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notation
Ax = λx: eigenvalue equation of matrix A
|A− λI| = 0: characteristic equation
λi: eigenvalue
{λ1, . . . , λk}: spectrum (the set of eigenvalues)
si: eigenvector corresponding to λi
Eλi : eigenspace corresponding to eigenvalue λi
c∗: complex conjugate of c
AH : Hermitian of A
A ∼ B: similar matrices
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Eigenvalue Equations
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Definition (eigenvalue problem)
Let A be a square matrix.

The eigenvalue equation or eigenvalue problem of A is

Ax = λx

x is unknown vector, λ is unknown scalar
Solutions of λ and x 6= 0 are called eigenvalues and eigen-
vectors
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Definition (characteristic equation/polynomial)
Let A be a square matrix.

The eigenvalue equation Ax = λx can be written as

(A− λI)x = 0

The characteristic equation of A is

|A− λI| = 0

The characteristic polynomial of A is

f(λ) = |A− λI|
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Lemma (eigenvalue and characteristic equation)
Let A be a square matrix. A scalar λi is an eigenvalue of A if
and only if |A− λiI| = 0.

|A− λiI| = 0 ⇔ (A− λiI) is singular
⇔ ∃x 6= 0, (A− λiI)x = 0
⇔ ∃x 6= 0, Ax = λix

⇔ λi is an eigenvalue of A

Chen P Eigenvalue Problems



8/97

Definition (eigenspace)
Let A be a square matrix and λi be an eigenvalue of A. The
eigenspace of A corresponding to λi is the set of vectors

Eλi = {x |Ax = λix}

Eλi is the nullspace of (A− λiI)

Eλi = {x |Ax = λix} = {x | (A− λiI)x = 0}
= N (A− λiI)

IfA is of order n×n, Eλi is of dimension n−rank(A−λiI)

dim(Eλi) = dim(N (A− λiI)) = n− rank(A− λiI)
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Definition (spectrum)
Let A be a square matrix. The spectrum of A is the set of the
eigenvalues of A.

The spectrum of A is the set of solutions to |A−λI| = 0
Let A be a square matrix of order n×n. Then |A−λI| is
a polynomial of order n, and |A− λI| = 0 is an equation
of order n.
By the fundamental theorem of algebra, we have

spectrum(A) = {λ1, . . . , λk}

and
k ≤ n
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Lemma (eigenvectors of distinct eigenvalues)
Let A be a square matrix. Let s1 (resp. s2) be an eigenvector
of A with eigenvalue λ1 (resp. λ2), where λ1 6= λ2. Then s1
and s2 are linearly independent.

Suppose c1s1 + c2s2 = 0. Then

λ1(c1s1 + c2s2) = 0

and
A(c1s1 + c2s2) = c1λ1s1 + c2λ2s2 = 0

By subtraction, we have c2(λ2 − λ1)s2 = 0. It follows that
c2 = 0 and c1 = 0. Hence s1 and s2 are linearly independent.
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Example (eigenvalue problem)

A =
[
4 −5
2 −3

]

|A− λI| = 0 ⇒ λ2 − λ− 2 = 0 ⇒ λ1 = 2, λ2 = −1

For λ1 = 2, the eigenspace is[
2 −5
2 −5

]
s1 = 0 ⇒ Eλ1 =

{
s1

∣∣∣∣∣ s1 = c

[
5
2
1

]}

For λ2 = −1, the eigenspace is[
5 −5
2 −2

]
s2 = 0 ⇒ Eλ2 =

{
s2

∣∣∣∣∣ s2 = c

[
1
1

]}
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Example (eigenvalue problem: projection matrix)

P =
[

1
2

1
2

1
2

1
2

]

|P − λI| = 0 ⇒ λ2 − λ = 0 ⇒ λ1 = 1, λ2 = 0

(P−λ1I)s1 =
[
−1

2
1
2

1
2 −1

2

]
s1 = 0 ⇒ Eλ1 =

{
s1

∣∣∣∣∣ s1 = c

[
1
1

]}

(P − λ2I)s2 =
[

1
2

1
2

1
2

1
2

]
s2 = 0 ⇒ Eλ2 =

{
s2

∣∣∣∣∣ s2 = c

[
−1
1

]}
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Example (complex eigenvalues)

K =
[
0 −1
1 0

]

|K − λI| = 0 ⇒ λ2 + 1 = 0 ⇒ λ1 = i, λ2 = −i

(K−λ1I)s1 =
[
−i −1
1 −i

]
s1 = 0 ⇒ Eλ1 =

{
s1

∣∣∣∣∣ s1 = c

[
i
1

]}

(K−λ2I)s2 =
[
i −1
1 i

]
s2 = 0 ⇒ Eλ2 =

{
s2

∣∣∣∣∣ s2 = c

[
−i
1

]}
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Lemma (bound on the number of eigenvalues)
Let A be a square matrix of order n × n. A has at most n
distinct eigenvalues.

A polynomial of order n cannot have more than n roots

|A− λI| =

∣∣∣∣∣∣∣∣
a11 − λ . . . a1n

... . . . ...
an1 . . . ann − λ

∣∣∣∣∣∣∣∣
A space of dimension n cannot accommodate more than n
linearly independent eigenvectors
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Theorem (sum of eigenvalues = trace)
Let A be a square matrix.

The trace of A is the sum of diagonal elements
Sum of the eigenvalues of A equals the trace of A

Factorize the polynomial |A− λI| by its roots∣∣∣∣∣∣∣∣
a11 − λ . . . a1n

... . . . ...
an1 . . . ann − λ

∣∣∣∣∣∣∣∣ = c(λ− λ1) . . . (λ− λn)

For the λn and λn−1 terms, the equality requires c = (−1)n and

(−1)n−1(a11+· · ·+ann)λn−1 = (−1)n((−λ1)+· · ·+(−λn))λn−1

λ1 + · · ·+ λn = a11 + · · ·+ ann
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Theorem (product of eigenvalues = determinant)
Let A be a square matrix. Product of the eigenvalues of A is
equal to the determinant of A.

The characteristic polynomial ofA can be factorized by its roots

|A− λI| = (−1)n
n∏
i=1

(λ− λi)

Setting λ of both sides to 0, we get

|A| = (−1)n
n∏
i=1

(−λi) =
n∏
i=1

λi

The equality holds for repeated eigenvalues.
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tips for finding eigenvalues
Let A be a square matrix. Eigenvalues of A may be found
without solving the characteristic equation of A.

If A is singular, 0 is an eigenvalue
If A has a constant row sum (or column sum), that con-
stant is an eigenvalue
If A is a triangular matrix, the diagonal elements of A are
eigenvalues
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Eigen-decomposition and Diagonalization
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Definition (algebraic/geometric multiplicity)
Let A be a square matrix with spectrum {λ1, . . . , λk}.

The characteristic polynomial of A can be expressed as

|A− λI| = c
k∏
i=1

(λ− λi)γi

γi is called the algebraic multiplicity of λi
The dimension of eigenspace Eλi is called the geometric
multiplicity of λi, denoted by gi

Suppose A is of order n× n.
The sum of algebraic multiplicities ∑i γi is exactly n
The sum of geometric multiplicities ∑i gi is at most n
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Definition (defective matrix)
Let A be a square matrix of order n × n with spectrum
{λ1, . . . , λk}. A is defective if

g1 + · · ·+ gk < n

Consider
A =

[
0 1
0 0

]
, B =

[
0 0
0 0

]
A is defective

n = 2, λ1 = 0,
∑
i

gi = g1 =
dimN (A−λ1I)︷ ︸︸ ︷

n− rank(A− λ1I) = 2−1 = 1 < n

B is non-defective

n = 2, λ1 = 0,
∑
i

gi = g1 = n−rank(B−λ1I) = 2−0 = 2 = n
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Definition (eigenbasis)
An eigenbasis of A is a basis containing eigenvectors of A.

For a non-defective matrix A of order n× n, we can construct
an eigenbasis as follows.

Let {λ1, . . . , λk} be the spectrum of A
Let B1, . . . ,Bk be bases of eigenspaces Eλ1 , . . . ,Eλk
Let B = B1 ∪ · · · ∪ Bk
B is an eigenbasis: it is linearly independent and contains
k∑
i=1

gi = n eigenvectors of A
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Definition (eigenvector and eigenvalue matrix)
Let A be a non-defective matrix of order n× n.

From eigenbasis {s1, . . . , sn} of A, we can construct
eigenvector matrix

S =

s1 . . . sn


Let λi be the eigenvalue corresponding to si. We can
construct eigenvalue matrix

Λ = diag(λ1, . . . , λn)
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Theorem (eigen-decomposition)
Let A be a non-defective matrix. A can be decomposed by

A = SΛS−1

This is eigenvalue decomposition or simply eigen-decomposition.

A

s1 . . . sn

 =

As1 . . . Asn

 =

λ1s1 . . . λnsn



=

s1 . . . sn



λ1

. . .
λn


It follows from AS = SΛ that A = SΛS−1.
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Corollary (diagonalization of a matrix)
A non-defective square matrix can be diagonalized by its eigen-
vector matrix.

It follows from eigen-decomposition A = SΛS−1 that

S−1AS = Λ = diag(λ1, . . . , λn)

This is the diagonalization of A.
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Example (diagonalization of matrix)

P =
[

1
2

1
2

1
2

1
2

]
,

[
1 −1
1 1

]−1 [1
2

1
2

1
2

1
2

] [
1 −1
1 1

]
=
[
1 0
0 0

]

K =
[
0 −1
1 0

]
,

[
i −i
1 1

]−1 [0 −1
1 0

] [
i −i
1 1

]
=
[
i 0
0 −i

]
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Difference Equations (with an Eigenvalue Approach)
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Definition (Fibonacci recurrence and numbers)
Fibonacci recurrence

Fk+1 = Fk + Fk−1

Initial Fibonacci numbers

F0 = 0, F1 = 1

Fibonacci sequence

0 1 1 2 3 5 8 13 . . .
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Definition (Fibonacci vectors and matrix)
Fibonacci vectors

uk =
[
Fk+1
Fk

]
Fibonacci matrix

A =
[
1 1
1 0

]
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k-step recurrence
Fibonacci recurrence by matrix and vector[

Fk+1
Fk

]
=
[
1 1
1 0

] [
Fk
Fk−1

]

That is
uk = Auk−1

k-step recurrence

uk = Auk−1 = A(Auk−2) = · · · = Ak−1u1 = Aku0

That is [
Fk+1
Fk

]
=
[
1 1
1 0

]k [1
0

]
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power of a non-defective matrix
Let A be a non-defective matrix with eigen-decomposition A =
SΛS−1. Then

Ak = SΛkS−1

Ak = (SΛS−1)k

= (SΛS−1)(SΛS−1) . . . (SΛS−1)
= SΛ(S−1S)Λ(S−1S) . . . (S−1S)ΛS−1

= SΛkS−1

Note SΛkS−1 is easier to compute than Ak.
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formula for Fibonacci vectors
Fibonacci matrix A is non-defective
Simplification of k-step recurrence

uk = Aku0 = SΛkS−1u0

=

s1 s2

 [λk1
λk2

] s1 s2


−1

u0

= c1λ
k
1s1 + c2λ

k
2s2

where [
c1
c2

]
=

s1 s2


−1

u0

We have uk expressed by λi and si
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eigenvalue problem of Fibonacci matrix

Recall A =
[
1 1
1 0

]
.

Eigenvalues: solve |A− λI| = 0

λ1 = 1 +
√

5
2 , λ2 = 1−

√
5

2

Eigenvectors: solve Asi = λisi

(A− λiI)si =
[
1− λi 1

1 −λi

]
si = 0

⇒ si =
[
λi
1

]
, i = 1, 2
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exploiting the initial condition
With uk = c1λ

k
1s1 + c2λ

k
2s2, we still need to decide c1 and c2.

Initial condition

u0 = c1λ
0
1s1 + c2λ

0
2s2 = c1s1 + c2s2

Substitution of s1, s2 and u0[
λ1 λ2
1 1

] [
c1
c2

]
=
[
1
0

]

Solve c1 and c2[
c1
c2

]
=
[
λ1 λ2
1 1

]−1 [1
0

]
=
[ 1

λ1−λ2
− 1
λ1−λ2

]
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formula for the Fibonacci numbers
kth Fibonacci vector

uk = c1λ
k
1s1 + c2λ

k
2s2

= 1
λ1 − λ2

λk1

[
λ1
1

]
− 1
λ1 − λ2

λk2

[
λ2
1

]

= 1
λ1 − λ2

[
λk+1

1 − λk+1
2

λk1 − λk2

]
=
[
Fk+1
Fk

]

kth Fibonacci number

Fk = 1
λ1 − λ2

(
λk1 − λk2

)

= 1√
5

(1 +
√

5
2

)k
−
(

1−
√

5
2

)k
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Example (a Markov process)
Suppose 1

10 of the population outside Asia move in and 2
10 of

the population inside Asia move out every year. What is the
inside-Asia/outside-Asia population at the end of year k?

Let yk (resp. zk) be the population outside (resp. inside) Asia
at the end of year k.

Recurrence of population

yk+1 = 0.9yk + 0.2zk
zk+1 = 0.1yk + 0.8zk

In vector and matrix[
yk+1
zk+1

]
=
[
0.9 0.2
0.1 0.8

] [
yk
zk

]
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Population vectors and matrix

xk =
[
yk
zk

]
, A =

[
0.9 0.2
0.1 0.8

]

Year-to-year evolution of population

xk+1 = Axk

Population vector at the end of year k

xk = Axk−1 = A(Axk−2) = · · · = Akx0
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Eigen-decomposition of A

A = SΛS−1 =
[
2 −1
1 1

] [
1 0
0 0.7

] [
1
3

1
3

−1
3

2
3

]

Put the pieces together

xk = Akx0 = SΛkS−1x0

⇒
[
yk
zk

]
=
[
2 −1
1 1

] [
1 0
0 0.7

]k [ 1
3

1
3

−1
3

2
3

] [
y0
z0

]

=
[
2 −1
1 1

] [
1
3(y0 + z0)(1)k

−1
3(y0 − 2z0)(0.7)k

]

= (y0 + z0)(1)k
[

2
3
1
3

]
+ (y0 − 2z0)(0.7)k

[
1
3
−1

3

]
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stationary eigenvector
Consider population matrix A.

Non-negative
Every column sums to 1
Has eigenvalue 1
Stationary eigenvector: let π be an eigenvector of A with
eigenvalue 1

Aπ = 1 · π = π

x0 = π ⇒ x1 = Ax0 = π ⇒ · · · ⇒ · · · ⇒ xn = π
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Linear Algebra and Differential Equations
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linear differential equation
Consider a linear differential equation

du

dt
= au

where u = u(t) is an unknown function of t and a is a constant.
The equation is linear
Let the initial condition be u(0) = u0. The solution is

u(t) = u0e
at = eatu0
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system of linear differential equations
Consider a system of linear differential equations

dv

dt
= a v + bw

dw

dt
= c v + dw

Define u =
[
v
w

]
and A =

[
a b
c d

]
. The system can be written

as
du

dt
= d

dt

[
v
w

]
=
[
dv
dt
dw
dt

]
=
[
a v + bw
c v + dw

]

=
[
a b
c d

] [
v
w

]
= Au
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decomposition with eigenbasis
Let A be a non-defective n× n matrix. Consider

du

dt
= Au

A has an eigenbasis, say {s1, . . . , sn}
A solution, say u, can be expressed as

u(t) = c1(t)s1 + · · ·+ cn(t)sn

u(t) varies with time and s1, . . . , sn are time-invariant, so
the coefficients c1(t), . . . , cn(t) must vary with time
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mode
Let A be a non-defective n× n matrix. Consider

du

dt
= Au

A solution that aligns with an eigenvector of A is a mode
Let u(t) = c(t)s be a mode, where s is an eigenvector of
A with eigenvalue λ

du

dt
= Au ⇒ d (c(t)s)

dt
= A (c(t)s) = λ (c(t)s)

⇒ dc(t)
dt

= λc(t)

⇒ c(t) = eλtc(0)

So a mode is proportional to eλts
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mixture of modes
A general solution is a linear combination of modes.

A general solution can be written as

u(t) = c1(t)s1 + · · ·+ cn(t)sn

Substitute into the differential equation

du

dt
= Au ⇒ d (∑i ci(t)si)

dt
=
∑
i

λi (ci(t)si)

⇒
∑
i

(
dci(t)
dt
− λici(t)

)
si = 0

Linear independence of s1, . . . , sn requires

dci(t)
dt

= λici(t) ⇒ ci(t) = eλitci(0)
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independence of modes
We have

u(t) =
n∑
i=1

ci(t)si

= c1(0)eλ1ts1 + · · ·+ cn(0)eλntsn

Each mode evolves with time exponentially and indepen-
dently of the other modes.
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matrix representation
Eigenvector matrix of A

S =

s1 . . . sn


Define

D(t) = diag
(
eλ1t, . . . , eλnt

)
, c0 =


c1(0)

...
cn(0)


We have

u(t) = c1(0)eλ1ts1 + · · ·+ cn(0)eλntsn
= SD(t)c0
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Theorem (solving linear differential equations)
LetA be a matrix with eigen-decompositionA = SΛS−1. The
solution to differential equation

du

dt
= Au

with initial condition u(0) = u0 is

u(t) = SD(t)S−1u0

where D(t) = diag
(
eλ1t, . . . , eλnt

)
.

We have u(t) = SD(t)c0. At t = 0
D(0) = I ⇒ u0 = Sc0 ⇒ c0 = S−1u0

Therefore
u(t) = SD(t)S−1u0
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Example (linear differential equation system)
Solve

du

dt
= Au, u =

[
v(t)
w(t)

]
, A =

[
4 −5
2 −3

]

with initial condition v(0) = 8 and w(0) = 5.

|A− λI| = 0 ⇒ λ1 = 2, λ2 = −1 ⇒ s1 =
[

5
2
1

]
, s2 =

[
1
1

]

u = SDS−1u0 =
[

5
2 1
1 1

] [
e2t 0
0 e−t

] [
5
2 1
1 1

]−1 [8
5

]

= 2e2t
[

5
2
1

]
+ 3e−t

[
1
1

]
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Definition (matrix as an exponent)
Let A be a square matrix. Define

eA , I +A+ A2

2! + A3

3! + . . .

This is an extension of scalar exponential

ea = 1 + a+ a2

2! + a3

3! + . . .
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a diagonal matrix as an exponent
Let B = diag(d1, . . . , dn) be a diagonal matrix.

eB = diag
(
ed1 , . . . , edn

)

eB = I +B + B2

2! + . . .

= diag (1, . . . , 1) + diag (d1, . . . , dn) + diag
(
d2

1
2! , . . . ,

d2
n

2!

)
+ . . .

= diag
((

1 + d1 + d2
1

2! + . . .

)
, . . . ,

(
1 + dn + d2

n

2! + . . .

))
= diag

(
ed1 , . . . , edn

)
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a non-defective matrix as an exponent
Let A have eigen-decomposition A = SΛS−1.

eA = SeΛS−1

eA = I +A+ A2

2! + . . .

= I + SΛS−1 + (SΛS−1)2

2! + . . .

= S

(
I + Λ + Λ2

2! + . . .

)
S−1

= SeΛS−1
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Theorem (matrix representation of solution)
Let A have eigen-decomposition A = SΛS−1. The solution
of a system of linear differential equations

du

dt
= Au

is
u = eAtu0
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Proof.
The solution is

u = SDS−1u0 = SeΛtS−1u0

We have

SeΛtS−1 = S

(
I + Λt+ Λ2t2

2! + . . .

)
S−1

= I + (SΛS−1)t+ (SΛS−1)2t2

2! + . . .

= I +At+ A2t2

2! + . . .

= eAt

Hence u = eAtu0.
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high-order linear differential equation∗

A high-order linear differential equation can be converted to a
system of first-order linear differential equations.

For example, consider a third-order linear differential equation
d3y

dt3
+ b

d2y

dt2
+ c

dy

dt
= 0

Define

v = dy

dt
, w = dv

dt
, u =

yv
w

 , A =

0 1 0
0 0 1
0 −c −b


Then

du

dt
= d

dt

yv
w

 =


dy
dt
dv
dt
dw
dt

 =

 v
w

−bw − cv

 =

0 1 0
0 0 1
0 −c −b


yv
w

 = Au

Chen P Eigenvalue Problems



55/97

linear partial differential equation∗

A linear partial differential equation can be converted to a sys-
tem of first-order linear differential equations.

Consider heat equation

∂u(t, x)
∂t

= ∂2u(t, x)
∂x2

Discretizing x to n points, we have

du

dt
= Au, u =


u1(t)
·
·

un(t)

 , A =


−2 1
1 −2 ·

· · 1
1 −2


where ui(t) = u(t, xi).

Chen P Eigenvalue Problems



56/97

Complex Matrix
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complex numbers
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complex vector and complex matrix
A vector with complex elements is a complex vector
A matrix with complex elements is a complex matrix

Let x and y be complex vectors of size n.
Inner product of x and y

(x,y) = x∗1y1 + · · ·+ x∗nyn

Length (or norm) of x

‖x‖2 = (x,x)

Orthogonality of x and y

(x,y) = 0 ⇔ x ⊥ y
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Example (complex vectors)
Decide the inner product, lengths and orthogonality for

x =
[
3− 2i
2 + i

]
, y =

[
5

−1− i

]
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Definition (the Hermitian of a matrix)
Let A be a complex matrix. The Hermitian of A is

AH = (A∗)T =
(
AT

)∗
Relationship between elements

aHij = a∗ji

Hermitian of Hermitian(
AH

)H
= A

Hermitian of product

(AB)H = BHAH

Chen P Eigenvalue Problems



61/97

Lemma (inner product and Hermitian)
Let x and y be complex vectors.

The inner product of x and y is

(x,y) = xH y

Furthermore

(x,Ay) = xHAy = (AHx)H y = (AHx,y)

(Ax,y) = (Ax)H y = xHAHy = (x,AHy)
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Definition (Hermitian matrix)
Let A be a complex matrix. A is Hermitian if

AH = A

That is
aHij = a∗ji = aij

For example [
2 3− 3i

3 + 3i 5

]

Chen P Eigenvalue Problems



63/97

properties of Hermitian matrix
Let A be Hermitian.

xHAx is real for any x

xHAx = xHAHx = xHAH
(
xH

)H
=
(
xHAx

)H
=
(
xHAx

)∗
Eigenvalues of A are real

Asi = λisi ⇒ sHi Asi = λis
H
i si ⇒ λi = sHi Asi

sHi si
∈ R

Eigenspaces of A are orthogonal

(As1, s2) = (s1,As2)⇒ (λ∗1 − λ2)(s1, s2) = 0
⇒ (s1, s2) = 0
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Example (properties of Hermitian matrix)

A =
[

2 3− 3i
3 + 3i 5

]

|A− λI| = 0 ⇒ λ1 = 8, λ2 = −1

(A− 8I) s1 = 0 ⇒ s1 =
[

1−i
2
1

]

(A+ I) s2 = 0 ⇒ s2 =
[
i− 1

1

]

(s1, s2) =
(1− i

2

)∗
· (i− 1) + 1 · 1 = 0
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Definition (unitary matrix)
Let U be a complex matrix. U is unitary if

U−1 = UH

That is
UHU = UUH = I
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properties of unitary matrix
Let U be unitary.
‖Ux‖ = ‖x‖ for any x

‖Ux‖2 = (Ux,Ux) =
(
x,UHUx

)
= (x,x) = ‖x‖2

Eigenvalue of U has modulus 1

Usi = λisi ⇒ ‖si‖ = ‖Usi‖ = ‖λisi‖ = |λi|‖si‖
⇒ |λi| = 1

Eigenspaces of U are orthogonal

(Us1,Us2) = (s1,U
HUs2) = (s1, s2)

(Us1,Us2) = (λ1s1, λ2s2) = λ∗1λ2(s1, s2)
⇒ (1− λ∗1λ2)(s1, s2) = 0
⇒ (s1, s2) = 0
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Example (unitary matrices)
Rotation matrix [

cos t − sin t
sin t cos t

]
Permutation matrix 

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


Fourier matrix

1
2


1 1 1 1
1 ω ω2 ω3

1 ω2 ω4 ω6

1 ω3 ω6 ω9

 , ω = ei
2π
4

Chen P Eigenvalue Problems



68/97

Definition (skew-Hermitian matrix)
Let K be a complex matrix. K is skew-Hermitian if

KH = −K

Let A be Hermitian.
(iA) is skew-Hermitian since

(iA)H = −iAH = −iA = −(iA)

For example

K = iA = i

[
2 3− 3i

3 + 3i 5

]
=
[

2i 3 + 3i
−3 + 3i 5i

]

KH =
[

2i 3 + 3i
−3 + 3i 5i

]H
=
[
−2i −3− 3i

3− 3i −5i

]
= −K
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from real elements to complex elements
Complex vectors are extension of real vectors
Matrix Hermitian is the extension of matrix transpose
Hermitian matrix is the extension of symmetric matrix
Unitary matrix is the extension of orthogonal matrix
Skew-Hermitian is the extension of anti-symmetric
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Similar Matrices
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Definition (similar matrices)
Let A and B be matrices. A and B are similar if there exists
an invertible matrix M such that

B = M−1AM

Notation
A ∼ B

An equivalence relation

(A ∼ B) ⇒ (B ∼ A)
(A ∼ B) ∧ (B ∼ C) ⇒ (A ∼ C)
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Example (similar matrices)

A =
[
1 0
0 0

]
, M 1 =

[
1 b
0 1

]
, M 2 =

[
1 1
−1 1

]

M 1 and M 2 are invertible

M−1
1 =

[
1 −b
0 1

]
, M−1

2 = 1
2

[
1 −1
1 1

]

Similarity

A ∼M−1
1 AM 1 =

[
1 b
0 0

]
= B1

A ∼M−1
2 AM 2 =

[
1
2

1
2

1
2

1
2

]
= B2

B1 ∼ B2
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properties of similar matrices
Let A and B be similar matrices.

They have the same eigenvalues
Their eigenvectors are related
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Lemma (eigenvalues of similar matrices)
If A ∼ B, A and B have the same spectrum.

Proof.
Let B = M−1AM and λ be an eigenvalue of B.

|B − λI| = 0 ⇒ |M−1AM − λM−1M | = 0
⇒ |M−1(A− λI)M | = 0
⇒ |M−1| |(A− λI)| |M | = 0
⇒ |A− λI| = 0

Hence λ is an eigenvalue of A.
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Lemma (eigenvectors of similar matrices)
Suppose A ∼ B with B = M−1AM . Let s be an eigenvector
of A with eigenvalue λ.

t = M−1s is an eigenvector of B
t also corresponds to eigenvalue λ

Proof.
As = λs ⇒ M−1As = λM−1s

⇒
(
M−1AM

) (
M−1s

)
= λ

(
M−1s

)
⇒ Bt = λt

Hence t is an eigenvector of B with eigenvalue λ.
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Example (eigenvectors of similar matrices)

A =
[
1 0
0 0

]
,B1 =

[
1 b
0 0

]
,M 1 =

[
1 b
0 1

]

B1 ∼ A since B1 = M−1
1 AM 1

s1 =
[
1
0

]
and s2 =

[
0
1

]
are eigenvectors of A with eigen-

values λ1 = 1 and λ2 = 0
Thus

t1 = M−1
1

[
1
0

]
=
[
1
0

]
, t2 = M−1

1

[
0
1

]
=
[
−b
1

]

are eigenvectors of B1, also with eigenvalues 1 and 0
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Change of Basis
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Definition (identity transformation)
The identity transformation I : V 7→ V maps any vector to
itself

I(x) = x

Linearity

I(c1x1 + c2x2) = c1x1 + c2x2

= c1I(x1) + c2I(x2)

Change of basis: one basis for domain V and one basis for
range V
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Definition (change of basis)
Let V be a vector space. In a change of basis, the basis used
to represent vectors in V is changed from one to another.

a change of basis is an identity transformation
Let B and B′ be bases of V. Consider the change of basis from
B to B′.

It is identity transformation since vectors are not changed
That means the change of basis is I : V 7→ V, where B is
the domain basis and B′ is the range basis
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matrix for change of basis
Consider the change of basis from B = {v1, . . . ,vn} to B′ =
{v′1, . . . ,v′n} for space V.

It is I : V→ V
It has a matrix representation [IBB′ ]
Suppose

vj =
n∑
i=1

mijv
′
i, j = 1, . . . , n

Then

I(vj) = vj =
n∑
i=1

mijv
′
i, j = 1, . . . , n

Hence
[IBB′ ] = {mij}
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representation of a vector with a basis
Let V be a vector space and B = {v1, . . . ,vn} be a basis of V.

A vector x ∈ V is a linear combination of the basis vectors

x =
n∑
i=1

xivi

Given B, x can be represented by

[xB] =


x1
...
xn

 ⇔ x =
n∑
i=1

xivi
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Theorem (representation in two bases)
Let x be a vector. The representation of x in bases B and B′
are related by

[xB′ ] = [IBB′ ] [xB]

Suppose x =
n∑
j=1

xjvj and vj =
n∑
i=1

mijv
′
i. We have

n∑
j=1

xjvj =
n∑
j=1

xj
n∑
i=1

mijv
′
i =

n∑
i=1

 n∑
j=1

mijxj

v′i =
n∑
i=1

x′iv
′
i

Hence
x′i =

n∑
j=1

mijxj, i = 1, . . . , n

That is
[xB′ ] = [IBB′ ] [xB]
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Theorem (inverse matrix and change of basis)
Let B and B′ be bases of V.

[IB′B] = [IBB′ ]−1

Proof.
For any x ∈ V, it follows from [xB] = [IB′B] [xB′ ] and [xB′ ] =
[IBB′ ] [xB] that

[xB] = [IB′B] [IBB′ ] [xB]

Hence
[IB′B] [IBB′ ] = I

[IB′B] = [IBB′ ]−1

Chen P Eigenvalue Problems



84/97

Theorem (similarity and linear transformation)
Let T : V 7→ V be linear transformation and B = {v1, . . . ,vn}
and B′ = {v′1, . . . ,v′n} be bases of V.

The matrix representation of T using B and B′, respectively
[T BB] and [T B′B′ ], must be similar.
That is

[T B′B′ ] ∼ [T BB]
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Proof.
Suppose T maps x to y. From identity transformation

[xB′ ] = [IBB′ ] [xB] , [yB′ ] = [IBB′ ] [yB]

From linear transformation T

[yB′ ] = [T B′B′ ] [xB′ ] , [yB] = [T BB] [xB]

It follows that

[IBB′ ] [yB] = [T B′B′ ] ([IBB′ ] [xB])
⇒ [yB] = [IBB′ ]−1 [T B′B′ ] [IBB′ ] [xB]
⇒ [T BB] = [IBB′ ]−1 [T B′B′ ] [IBB′ ]

Hence [T BB] ∼ [T B′B′ ].
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Definition (eigenbasis of linear transform)
Let V be a space and T : V 7→ V be a linear transformation.

A vector vi such that T (vi) = λivi is an eigenvector of T
with eigenvalue λi
A basis B = {v1, . . . ,vn} of V is an eigenbasis

properties
Matrix representation for T using B is diagonal

[T BB] = diag(λ1, . . . , λn) = Λ

Let B′ = {v′1, . . . ,v′n} be a basis, and vj = ∑
i
sijv

′
i. Then

[IBB′ ] = {sij} = S and

[T B′B′ ] = [IBB′ ] [T BB] [IBB′ ]−1 = SΛS−1
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Example (eigenbasis for projection)
Let T be the projection to the line L at angle θ to the horizontal
axis. Find the matrix for T using standard basis B′ = {ex, ey}.

Eigenvectors of T are v1 = cos θ ex + sin θ ey with λ1 = 1
and v2 = − sin θ ex + cos θ ey with λ2 = 0
The matrix for T using eigenbasis B = {v1,v2} is

[T BB] =
[
1 0
0 0

]
= Λ

The matrix for the change of basis from B to B′ is

[IBB′ ] =
[
cos θ − sin θ
sin θ cos θ

]
The matrix for T using standard basis is

[T B′B′ ] = [IBB′ ] [T BB] [IBB′ ]−1 =
[

cos2 θ cos θ sin θ
cos θ sin θ sin2 θ

]
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Normal Matrix and Orthonormal Eigenbasis
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triangularizability and diagonalizability
Let A be a square matrix.

A is triangularizable if A is similar to a triangular matrix
A is diagonalizable if A is similar to a diagonal matrix

Let A have eigen-decomposition A = SΛS−1. Then

A ∼ Λ

so A is diagonalizable (and triangularizable).
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Lemma (Schur lemma)
Let A be a square matrix. There exists a unitary matrix U such
that

UHAU = U−1AU

is an upper-triangular matrix.

Note
A ∼ U−1AU

and U−1AU is triangular. Hence, Schur lemma guarantees
every square matrix is triangularizable.
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Definition (normal matrix)
Let N be a square matrix. N is normal if

NNH = NHN

Unitary matrix is normal

UUH = UHU = I

Hermitian matrix is normal

HHH = HH = HHH
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Theorem (normal matrix can be diagonalized)
Let N be a normal matrix. N is diagonalizable.

proof
Let U be unitary and Γ = UHNU is upper-triangular. Note

ΓΓH = UHNU (UHNU )H

= UHNNHU

= UHNHNU

= UHNHUUHNU

= ΓHΓ
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completing the proof
For the first diagonal element of ΓΓH and ΓHΓ

(ΓΓH)11 = (ΓHΓ)11
⇒ ∑

k
γ1kγ

∗
1k = ∑

k
γ∗k1γk1 = |γ11|2

⇒ γ1k = 0, k > 1

For the second diagonal element

(ΓΓH)22 = (ΓHΓ)22
⇒ ∑

k
γ2kγ

∗
2k = ∑

k
γ∗k2γk2 = |γ12|2 + |γ22|2 = |γ22|2

⇒ γ2k = 0, k > 2

Row by row, we can show the elements of Γ to the right of the
diagonal are 0. Hence Γ is diagonal and N is diagonalizable.
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normal matrix has orthonormal eigenbasis
Let N be a normal matrix. N has an orthonormal eigenbasis.

Proof.
Let U be unitary and diagonalize N . It means UHNU = Γ
where Γ is diagonal. Let u1, . . . ,un be the columns of U .

u1, . . . ,un are eigenvectors of N

UHNU = Γ ⇒ NU = UΓ ⇒ Nui = γiiui

{u1, . . . ,un} is an orthonormal eigenbasis

UHU = I ⇒ uHi uj = δij
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Theorem (spectral theorem)
Let A be a real symmetric matrix. Then

A = QΛQT

where Λ is real and diagonal, and Q is real and orthogonal.

A is normal, so it has orthonormal eigenbasis
A is Hermitian, so its eigenvalues are real
Λ is eigenvalue matrix and Q is eigenvector matrix
As a sum

A = QΛQT

= λ1q1q
T
1 + · · ·+ λnqnq

T
n
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Example (spectral decomposition)[
2 −1
−1 2

]
=
[ 1√

2
1√
2

−1√
2

1√
2

] [
3 0
0 1

] [ 1√
2
−1√

2
1√
2

1√
2

]

= 3
[

1
2

−1
2

−1
2

1
2

]
+ 1

[
1
2

1
2

1
2

1
2

]

Chen P Eigenvalue Problems


