boldsymbol{S} \boldsymbol{\Lambda} \boldsymbol{S}^{-1}+\frac{\left(\boldsymbol{S} \boldsymbol{\Lambda} \boldsymbol{S}^{-1}\right)^{2}}{2!}+\ldots \\
& =\boldsymbol{S}\left(\boldsymbol{I}+\boldsymbol{\Lambda}+\frac{\boldsymbol{\Lambda}^{2}}{2!}+\ldots\right) \boldsymbol{S}^{-1} \\
& =\boldsymbol{S} e^{\boldsymbol{\Lambda}} \boldsymbol{S}^{-1}
\end{aligned}
$$

THEOREM (MATRIX REPRESENTATION OF SOLUTION)
Let \boldsymbol{A} have eigen-decomposition $\boldsymbol{A}=\boldsymbol{S} \boldsymbol{\Lambda} \boldsymbol{S}^{-1}$. The solution of a system of linear differential equations

$$
\frac{d \boldsymbol{u}}{d t}=\boldsymbol{A} \boldsymbol{u}
$$

is

$$
\boldsymbol{u}=e^{\boldsymbol{A} t} \boldsymbol{u}_{0}
$$

Proof.

The solution is

$$
\boldsymbol{u}=\boldsymbol{S} \boldsymbol{D} \boldsymbol{S}^{-1} \boldsymbol{u}_{0}=\boldsymbol{S} e^{\boldsymbol{\Lambda} t} \boldsymbol{S}^{-1} \boldsymbol{u}_{0}
$$

We have

$$
\begin{aligned}
\boldsymbol{S} e^{\boldsymbol{\Lambda} t} \boldsymbol{S}^{-1} & =\boldsymbol{S}\left(\boldsymbol{I}+\boldsymbol{\Lambda} t+\frac{\boldsymbol{\Lambda}^{2} t^{2}}{2!}+\ldots\right) \boldsymbol{S}^{-1} \\
& =\boldsymbol{I}+\left(\boldsymbol{S} \boldsymbol{\Lambda} \boldsymbol{S}^{-1}\right) t+\frac{\left(\boldsymbol{S} \boldsymbol{\Lambda} \boldsymbol{S}^{-1}\right)^{2} t^{2}}{2!}+\ldots \\
& =\boldsymbol{I}+\boldsymbol{A} t+\frac{\boldsymbol{A}^{2} t^{2}}{2!}+\ldots \\
& =e^{\boldsymbol{A} t}
\end{aligned}
$$

Hence $\boldsymbol{u}=e^{\boldsymbol{A} t} \boldsymbol{u}_{0}$.

HIGH-ORDER LINEAR DIFFERENTIAL EQUATION*

A high-order linear differential equation can be converted to a system of first-order linear differential equations.

For example, consider a third-order linear differential equation

$$
\frac{d^{3} y}{d t^{3}}+b \frac{d^{2} y}{d t^{2}}+c \frac{d y}{d t}=0
$$

Define

$$
v=\frac{d y}{d t}, w=\frac{d v}{d t}, \boldsymbol{u}=\left[\begin{array}{c}
y \\
v \\
w
\end{array}\right], \quad \boldsymbol{A}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -c & -b
\end{array}\right]
$$

Then
$\frac{d \boldsymbol{u}}{d t}=\frac{d}{d t}\left[\begin{array}{c}y \\ v \\ w\end{array}\right]=\left[\begin{array}{c}\frac{d y}{d t} \\ \frac{d v}{d t} \\ \frac{d w}{d t}\end{array}\right]=\left[\begin{array}{c}v \\ w \\ -b w-c v\end{array}\right]=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -c & -b\end{array}\right]\left[\begin{array}{c}y \\ v \\ w\end{array}\right]=\boldsymbol{A} \boldsymbol{u}$

LINEAR PARTIAL DIFFERENTIAL EQUATION*

A linear partial differential equation can be converted to a system of first-order linear differential equations.

Consider heat equation

$$
\frac{\partial u(t, x)}{\partial t}=\frac{\partial^{2} u(t, x)}{\partial x^{2}}
$$

Discretizing x to n points, we have

$$
\frac{d \boldsymbol{u}}{d t}=\boldsymbol{A} \boldsymbol{u}, \quad \boldsymbol{u}=\left[\begin{array}{c}
u_{1}(t) \\
\cdot \\
\cdot \\
u_{n}(t)
\end{array}\right], \quad \boldsymbol{A}=\left[\begin{array}{cccc}
-2 & 1 & & \\
1 & -2 & \cdot & \\
& \cdot & \cdot & 1 \\
& & 1 & -2
\end{array}\right]
$$

where $u_{i}(t)=u\left(t, x_{i}\right)$.

Complex Matrix

COMPLEX NUMBERS

Figure 5.4: The complex plane, with $a+i b=r e^{i \theta}$ and its conjugate $a-i b=r e^{-i \theta}$.

COMPLEX VECTOR AND COMPLEX MATRIX

- A vector with complex elements is a complex vector
- A matrix with complex elements is a complex matrix

Let \boldsymbol{x} and \boldsymbol{y} be complex vectors of size n.

- Inner product of \boldsymbol{x} and \boldsymbol{y}

$$
(\boldsymbol{x}, \boldsymbol{y})=x_{1}^{*} y_{1}+\cdots+x_{n}^{*} y_{n}
$$

- Length (or norm) of \boldsymbol{x}

$$
\|\boldsymbol{x}\|^{2}=(\boldsymbol{x}, \boldsymbol{x})
$$

- Orthogonality of \boldsymbol{x} and \boldsymbol{y}

$$
(\boldsymbol{x}, \boldsymbol{y})=0 \quad \Leftrightarrow \quad \boldsymbol{x} \perp \boldsymbol{y}
$$

EXAMPLE (COMPLEX VECTORS)

Decide the inner product, lengths and orthogonality for

$$
\boldsymbol{x}=\left[\begin{array}{c}
3-2 i \\
2+i
\end{array}\right], \boldsymbol{y}=\left[\begin{array}{c}
5 \\
-1-i
\end{array}\right]
$$

Definition (the Hermitian of a matrix)

Let \boldsymbol{A} be a complex matrix. The Hermitian of \boldsymbol{A} is

$$
\boldsymbol{A}^{H}=\left(\boldsymbol{A}^{*}\right)^{T}=\left(\boldsymbol{A}^{T}\right)^{*}
$$

- Relationship between elements

$$
a_{i j}^{H}=a_{j i}^{*}
$$

- Hermitian of Hermitian

$$
\left(\boldsymbol{A}^{H}\right)^{H}=\boldsymbol{A}
$$

- Hermitian of product

$$
(\boldsymbol{A} \boldsymbol{B})^{H}=\boldsymbol{B}^{H} \boldsymbol{A}^{H}
$$

Lemma (inner product and Hermitian)

Let \boldsymbol{x} and \boldsymbol{y} be complex vectors.

- The inner product of \boldsymbol{x} and \boldsymbol{y} is

$$
(\boldsymbol{x}, \boldsymbol{y})=\boldsymbol{x}^{H} \boldsymbol{y}
$$

- Furthermore

$$
\begin{aligned}
& (\boldsymbol{x}, \boldsymbol{A} \boldsymbol{y})=\boldsymbol{x}^{H} \boldsymbol{A} \boldsymbol{y}=\left(\boldsymbol{A}^{H} \boldsymbol{x}\right)^{H} \boldsymbol{y}=\left(\boldsymbol{A}^{H} \boldsymbol{x}, \boldsymbol{y}\right) \\
& (\boldsymbol{A} \boldsymbol{x}, \boldsymbol{y})=(\boldsymbol{A} \boldsymbol{x})^{H} \boldsymbol{y}=\boldsymbol{x}^{H} \boldsymbol{A}^{H} \boldsymbol{y}=\left(\boldsymbol{x}, \boldsymbol{A}^{H} \boldsymbol{y}\right)
\end{aligned}
$$

Definition (Hermitian matrix)
Let \boldsymbol{A} be a complex matrix. \boldsymbol{A} is Hermitian if

$$
\boldsymbol{A}^{H}=\boldsymbol{A}
$$

That is

$$
a_{i j}^{H}=a_{j i}^{*}=a_{i j}
$$

For example

$$
\left[\begin{array}{cc}
2 & 3-3 i \\
3+3 i & 5
\end{array}\right]
$$

properties of Hermitian matrix

Let \boldsymbol{A} be Hermitian.

- $\boldsymbol{x}^{H} \boldsymbol{A} \boldsymbol{x}$ is real for any \boldsymbol{x}

$$
\begin{aligned}
\boldsymbol{x}^{H} \boldsymbol{A} \boldsymbol{x} & =\boldsymbol{x}^{H} \boldsymbol{A}^{H} \boldsymbol{x}=\boldsymbol{x}^{H} \boldsymbol{A}^{H}\left(\boldsymbol{x}^{H}\right)^{H}=\left(\boldsymbol{x}^{H} \boldsymbol{A} \boldsymbol{x}\right)^{H} \\
& =\left(\boldsymbol{x}^{H} \boldsymbol{A} \boldsymbol{x}\right)^{*}
\end{aligned}
$$

- Eigenvalues of \boldsymbol{A} are real

$$
\boldsymbol{A} \boldsymbol{s}_{i}=\lambda_{i} \boldsymbol{s}_{i} \Rightarrow \boldsymbol{s}_{i}^{H} \boldsymbol{A} \boldsymbol{s}_{i}=\lambda_{i} \boldsymbol{s}_{i}^{H} \boldsymbol{s}_{i} \Rightarrow \lambda_{i}=\frac{\boldsymbol{s}_{i}^{H} \boldsymbol{A} \boldsymbol{s}_{i}}{\boldsymbol{s}_{i}^{H} \boldsymbol{s}_{i}} \in \mathbb{R}
$$

- Eigenspaces of \boldsymbol{A} are orthogonal

$$
\begin{aligned}
\left(\boldsymbol{A} \boldsymbol{s}_{1}, \boldsymbol{s}_{2}\right)=\left(\boldsymbol{s}_{1}, \boldsymbol{A} \boldsymbol{s}_{2}\right) & \Rightarrow\left(\lambda_{1}^{*}-\lambda_{2}\right)\left(\boldsymbol{s}_{1}, \boldsymbol{s}_{2}\right)=0 \\
& \Rightarrow\left(\boldsymbol{s}_{1}, \boldsymbol{s}_{2}\right)=0
\end{aligned}
$$

Example (properties of Hermitian matrix)

$$
\boldsymbol{A}=\left[\begin{array}{cc}
2 & 3-3 i \\
3+3 i & 5
\end{array}\right]
$$

$$
\begin{gathered}
|\boldsymbol{A}-\lambda \boldsymbol{I}|=0 \Rightarrow \lambda_{1}=8, \lambda_{2}=-1 \\
(\boldsymbol{A}-8 \boldsymbol{I}) \boldsymbol{s}_{1}=\mathbf{0} \Rightarrow \boldsymbol{s}_{1}=\left[\begin{array}{c}
\frac{1-i}{2} \\
1
\end{array}\right] \\
(\boldsymbol{A}+\boldsymbol{I}) \boldsymbol{s}_{2}=\mathbf{0} \Rightarrow \boldsymbol{s}_{2}=\left[\begin{array}{c}
i-1 \\
1
\end{array}\right] \\
\left(\boldsymbol{s}_{1}, \boldsymbol{s}_{2}\right)=\left(\frac{1-i}{2}\right)^{*} \cdot(i-1)+1 \cdot 1=0
\end{gathered}
$$

DEFINITION (UNITARY MATRIX)
Let \boldsymbol{U} be a complex matrix. \boldsymbol{U} is unitary if

$$
\boldsymbol{U}^{-1}=\boldsymbol{U}^{H}
$$

That is

$$
\boldsymbol{U}^{H} \boldsymbol{U}=\boldsymbol{U} \boldsymbol{U}^{H}=\boldsymbol{I}
$$

PROPERTIES OF UNITARY MATRIX

Let \boldsymbol{U} be unitary.

- $\|\boldsymbol{U} \boldsymbol{x}\|=\|\boldsymbol{x}\|$ for any \boldsymbol{x}

$$
\|\boldsymbol{U} \boldsymbol{x}\|^{2}=(\boldsymbol{U} \boldsymbol{x}, \boldsymbol{U} \boldsymbol{x})=\left(\boldsymbol{x}, \boldsymbol{U}^{H} \boldsymbol{U} \boldsymbol{x}\right)=(\boldsymbol{x}, \boldsymbol{x})=\|\boldsymbol{x}\|^{2}
$$

- Eigenvalue of \boldsymbol{U} has modulus 1

$$
\begin{aligned}
\boldsymbol{U} \boldsymbol{s}_{i}=\lambda_{i} \boldsymbol{s}_{i} & \Rightarrow\left\|\boldsymbol{s}_{i}\right\|=\left\|\boldsymbol{U} \boldsymbol{s}_{i}\right\|=\left\|\lambda_{i} \boldsymbol{s}_{i}\right\|=\left|\lambda_{i}\right|\left\|\boldsymbol{s}_{i}\right\| \\
& \Rightarrow\left|\lambda_{i}\right|=1
\end{aligned}
$$

- Eigenspaces of \boldsymbol{U} are orthogonal

$$
\begin{aligned}
& \left(\boldsymbol{U} \boldsymbol{s}_{1}, \boldsymbol{U} \boldsymbol{s}_{2}\right)=\left(\boldsymbol{s}_{1}, \boldsymbol{U}^{H} \boldsymbol{U} \boldsymbol{s}_{2}\right)=\left(\boldsymbol{s}_{1}, \boldsymbol{s}_{2}\right) \\
& \left(\boldsymbol{U} \boldsymbol{s}_{1}, \boldsymbol{U} \boldsymbol{s}_{2}\right)=\left(\lambda_{1} \boldsymbol{s}_{1}, \lambda_{2} \boldsymbol{s}_{2}\right)=\lambda_{1}^{*} \lambda_{2}\left(\boldsymbol{s}_{1}, \boldsymbol{s}_{2}\right) \\
\Rightarrow & \left(1-\lambda_{1}^{*} \lambda_{2}\right)\left(\boldsymbol{s}_{1}, \boldsymbol{s}_{2}\right)=0 \\
\Rightarrow & \left(\boldsymbol{s}_{1}, \boldsymbol{s}_{2}\right)=0
\end{aligned}
$$

EXAMPLE (UNITARY MATRICES)

Rotation matrix

$$
\left[\begin{array}{cc}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right]
$$

Permutation matrix
$\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0\end{array}\right]$

Fourier matrix

$$
\frac{1}{2}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & \omega & \omega^{2} & \omega^{3} \\
1 & \omega^{2} & \omega^{4} & \omega^{6} \\
1 & \omega^{3} & \omega^{6} & \omega^{9}
\end{array}\right], \omega=e^{i \frac{2 \pi}{4}}
$$

Definition (Skew-Hermitian matrix)

Let \boldsymbol{K} be a complex matrix. \boldsymbol{K} is skew-Hermitian if

$$
\boldsymbol{K}^{H}=-\boldsymbol{K}
$$

Let \boldsymbol{A} be Hermitian.

- $(i \boldsymbol{A})$ is skew-Hermitian since

$$
(i \boldsymbol{A})^{H}=-i \boldsymbol{A}^{H}=-i \boldsymbol{A}=-(i \boldsymbol{A})
$$

- For example

$$
\begin{aligned}
\boldsymbol{K} & =i \boldsymbol{A}=i\left[\begin{array}{cc}
2 & 3-3 i \\
3+3 i & 5
\end{array}\right]=\left[\begin{array}{cc}
2 i & 3+3 i \\
-3+3 i & 5 i
\end{array}\right] \\
\boldsymbol{K}^{H} & =\left[\begin{array}{cc}
2 i & 3+3 i \\
-3+3 i & 5 i
\end{array}\right]^{H}=\left[\begin{array}{cc}
-2 i & -3-3 i \\
3-3 i & -5 i
\end{array}\right]=-\boldsymbol{K}
\end{aligned}
$$

FROM REAL ELEMENTS TO COMPLEX ELEMENTS

- Complex vectors are extension of real vectors
- Matrix Hermitian is the extension of matrix transpose
- Hermitian matrix is the extension of symmetric matrix
- Unitary matrix is the extension of orthogonal matrix
- Skew-Hermitian is the extension of anti-symmetric

Similar Matrices

DEFINITION (SIMILAR MATRICES)

Let \boldsymbol{A} and \boldsymbol{B} be matrices. \boldsymbol{A} and \boldsymbol{B} are similar if there exists an invertible matrix \boldsymbol{M} such that

$$
\boldsymbol{B}=\boldsymbol{M}^{-1} \boldsymbol{A} \boldsymbol{M}
$$

- Notation

$$
A \sim B
$$

- An equivalence relation

$$
\begin{aligned}
(\boldsymbol{A} \sim \boldsymbol{B}) & \Rightarrow(\boldsymbol{B} \sim \boldsymbol{A}) \\
(\boldsymbol{A} \sim \boldsymbol{B}) \wedge(\boldsymbol{B} \sim \boldsymbol{C}) & \Rightarrow(\boldsymbol{A} \sim \boldsymbol{C})
\end{aligned}
$$

EXAMPLE (SIMILAR MATRICES)

$$
\boldsymbol{A}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], \quad \boldsymbol{M}_{1}=\left[\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right], \quad \boldsymbol{M}_{2}=\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]
$$

- \boldsymbol{M}_{1} and \boldsymbol{M}_{2} are invertible

$$
\boldsymbol{M}_{1}^{-1}=\left[\begin{array}{cc}
1 & -b \\
0 & 1
\end{array}\right], \quad \boldsymbol{M}_{2}^{-1}=\frac{1}{2}\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]
$$

- Similarity

$$
\begin{gathered}
\boldsymbol{A} \sim \boldsymbol{M}_{1}^{-1} \boldsymbol{A} \boldsymbol{M}_{1}=\left[\begin{array}{ll}
1 & b \\
0 & 0
\end{array}\right]=\boldsymbol{B}_{1} \\
\boldsymbol{A} \sim \boldsymbol{M}_{2}^{-1} \boldsymbol{A} \boldsymbol{M}_{2}=\left[\begin{array}{ll}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right]=\boldsymbol{B}_{2} \\
\boldsymbol{B}_{1} \sim \boldsymbol{B}_{2}
\end{gathered}
$$

PROPERTIES OF SIMILAR MATRICES

Let \boldsymbol{A} and \boldsymbol{B} be similar matrices.

- They have the same eigenvalues
- Their eigenvectors are related

Lemma (EIGENVALUES OF SIMILAR MATRICES)

If $\boldsymbol{A} \sim \boldsymbol{B}, \boldsymbol{A}$ and \boldsymbol{B} have the same spectrum.

Proof.

Let $\boldsymbol{B}=\boldsymbol{M}^{-1} \boldsymbol{A} \boldsymbol{M}$ and λ be an eigenvalue of \boldsymbol{B}.

$$
\begin{aligned}
|\boldsymbol{B}-\lambda \boldsymbol{I}|=0 & \Rightarrow\left|\boldsymbol{M}^{-1} \boldsymbol{A} \boldsymbol{M}-\lambda \boldsymbol{M}^{-1} \boldsymbol{M}\right|=0 \\
& \Rightarrow\left|\boldsymbol{M}^{-1}(\boldsymbol{A}-\lambda \boldsymbol{I}) \boldsymbol{M}\right|=0 \\
& \Rightarrow\left|\boldsymbol{M}^{-1}\right||(\boldsymbol{A}-\lambda \boldsymbol{I})||\boldsymbol{M}|=0 \\
& \Rightarrow|\boldsymbol{A}-\lambda \boldsymbol{I}|=0
\end{aligned}
$$

Hence λ is an eigenvalue of \boldsymbol{A}.

LEMMA (EIGENVECTORS OF SIMILAR MATRICES)

Suppose $\boldsymbol{A} \sim \boldsymbol{B}$ with $\boldsymbol{B}=\boldsymbol{M}^{-1} \boldsymbol{A} \boldsymbol{M}$. Let \boldsymbol{s} be an eigenvector of \boldsymbol{A} with eigenvalue λ.

- $\boldsymbol{t}=\boldsymbol{M}^{-1} \boldsymbol{s}$ is an eigenvector of \boldsymbol{B}
- t also corresponds to eigenvalue λ

Proof.

$$
\begin{aligned}
\boldsymbol{A} \boldsymbol{s}=\lambda \boldsymbol{s} & \Rightarrow \boldsymbol{M}^{-1} \boldsymbol{A} \boldsymbol{s}=\lambda \boldsymbol{M}^{-1} \boldsymbol{s} \\
& \Rightarrow\left(\boldsymbol{M}^{-1} \boldsymbol{A} \boldsymbol{M}\right)\left(\boldsymbol{M}^{-1} \boldsymbol{s}\right)=\lambda\left(\boldsymbol{M}^{-1} \boldsymbol{s}\right) \\
& \Rightarrow \boldsymbol{B} \boldsymbol{t}=\lambda \boldsymbol{t}
\end{aligned}
$$

Hence \boldsymbol{t} is an eigenvector of \boldsymbol{B} with eigenvalue λ.

EXAMPLE (EIGENVECTORS OF SIMILAR MATRICES)

$$
\boldsymbol{A}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], \boldsymbol{B}_{1}=\left[\begin{array}{ll}
1 & b \\
0 & 0
\end{array}\right], \boldsymbol{M}_{1}=\left[\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right]
$$

- $\boldsymbol{B}_{1} \sim \boldsymbol{A}$ since $\boldsymbol{B}_{1}=\boldsymbol{M}_{1}^{-1} \boldsymbol{A} \boldsymbol{M}_{1}$
- $\boldsymbol{s}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\boldsymbol{s}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ are eigenvectors of \boldsymbol{A} with eigenvalues $\lambda_{1}=1$ and $\lambda_{2}=0$
- Thus

$$
\boldsymbol{t}_{1}=\boldsymbol{M}_{1}^{-1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \boldsymbol{t}_{2}=\boldsymbol{M}_{1}^{-1}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
-b \\
1
\end{array}\right]
$$

are eigenvectors of \boldsymbol{B}_{1}, also with eigenvalues 1 and 0

Change of Basis

DEFINITION (IDENTITY TRANSFORMATION)

The identity transformation $I: \mathbb{V} \mapsto \mathbb{V}$ maps any vector to itself

$$
\boldsymbol{I}(\boldsymbol{x})=\boldsymbol{x}
$$

- Linearity

$$
\begin{aligned}
\boldsymbol{I}\left(c_{1} \boldsymbol{x}_{1}+c_{2} \boldsymbol{x}_{2}\right) & =c_{1} \boldsymbol{x}_{1}+c_{2} \boldsymbol{x}_{2} \\
& =c_{1} \boldsymbol{I}\left(\boldsymbol{x}_{1}\right)+c_{2} \boldsymbol{I}\left(\boldsymbol{x}_{2}\right)
\end{aligned}
$$

- Change of basis: one basis for domain \mathbb{V} and one basis for range \mathbb{V}

DEFINITION (CHANGE OF BASIS)

Let \mathbb{V} be a vector space. In a change of basis, the basis used to represent vectors in \mathbb{V} is changed from one to another.

A CHANGE OF BASIS IS AN IDENTITY TRANSFORMATION

Let \mathcal{B} and \mathcal{B}^{\prime} be bases of \mathbb{V}. Consider the change of basis from \mathcal{B} to \mathcal{B}^{\prime}.

- It is identity transformation since vectors are not changed
- That means the change of basis is $\boldsymbol{I}: \mathbb{V} \mapsto \mathbb{V}$, where \mathcal{B} is the domain basis and \mathcal{B}^{\prime} is the range basis

MATRIX FOR CHANGE OF BASIS

Consider the change of basis from $\mathcal{B}=\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right\}$ to $\mathcal{B}^{\prime}=$ $\left\{\boldsymbol{v}_{1}^{\prime}, \ldots, \boldsymbol{v}_{n}^{\prime}\right\}$ for space \mathbb{V}.

- It is $\boldsymbol{I}: \mathbb{V} \rightarrow \mathbb{V}$
- It has a matrix representation $\left[\boldsymbol{I}_{\mathcal{B B}^{\prime}}\right]$
- Suppose

$$
\boldsymbol{v}_{j}=\sum_{i=1}^{n} m_{i j} \boldsymbol{v}_{i}^{\prime}, j=1, \ldots, n
$$

Then

$$
\boldsymbol{I}\left(\boldsymbol{v}_{j}\right)=\boldsymbol{v}_{j}=\sum_{i=1}^{n} m_{i j} \boldsymbol{v}_{i}^{\prime}, \quad j=1, \ldots, n
$$

Hence

$$
\left[\boldsymbol{I}_{\mathcal{B B}^{\prime}}\right]=\left\{m_{i j}\right\}
$$

REPRESENTATION OF A VECTOR WITH A BASIS

Let \mathbb{V} be a vector space and $\mathcal{B}=\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right\}$ be a basis of \mathbb{V}.

- A vector $\boldsymbol{x} \in \mathbb{V}$ is a linear combination of the basis vectors

$$
\boldsymbol{x}=\sum_{i=1}^{n} x_{i} \boldsymbol{v}_{i}
$$

- Given $\mathcal{B}, \boldsymbol{x}$ can be represented by

$$
\left[\boldsymbol{x}_{\mathcal{B}}\right]=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] \Leftrightarrow \boldsymbol{x}=\sum_{i=1}^{n} x_{i} \boldsymbol{v}_{i}
$$

THEOREM (REPRESENTATION IN TWO BASES)

Let \boldsymbol{x} be a vector. The representation of \boldsymbol{x} in bases \mathcal{B} and \mathcal{B}^{\prime} are related by

$$
\left[\boldsymbol{x}_{\mathcal{B}^{\prime}}\right]=\left[\boldsymbol{I}_{\mathcal{B B}^{\prime}}\right]\left[\boldsymbol{x}_{\mathcal{B}}\right]
$$

Suppose $\boldsymbol{x}=\sum_{j=1}^{n} x_{j} \boldsymbol{v}_{j}$ and $\boldsymbol{v}_{j}=\sum_{i=1}^{n} m_{i j} \boldsymbol{v}_{i}^{\prime}$. We have

$$
\sum_{j=1}^{n} x_{j} \boldsymbol{v}_{j}=\sum_{j=1}^{n} x_{j} \sum_{i=1}^{n} m_{i j} \boldsymbol{v}_{i}^{\prime}=\sum_{i=1}^{n}\left(\sum_{j=1}^{n} m_{i j} x_{j}\right) \boldsymbol{v}_{i}^{\prime}=\sum_{i=1}^{n} x_{i}^{\prime} \boldsymbol{v}_{i}^{\prime}
$$

Hence

$$
x_{i}^{\prime}=\sum_{j=1}^{n} m_{i j} x_{j}, i=1, \ldots, n
$$

That is

$$
\left[\boldsymbol{x}_{\mathcal{B}^{\prime}}\right]=\left[\boldsymbol{I}_{\mathcal{B B}^{\prime}}\right]\left[\boldsymbol{x}_{\mathcal{B}}\right]
$$

Theorem (inverse matrix and change of basis)
Let \mathcal{B} and \mathcal{B}^{\prime} be bases of \mathbb{V}.

$$
\left[\boldsymbol{I}_{\mathcal{B}^{\prime} \mathcal{B}}\right]=\left[\boldsymbol{I}_{\mathcal{B} \mathcal{B}^{\prime}}\right]^{-1}
$$

Proof.

For any $\boldsymbol{x} \in \mathbb{V}$, it follows from $\left[\boldsymbol{x}_{\mathcal{B}}\right]=\left[\boldsymbol{I}_{\mathcal{B}^{\prime} \mathcal{B}}\right]\left[\boldsymbol{x}_{\mathcal{B}^{\prime}}\right]$ and $\left[\boldsymbol{x}_{\mathcal{B}^{\prime}}\right]=$ $\left[\boldsymbol{I}_{\mathcal{B B}^{\prime}}\right]\left[\boldsymbol{x}_{\mathcal{B}}\right]$ that

$$
\left[\boldsymbol{x}_{\mathcal{B}}\right]=\left[\boldsymbol{I}_{\mathcal{B}^{\prime} \mathcal{B}}\right]\left[\boldsymbol{I}_{\mathcal{B B}^{\prime}}\right]\left[\boldsymbol{x}_{\mathcal{B}}\right]
$$

Hence

$$
\begin{aligned}
& {\left[\boldsymbol{I}_{\mathcal{B}^{\prime} \mathcal{B}}\right]\left[\boldsymbol{I}_{\mathcal{B B}^{\prime}}\right]=\boldsymbol{I}} \\
& {\left[\boldsymbol{I}_{\mathcal{B}^{\prime} \mathcal{B}}\right]=\left[\boldsymbol{I}_{\mathcal{B B}^{\prime}}\right]^{-1}}
\end{aligned}
$$

Theorem (SIMILARITY AND LINEAR TRANSFORMATION)
Let $\boldsymbol{T}: \mathbb{V} \mapsto \mathbb{V}$ be linear transformation and $\mathcal{B}=\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right\}$ and $\mathcal{B}^{\prime}=\left\{\boldsymbol{v}_{1}^{\prime}, \ldots, \boldsymbol{v}_{n}^{\prime}\right\}$ be bases of \mathbb{V}.

- The matrix representation of \boldsymbol{T} using \mathcal{B} and \mathcal{B}^{\prime}, respectively $\left[\boldsymbol{T}_{\mathcal{B B}}\right]$ and $\left[\boldsymbol{T}_{\mathcal{B}^{\prime} \mathcal{B}^{\prime}}\right]$, must be similar.
- That is

$$
\left[\boldsymbol{T}_{\mathcal{B}^{\prime} \mathcal{B}^{\prime}}\right] \sim\left[\boldsymbol{T}_{\mathcal{B B}}\right]
$$

Proof.

Suppose \boldsymbol{T} maps \boldsymbol{x} to \boldsymbol{y}. From identity transformation

$$
\left[\boldsymbol{x}_{\mathcal{B}^{\prime}}\right]=\left[\boldsymbol{I}_{\mathcal{B B}^{\prime}}\right]\left[\boldsymbol{x}_{\mathcal{B}}\right], \quad\left[\boldsymbol{y}_{\mathcal{B}^{\prime}}\right]=\left[\boldsymbol{I}_{\mathcal{B B}^{\prime}}\right]\left[\boldsymbol{y}_{\mathcal{B}}\right]
$$

From linear transformation \boldsymbol{T}

$$
\left[\boldsymbol{y}_{\mathcal{B}^{\prime}}\right]=\left[\boldsymbol{T}_{\mathcal{B}^{\prime} \mathcal{B}^{\prime}}\right]\left[\boldsymbol{x}_{\mathcal{B}^{\prime}}\right], \quad\left[\boldsymbol{y}_{\mathcal{B}}\right]=\left[\boldsymbol{T}_{\mathcal{B B}}\right]\left[\boldsymbol{x}_{\mathcal{B}}\right]
$$

It follows that

$$
\begin{aligned}
& {\left[\boldsymbol{I}_{\mathcal{B} \mathcal{B}^{\prime}}\left[\boldsymbol{y}_{\mathcal{B}}\right]=\left[\boldsymbol{T}_{\mathcal{B}^{\prime} \mathcal{B}^{\prime}}\left(\left[\boldsymbol{I}_{\mathcal{B B}^{\prime}}\right]\left[\boldsymbol{x}_{\mathcal{B}}\right]\right)\right.\right.} \\
& \Rightarrow\left[\boldsymbol{y}_{\mathcal{B}}\right]=\left[\boldsymbol{I}_{\mathcal{B B}^{\prime}}\right]^{-1}\left[\boldsymbol{T}_{\mathcal{B}^{\prime} \mathcal{B}^{\prime}}\right]\left[\boldsymbol{I}_{\mathcal{B}^{\prime}}\right]\left[\boldsymbol{x}_{\mathcal{B}}\right] \\
& \Rightarrow\left[\boldsymbol{T}_{\mathcal{B B}}\right]=\left[\boldsymbol{I}_{\mathcal{B B}^{\prime}}\right]^{-1}\left[\boldsymbol{T}_{\mathcal{B}^{\prime} \mathcal{B}^{\prime}}\right]\left[\boldsymbol{I}_{\mathcal{B B}^{\prime}}\right]
\end{aligned}
$$

Hence $\left[\boldsymbol{T}_{\mathcal{B B}}\right] \sim\left[\boldsymbol{T}_{\mathcal{B}^{\prime} \mathcal{B}^{\prime}}\right]$.

DEFINITION (EIGENBASIS OF LINEAR TRANSFORM)

Let \mathbb{V} be a space and $\boldsymbol{T}: \mathbb{V} \mapsto \mathbb{V}$ be a linear transformation.

- A vector \boldsymbol{v}_{i} such that $\boldsymbol{T}\left(\boldsymbol{v}_{i}\right)=\lambda_{i} \boldsymbol{v}_{i}$ is an eigenvector of \boldsymbol{T} with eigenvalue λ_{i}
- A basis $\mathcal{B}=\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right\}$ of \mathbb{V} is an eigenbasis

PROPERTIES

- Matrix representation for \boldsymbol{T} using \mathcal{B} is diagonal

$$
\left[\boldsymbol{T}_{\mathcal{B B}}\right]=\boldsymbol{\operatorname { d i a g }}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\boldsymbol{\Lambda}
$$

- Let $\mathcal{B}^{\prime}=\left\{\boldsymbol{v}_{1}^{\prime}, \ldots, \boldsymbol{v}_{n}^{\prime}\right\}$ be a basis, and $\boldsymbol{v}_{j}=\sum_{i} s_{i j} \boldsymbol{v}_{i}^{\prime}$. Then

$$
\left[\boldsymbol{I}_{\mathcal{B B}^{\prime}}\right]=\left\{s_{i j}\right\}=\boldsymbol{S} \text { and }
$$

$$
\left[\boldsymbol{T}_{\mathcal{B}^{\prime} \mathcal{B}^{\prime}}\right]=\left[\boldsymbol{I}_{\mathcal{B B ^ { \prime }}}\right]\left[\boldsymbol{T}_{\mathcal{B B}}\right]\left[\boldsymbol{I}_{\mathcal{B} \mathcal{B}^{\prime}}\right]^{-1}=\boldsymbol{S} \boldsymbol{\Lambda} \boldsymbol{S}^{-1}
$$

EXAMPLE (EIGENBASIS FOR PROJECTION)

Let \boldsymbol{T} be the projection to the line L at angle θ to the horizontal axis. Find the matrix for \boldsymbol{T} using standard basis $\mathcal{B}^{\prime}=\left\{\boldsymbol{e}_{x}, \boldsymbol{e}_{y}\right\}$.

- Eigenvectors of \boldsymbol{T} are $\boldsymbol{v}_{1}=\cos \theta \boldsymbol{e}_{x}+\sin \theta \boldsymbol{e}_{y}$ with $\lambda_{1}=1$ and $\boldsymbol{v}_{2}=-\sin \theta \boldsymbol{e}_{x}+\cos \theta \boldsymbol{e}_{y}$ with $\lambda_{2}=0$
- The matrix for \boldsymbol{T} using eigenbasis $\mathcal{B}=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\}$ is

$$
\left[\boldsymbol{T}_{\mathcal{B B}}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]=\boldsymbol{\Lambda}
$$

- The matrix for the change of basis from \mathcal{B} to \mathcal{B}^{\prime} is

$$
\left[\boldsymbol{I}_{\mathcal{B B}^{\prime}}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

- The matrix for \boldsymbol{T} using standard basis is

$$
\left[\boldsymbol{T}_{\mathcal{B}^{\prime} \mathcal{B}^{\prime}}\right]=\left[\boldsymbol{I}_{\mathcal{B B}^{\prime}}\right]\left[\boldsymbol{T}_{\mathcal{B B}}\right]\left[\boldsymbol{I}_{\mathcal{B B}^{\prime}}\right]^{-1}=\left[\begin{array}{cc}
\cos ^{2} \theta & \cos \theta \sin \theta \\
\cos \theta \sin \theta & \sin ^{2} \theta
\end{array}\right]
$$

Figure 5.5: Change of basis to make the projection matrix diagonal.

Normal Matrix and Orthonormal Eigenbasis

TRIANGULARIZABILITY AND DIAGONALIZABILITY

Let \boldsymbol{A} be a square matrix.

- \boldsymbol{A} is triangularizable if \boldsymbol{A} is similar to a triangular matrix
- \boldsymbol{A} is diagonalizable if \boldsymbol{A} is similar to a diagonal matrix

Let \boldsymbol{A} have eigen-decomposition $\boldsymbol{A}=\boldsymbol{S} \boldsymbol{\Lambda} \boldsymbol{S}^{-1}$. Then

$$
A \sim \Lambda
$$

so \boldsymbol{A} is diagonalizable (and triangularizable).

Lemma (Schur Lemma)

Let \boldsymbol{A} be a square matrix. There exists a unitary matrix \boldsymbol{U} such that

$$
\boldsymbol{U}^{H} \boldsymbol{A} \boldsymbol{U}=\boldsymbol{U}^{-1} \boldsymbol{A} \boldsymbol{U}
$$

is an upper-triangular matrix.
Note

$$
\boldsymbol{A} \sim \boldsymbol{U}^{-1} \boldsymbol{A} \boldsymbol{U}
$$

and $\boldsymbol{U}^{-1} \boldsymbol{A} \boldsymbol{U}$ is triangular. Hence, Schur lemma guarantees every square matrix is triangularizable.

DEFINITION (NORMAL MATRIX)
Let N be a square matrix. N is normal if

$$
\boldsymbol{N} \boldsymbol{N}^{H}=\boldsymbol{N}^{H} \boldsymbol{N}
$$

- Unitary matrix is normal

$$
\boldsymbol{U} \boldsymbol{U}^{H}=\boldsymbol{U}^{H} \boldsymbol{U}=\boldsymbol{I}
$$

- Hermitian matrix is normal

$$
\boldsymbol{H} \boldsymbol{H}^{H}=\boldsymbol{H} \boldsymbol{H}=\boldsymbol{H}^{H} \boldsymbol{H}
$$

THEOREM (NORMAL MATRIX CAN BE DIAGONALIZED)
Let \boldsymbol{N} be a normal matrix. \boldsymbol{N} is diagonalizable.

PROOF

Let \boldsymbol{U} be unitary and $\boldsymbol{\Gamma}=\boldsymbol{U}^{H} \boldsymbol{N} \boldsymbol{U}$ is upper-triangular. Note

$$
\begin{aligned}
\boldsymbol{\Gamma} \boldsymbol{\Gamma}^{H} & =\boldsymbol{U}^{H} \boldsymbol{N} \boldsymbol{U}\left(\boldsymbol{U}^{H} \boldsymbol{N} \boldsymbol{U}\right)^{H} \\
& =\boldsymbol{U}^{H} \boldsymbol{N} \boldsymbol{N}^{H} \boldsymbol{U} \\
& =\boldsymbol{U}^{H} \boldsymbol{N}^{H} \boldsymbol{N} \boldsymbol{U} \\
& =\boldsymbol{U}^{H} \boldsymbol{N}^{H} \boldsymbol{U} \boldsymbol{U}^{H} \boldsymbol{N} \boldsymbol{U} \\
& =\boldsymbol{\Gamma}^{H} \boldsymbol{\Gamma}
\end{aligned}
$$

COMPLETING THE PROOF

For the first diagonal element of $\boldsymbol{\Gamma} \boldsymbol{\Gamma}^{H}$ and $\Gamma^{H} \boldsymbol{\Gamma}$

$$
\begin{aligned}
\left(\boldsymbol{\Gamma} \boldsymbol{\Gamma}^{H}\right)_{11} & =\left(\boldsymbol{\Gamma}^{H} \boldsymbol{\Gamma}\right)_{11} \\
\Rightarrow \quad \sum_{k} \gamma_{1 k} \gamma_{1 k}^{*} & =\sum_{k} \gamma_{k 1}^{*} \gamma_{k 1}=\left|\gamma_{11}\right|^{2} \\
\Rightarrow \quad \gamma_{1 k} & =0, \quad k>1
\end{aligned}
$$

For the second diagonal element

$$
\begin{aligned}
\left(\boldsymbol{\Gamma} \boldsymbol{\Gamma}^{H}\right)_{22} & =\left(\boldsymbol{\Gamma}^{H} \boldsymbol{\Gamma}\right)_{22} \\
\Rightarrow \sum_{k} \gamma_{2 k} \gamma_{2 k}^{*} & =\sum_{k} \gamma_{k 2}^{*} \gamma_{k 2}=\left|\gamma_{12}\right|^{2}+\left|\gamma_{22}\right|^{2}=\left|\gamma_{22}\right|^{2} \\
\Rightarrow \quad \gamma_{2 k} & =0, \quad k>2
\end{aligned}
$$

Row by row, we can show the elements of Γ to the right of the diagonal are 0 . Hence $\boldsymbol{\Gamma}$ is diagonal and \boldsymbol{N} is diagonalizable.

NORMAL MATRIX HAS ORTHONORMAL EIGENBASIS

Let \boldsymbol{N} be a normal matrix. \boldsymbol{N} has an orthonormal eigenbasis.

Proof.

Let \boldsymbol{U} be unitary and diagonalize \boldsymbol{N}. It means $\boldsymbol{U}^{H} \boldsymbol{N} \boldsymbol{U}=\boldsymbol{\Gamma}$ where $\boldsymbol{\Gamma}$ is diagonal. Let $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{n}$ be the columns of \boldsymbol{U}.

- $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{n}$ are eigenvectors of \boldsymbol{N}

$$
\boldsymbol{U}^{H} \boldsymbol{N} \boldsymbol{U}=\boldsymbol{\Gamma} \Rightarrow \boldsymbol{N} \boldsymbol{U}=\boldsymbol{U} \boldsymbol{\Gamma} \Rightarrow \boldsymbol{N} \boldsymbol{u}_{i}=\gamma_{i i} \boldsymbol{u}_{i}
$$

- $\left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{n}\right\}$ is an orthonormal eigenbasis

$$
\boldsymbol{U}^{H} \boldsymbol{U}=\boldsymbol{I} \Rightarrow \boldsymbol{u}_{i}^{H} \boldsymbol{u}_{j}=\delta_{i j}
$$

THEOREM (SPECTRAL THEOREM)

Let \boldsymbol{A} be a real symmetric matrix. Then

$$
\boldsymbol{A}=\boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^{T}
$$

where Λ is real and diagonal, and \boldsymbol{Q} is real and orthogonal.

- \boldsymbol{A} is normal, so it has orthonormal eigenbasis
- \boldsymbol{A} is Hermitian, so its eigenvalues are real
- $\boldsymbol{\Lambda}$ is eigenvalue matrix and \boldsymbol{Q} is eigenvector matrix
- As a sum

$$
\begin{aligned}
\boldsymbol{A} & =\boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^{T} \\
& =\lambda_{1} \boldsymbol{q}_{1} \boldsymbol{q}_{1}^{T}+\cdots+\lambda_{n} \boldsymbol{q}_{n} \boldsymbol{q}_{n}^{T}
\end{aligned}
$$

EXAMPLE (SPECTRAL DECOMPOSITION)

$$
\begin{aligned}
{\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right] } & =\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right] \\
& =3\left[\begin{array}{cc}
\frac{1}{2} & \frac{-1}{2} \\
\frac{-1}{2} & \frac{1}{2}
\end{array}\right]+1\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right]
\end{aligned}
$$

