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Outline

System of linear equations
Gauss elimination
Matrix algebra
Gauss elimination with matrix
Matrix inverse and transpose
Differential equations with linear algebra
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notation
Scalar: a, b, x
Vector: a, b,x
Matrix: A,B,X
Set: A,B,X
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Systems of Linear Equations
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Example (system of linear equations)
Consider a system of linear equations{

1x + 2y = 3 1©
4x + 5y = 6 2©

The numbers of unknowns and equations are critical.
There are 2 equations, 1© and 2©
There are 2 unknowns, x and y

The system can be solved via elimination and substitution.
elimination

2©− 4× 1© → − 3y = −6 → y = 2

substitution
1© y=2−−→ x = −1
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row picture
row = equation = line
solve (x, y) for intersection point of the lines

column picture
column = vector
solve x, y for right combination of the vectors

Chen P System of Linear Equations & Matrix



7/90

Example (row picture and column picture)

row picture:
{

2x − y = 1
x + y = 5

column picture: x
[
2
1

]
+ y

[
−1
1

]
=
[
1
5

]
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Definition (types of linear equation systems)
Consider a system of linear equations with m equations and n
unknowns. The system is

square if m = n

under-determined if m < n

over-determined if m > n
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Theorem (solution of a square system)
Consider a square system of linear equations. Exactly one of
the following cases is true.

no solution
unique solution
infinite solutions
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Definition (non-singular/singular systems)
Consider a square system of linear equations.

It is non-singular if its solution is unique
It is singular if it has no solution or infinite solutions
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Example (square system of linear equations)
2u + v + w = 5
4u − 6v = −2
−2u + 7v + 2w = 9

It has a solution (verify)

u = 1, v = 1, w = 2

It is non-singular
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row picture
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It corresponds to vector equation

u

 2
4
−2

+ v

 1
−6
7

+ w

1
0
2

 =

 5
−2
9


column picture
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Gauss Elimination
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basic ideas of Gauss method
We apply Gauss method to solve a system of linear equations.

Suppose n equations with n unknowns are to be solved
Unknowns are eliminated from the equations systematically
Elimination downsizes the system of equations:
for k = n . . . 2, derive a square system of (k−1) unknowns
from a square system of k unknowns
Substitution finds the unknowns:
for k′ = 1 . . . n, substitute the values of (k′−1) unknowns
to an equation with k′ unknowns and then solve the k′th
unknown
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Example (Gauss method)


2u + v + w = 5 1©
4u − 6v = −2 2©
−2u + 7v + 2w = 9 3©

elimination−−−−−−→


2u + v + w = 5 1©

−8v − 2w = −12 2©′
8v + 3w = 14 3©′

elimination−−−−−−→


2u + v + w = 5 1©

−8v − 2w = −12 2©′
w = 2 3©′′

3©′′−−→ w = 2 substitution 2©′−−−−−−−−→ v = 1 substitution 1©−−−−−−−−→ u = 1
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n equations in n unknowns

(eli.) ↓ ↑ (sub.)

(n− 1) equations in (n− 1) unknowns

(eli.) ↓ ↑ (sub.)

...

(eli.) ↓ ↑ (sub.)

1 equation in 1 unknown
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elimination step
Consider 2 linear equations, both including unknown u.

Decide the ratio of coefficients of u in the equations
Multiply the first equation by the ratio
Subtract the result from the second equation
Now u is removed from the second equation
We call the above procedure an elimination step

Suppose there are k unknowns (including u).
The elimination step for u requires (k + 2) multiplies
1 multiply to decide the ratio
(k + 1) multiplies to multiply the first equation
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elimination run
Consider a square system of linear equations with unknown u.

Suppose we want to eliminate u
The first equation is repeatedly multiplied and subtracted
to eliminate u’s in the other equations
We call the above procedure the elimination run for u

Suppose the system has k unknowns and k equations.
An elimination run for u has (k − 1) elimination steps
It produces a sub-system with (k−1) unknowns and (k−1)
equations (where u is removed)

Chen P System of Linear Equations & Matrix



20/90

elimination part
Consider a square system with n unknowns.

The elimination part consists of (n− 1) elimination runs
The system is converted to a triangular system
The triangular system is easy to solve
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substitution step
A substitution step for u does 2 things.

Substitute values of the unknowns other than u
Find the value of u

Suppose the equation has k unknowns (including u).
A substitution step for u requires k multiplies
(k−1) multiplies to substitute the values of the unknowns
besides u
1 multiply to find the value of u
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substitution part
Consider a square system with n unknowns.

The elimination part of Gauss method converts it to a tri-
angular system
The substitution part of Gauss method solves it in n sub-
stitution steps
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pivots and multipliers
Let S be a square system of linear equations and u be an un-
known in S. Consider an elimination run for u.

A non-zero coefficient of u is chosen as pivot
Given the pivot, the ratio of a coefficient of u in another
equation of S over pivot is a multiplier

unknown pivot (in eq.) multipliers
u 2 ( 1©) 2, -1
v −8 ( 2©′) -1
w 1 ( 3©′′) -
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complexity of Gauss elimination
Let S be a square system with n unknowns. The numbers of
multiplies in Gauss method are as follows.

elimination part

n∑
k=2

an elimination run︷ ︸︸ ︷
(k − 1)(k + 2) = O(n3)

substitution part

n∑
k′=1

a substitution step︷︸︸︷
k′ = O(n2)
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Matrix Algebra
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Definition (matrix)
A matrix consists of numbers. It can be seen as

2-D array of elements (entries)
list of row vectors
list of column vectors

Let A be a matrix.
The position of an element is specified by 2 subscripts
The order (size) of A is m×n if it has m rows n columns
A can be represented in various forms

A =


a11 . . . a1n

... . . . ...
am1 . . . amn

 =


a1:

...
am:

 =

a1 . . . an


= {aij}m×n
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matrix addition
Let A and B be matrices.

If A and B have different orders, matrix addition A+B
is undefined
When they have the same orders, A+B is defined by

A+B = {(aij + bij)}m×n

=


a11 + b11 . . . a1n + b1n

... . . . ...
am1 + bm1 . . . amn + bmn
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matrix multiplication
Let A be of order m× l and B be of order p× n.

If l 6= p, matrix multiplication AB is undefined
When l = p, AB is a matrix of order m× n with

AB =
{

l∑
k=1

aikbkj

}
m×n

=



l∑
k=1

a1kbk1 . . .
l∑

k=1
a1kbkn

... . . . ...
l∑

k=1
amkbk1 . . .

l∑
k=1

amkbkn
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For AB to be defined
size of a row vector in A = size of a column vector in B
number of columns in A = number of rows in B
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special case of m = n = 1

Let A = aT =
[
a1 . . . al

]
and B = b =


b1
...
bl

.

aTb is

aTb =
[
a1 . . . al

] 
b1
...
bl

 =
[
a1b1 + · · ·+ albl

]

For example

[
1 0 2

] 2
1
0

 =
[
2 + 0 + 0

]
=
[
2
]
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special case of n = 1

Let B = b =


b1
...
bl

.

Ab is a combination of the columns of A

Ab =


∑
k
a1kbk

...∑
k
amkbk

 =
∑
k


a1kbk

...
amkbk

 =
∑
k


a1k

...
amk

 bk
= a1 b1 + · · ·+ al bl = b1 a1 + · · ·+ bl al

For example

[
1 0 2
2 1 0

] 2
1
0

 = 2
[
1
2

]
+ 1

[
0
1

]
+ 0

[
2
0

]
=
[
2
5

]
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special case of m = 1
Let A = aT =

[
a1 . . . al

]
.

aTB is a combination of the rows of B

aTB =
[∑
k
akbk1 . . .

∑
k
akbkn

]
=
∑
k

[
akbk1 . . . akbkn

]
=
∑
k

ak
[
bk1 . . . bkn

]
= a1b1: + · · ·+ albl:

For example

[
1 0 2

] 2 1
1 1
0 1

 = 1
[
2 1

]
+0

[
1 1

]
+2

[
0 1

]
=
[
2 3

]

Chen P System of Linear Equations & Matrix



33/90

special case of l = 1

Let A = a =


a1
...
am

 and B = bT =
[
b1 . . . bn

]
.

abT is

abT =


a1
...
am

 [b1 . . . bn
]

=


a1b1 . . . a1bn

... . . . ...
amb1 . . . ambn


For example [

1
2

] [
2 1

]
=
[
2 1
4 2

]
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diagrams of special cases

[
. . .

]  ...

 =
[

+ · · ·+
]

[
. . .

]  ...

 =
[

+ . . . +
]

[
. . .

]  ...

 =
[

+ · · ·+
]

 ...

 [ . . .
]

=


. . .

... . . . ...
. . .
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computation of matrix multiplication
Matrix multiplication can be computed by the following ways.

element by element
matrix by matrix
row by row
column by column
any feasible block matrix multiplication∗
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element by element computation
(AB)ij is the product of ai: and bj.

AB =



l∑
k=1

a1kbk1 . . .
l∑

k=1
a1kbkn

... . . . ...
l∑

k=1
amkbk1 . . .

l∑
k=1

amkbkn



=


a1:b1 . . . a1:bn

... ai:bj
...

am:b1 . . . am:bn
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matrix by matrix computation

AB =



l∑
k=1

a1kbk1 . . .
l∑

k=1
a1kbkn

... . . . ...
l∑

k=1
amkbk1 . . .

l∑
k=1

amkbkn



=
l∑

k=1


a1kbk1 . . . a1kbkn

... . . . ...
amkbk1 . . . amkbkn



=
l∑

k=1


a1k

...
amk

 [bk1 . . . bkn
]

=
l∑

k=1
akbk:
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column by column computation
(AB)j is the product of A and bj.

AB =



l∑
k=1

a1kbk1 . . .
l∑

k=1
a1kbkn

... . . . ...
l∑

k=1
amkbk1 . . .

l∑
k=1

amkbkn



=

 l∑
k=1


a1k

...
amk

 bk1 · · ·
l∑

k=1


a1k

...
amk

 bkn


=
[

l∑
k=1
akbk1 . . .

l∑
k=1
akbkn

]
=
[
Ab1 . . . Abj . . . Abn

]
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row by row computation
(AB)i: is the product of ai: and B.

AB =



l∑
k=1

a1kbk1 . . .
l∑

k=1
a1kbkn

... . . . ...
l∑

k=1
amkbk1 . . .

l∑
k=1

amkbkn



=



l∑
k=1

a1k
[
bk1 . . . bkn

]
...

l∑
k=1

amk
[
bk1 . . . bkn

]

 =



l∑
k=1

a1kbk:

...
l∑

k=1
amkbk:

 =



a1:B
...

ai:B
...

am:B
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diagrams of matrix multiplication ...


[

. . .
]

=


. . .

... . . . ...
. . .


[

. . .
]  ...

 = + . . . +

[ . . . ]
=
[ . . . ]

 ...

 =

 ...


These are special cases of feasible block matrix multiplication.
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Example (computation of matrix multiplication)

AB =
[
1 2 3
4 2 0

] −1 1
1 3
2 0

 =
[

7 7
−2 10

]

ele.=
[
1 · −1 + 2 · 1 + 3 · 2 1 · 1 + 2 · 3 + 3 · 0
4 · −1 + 2 · 1 + 0 · 2 4 · 1 + 2 · 3 + 0 · 0

]
mat.=

[
1
4

] [
−1 1

]
+
[
2
2

] [
1 3

]
+
[
3
0

] [
2 0

]
col.=
[
−1

[
1
4

]
+ 1

[
2
2

]
+ 2

[
3
0

]
1
[
1
4

]
+ 3

[
2
2

]
+ 0

[
3
0

]]

row=
1
[
−1 1

]
+ 2

[
1 3

]
+ 3

[
2 0

]
4
[
−1 1

]
+ 2

[
1 3

]
+ 0

[
2 0

]
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Definition (block matrix∗)
A block matrix is a matrix of blocks.

Each block is a matrix
A block row is a row of blocks
A block column is a column of blocks
The number of block rows is block row order
The number of block columns is block column order
The blocks in a block row have the same row order
The blocks in a block column have the same column order
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block matrix as matrix∗
Let A be a block matrix.

A is a matrix
The row order of A is the sum of the row orders of the
blocks in a block column
The column order of A is the sum of the column orders of
the blocks in a block row

For example, let A be a block matrix with 2 block rows and 3
block columns. Let mi be the row order of the blocks of A in
block row i and nj be the column order of the blocks of A in
block column j. Then A is a matrix is of order m× n where

m = m1 +m2, n = n1 + n2 + n3
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matrix as block matrix∗
Let A be a matrix is of order m× n.

Partition the rows of A into M block rows
Partition the columns of A into N block columns
We have a block matrix of order M × N (a block matrix
with M block rows and N block columns)
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block matrix multiplication∗
Let A be a block matrix of order M × L and B be a block
matrix of order P ×N .

If L 6= P , block matrix multiplication AB is undefined
When L = P , AB is a block matrix of order M ×N with

AB =



L∑
k=1
A1kBk1 . . .

L∑
k=1
A1kBkN

... . . . ...
L∑
k=1
AMkBk1 . . .

L∑
k=1
AMkBkN


Simply treat blocks as elements. For example[
A11 A12
A21 A22

] [
B11 B12
B21 B22

]
=
[
A11B11 +A12B21 A11B12 +A12B22
A21B11 +A22B21 A21B12 +A22B22

]
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Theorem (general matrix multiplication∗)
Let A be m × l and B be l × n. The multiplication AB can
be carried out in any feasible block matrix multiplication.

Suppose A is partitioned to be a block matrix of order MA ×
NA, and B is partitioned to be a block matrix of order MB ×
NB. Feasible block matrix multiplication requires

1 block row order of A matches block column order of B

NA = MB = L

2 column orders of the blocks of A matches row orders of
the blocks of B

nAl = mB
l , l = 1, . . . , L
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Example (block matrix multiplication)

AB =
[
1 2 3
4 2 0

] −1 1
1 3
2 0

 =
[
1 2
4 2

] [
−1 1
1 3

]
+
[
3
0

] [
2 0

]

=
[

7 7
−2 10

]

BA =

−1 1
1 3
2 0

 [1 2 3
4 2 0

]
=



[
−1 1
1 3

] [
1 2
4 2

] [
−1 1
1 3

] [
3
0

]

[
2 0

] [1 2
4 2

] [
2 0

] [3
0

]


=

 3 0 −3
13 8 3
2 4 6
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properties of matrix multiplication
always associative

(AB)C = A(BC)

always distributive

A(B +C) = AB +AC
(A+B)C = AC +BC

normally not commutative

AB 6= BA
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Example (matrix multiplication)

A =

 1 0 0
−2 1 0
0 0 1

 , B =

1 0 0
0 1 0
1 0 1

 , C =

1 0 0
0 1 0
0 1 1


AB = BA?

AC = CA?
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Gauss Elimination with Matrix
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representation of a system of linear equations
A system of linear equations of m equations and n unknowns

a11 x1 + . . . + a1n xn = b1
...

am1 x1 + . . . + amn xn = bm

can be represented by Ax = b where

A =


a11 . . . a1n

... . . . ...
am1 . . . amn

 , x =


x1
...
xn

 , b =


b1
...
bm
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Example (matrix representation)
The system of linear equations

2u + v + w = 5
4u − 6v = −2
−2u + 7v + 2w = 9

can be represented by

A︷ ︸︸ ︷ 2 1 1
4 −6 0
−2 7 2


x︷ ︸︸ ︷uv
w

 =

b︷ ︸︸ ︷ 5
−2
9
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matrix and vectors in linear equation system
Let Ax = b be a system of linear equations.

A is the coefficient matrix
x is the unknown vector
b is the right side
The augmented matrix is[

A | b
]

Chen P System of Linear Equations & Matrix
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Definition (row operation)
Let A be a matrix. A row operation on A subtracts a multiple
of one row of A from another row of A.

Example. Subtracting the triple of row 1 from row 2

a2: ← a2: − 3a1:

is a row operation. It means ...

 row operation−−−−−−−−→

 − 3
...


Only one row is changed in a row operation (here row 2).

Chen P System of Linear Equations & Matrix
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elimination step = row operation
LetAx = b be a system of linear equations. An elimination step
is equivalent to a row operation on augmented matrix

[
A | b

]
.

For example{
−8v − 2w = −12

8v + 3w = 14
elimination step−−−−−−−−−→

{
−8v − 2w = −12

w = 2

is equivalent to[
−8 −2 −12

8 3 14

]
row operation−−−−−−−−→

[
−8 −2 −12

0 1 2

]
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elimination part = sequence of row operation
Let Ax = b be a system of linear equations to solve. The
elimination part in Gauss method is equivalent to a sequence of
row operation on

[
A | b

]
.

Ax︷ ︸︸ ︷ 2 1 1
4 −6 0
−2 7 2


uv
w

 =

b︷ ︸︸ ︷ 5
−2
9

 eli.−−→

Ux︷ ︸︸ ︷2 1 1
0 −8 −2
0 0 1


uv
w

 =

c︷ ︸︸ ︷ 5
−12

2



[A | b]︷ ︸︸ ︷ 2 1 1 5
4 −6 0 −2
−2 7 2 9

 3 row operation−−−−−−−−−→

[U | c]︷ ︸︸ ︷ 2 1 1 5
0 −8 −2 −12
0 0 1 2
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Definition (identity matrix)
An identity matrix is a square matrix in which every diagonal
element is 1 and every off-diagonal element is 0.

The identity matrix of order n×n is denoted by In. For example

I3 =

1 0 0
0 1 0
0 0 1
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Definition (triangular matrix)
A triangular matrix is a square matrix in which every off-diagonal
element is 0 on one side of the diagonal line.

An upper-triangular matrix has 0s below the diagonal line
A lower-triangular matrix has 0s above the diagonal line
A unit triangular matrix has 1s on the diagonal line
A diagonal matrix is lower-triangular and upper-triangular
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Definition (elementary matrix)
An elementary matrix is a square matrix.

Every diagonal element is 1
Exactly one off-diagonal element is non-zero

An elementary matrix is specified by its size, the position and
the value of the non-zero off-diagonal element. That is

E = {eij = −m}n×n

For example

E =

 1 0 0
−2 1 0
0 0 1

 ←→ E = {e21 = −2}3×3

Chen P System of Linear Equations & Matrix
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row operation = elementary matrix
Let A be a matrix.

A row operation on A is equivalent to multiplication of an
elementary matrix from left
Specifically, left multiplication of E = {eij = −m} corre-
sponds to subtracting m times of row j from row i

For example

A =

 a1:
a2:
a3:

 row operation−−−−−−−−→

 a1:
a2: − 2a1:
a3:



EA =

 1 0 0
−2 1 0
0 0 1


 a1:
a2:
a3:

 =

 a1:
a2: − 2a1:
a3:
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elimination = sequence of elementary matrices
Let Ax = b be a system of linear equations. The elimination
part of Gauss method is equivalent to multiplying [A | b] by a
sequence of elementary matrices from left.

By Gauss method

[A | b]︷ ︸︸ ︷ 2 1 1 5
4 −6 0 −2
−2 7 2 9

 elimination part−−−−−−−−−→

[U | c]︷ ︸︸ ︷ 2 1 1 5
0 −8 −2 −12
0 0 1 2


This is equivalent to GFE [A | b] = [U | c] with

E =

 1 0 0
−2 1 0
0 0 1

 , F =

1 0 0
0 1 0
1 0 1

 , G =

1 0 0
0 1 0
0 1 1
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reverse of row operation: also row operation
Let A be a matrix. A row operation on A can be reversed by
another row operation.

Consider the row operation of subtracting twice the first row
from the second row. Its reverse is adding twice the first row
to the second row. Both are row operation.

 ...

 →
 − 2

...

 →
( − 2 ) + 2

...

 =

 ...


In terms of elementary matrix, we have

E = {e21 = −2}n×n reverse−−−−→ E= {e21 = 2}n×n

Chen P System of Linear Equations & Matrix



63/90

reverse of a sequence of row operation
Let Ax = b be a non-singular system of linear equations which
is reduced to Ux = c by elimination.

The row operations converting A to U can be reversed
The reverse is multiplication of U by a sequence of ele-
mentary matrices from left
It is a matrix with the multipliers as elements

In the current example, we have

GFEA = U ⇒ FEA = GU ⇒ EA = GFU ⇒ A = GFE U

Thus, the reverse matrix is

GFE =

1 0 0
2 1 0
0 0 1


 1 0 0

0 1 0
−1 0 1


1 0 0

0 1 0
0 −1 1

 =

 1 0 0
2 1 0
−1 −1 1
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triangular factorization: LU decomposition
Let Ax = b be a non-singular system of linear equations which
is reduced to Ux = c by elimination. Then

A = LU

L is lower-triangular containing the multipliers
U is upper-triangular with the pivots as diagonal elements

∗ ∗ ∗∗ ∗ ∗
∗ ∗ ∗

 =

 1
m21 1
m31 m32 1


p1 ∗ ∗

p2 ∗
p3


 2 1 1

4 −6 0
−2 7 2

 =

 1 0 0
2 1 0
−1 −1 1


2 1 1

0 −8 −2
0 0 1
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triangular factorization: LDU decomposition
Let Ax = b be a non-singular system of linear equations which
is reduced to Ux = c by elimination. Then

A = LDU ′

L is unit lower-triangular containing the multipliers
D is diagonal with the pivots
U ′ is unit upper-triangular

LDU decomposition is achieved by converting LU to LDU ′.
For example 2 1 1

4 −6 0
−2 7 2

 =

 1 0 0
2 1 0
−1 −1 1


2 0 0

0 −8 0
0 0 1


1 1

2
1
2

0 1 1
4

0 0 1
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Definition (permutation matrix)
A permutation matrix results from row permutation(s) or col-
umn permutation(s) of an identity matrix.

I3 =

1 0 0
0 1 0
0 0 1

 permutation−−−−−−−→ P =

0 1 0
0 0 1
1 0 0


[ ]

column view−−−−−−−→
[ ]


 row view−−−−−→




Note P has exactly a 1 in each row and in each column.
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multiplication by permutation matrix
Let P be a permutation matrix and A be square.

PA is row permutation of A
AP is column permutation of A

P A =

1 0 0
0 0 1
0 1 0


 a1:
a2:
a3:

 =

 a1:
a3:
a2:



AP =

a1 a2 a3


1 0 0

0 0 1
0 1 0

 =

a1 a3 a2
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LU decomposition with permutation
Let Ax = b be a non-singular system of linear equations which
is reduced to Ux = c by elimination and row exchanges. Then

PA = LU

where
P is a permutation matrix
L is a lower-triangular matrix
U is an upper-triangular matrix
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Matrix Inverse and Transpose
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Definition (matrix inverse)
Let A be a square matrix of order n × n. A matrix B is an
inverse of A if

AB = In = BA

A matrix is invertible if it has an inverse matrix.
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Theorem (uniqueness of matrix inverse)
Let A be an invertible matrix.

The inverse matrix of A is unique
It is denoted by A−1

The inverse matrix of A−1 is A

Proof. Let B1 and B2 be inverses of A.

B1AB2 = B1AB2 ⇒ (B1A)B2 = B1 (AB2)
⇒ B2 = B1
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Theorem (invertible and non-singular)
A matrix is invertible if and only if it is non-singular.

Proof.
Suppose A is invertible. Consider system Ax = b. Multi-
plying both sides by A−1, we obtain x = A−1b, which is
a unique solution. So A is non-singular.
Suppose A is non-singular. Consider systems

Ax = i1, . . . ,Ax = in

where i1, . . . , in are standard unit vectors. Construct ma-
trix B using the solutions as columns. Then AB = In.
So B is an inverse of A, and A is invertible.
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inverse of matrix product
Let A and B be invertible and AB not be undefined. Then

(AB)−1 = B−1A−1

Proof.
(AB)

(
B−1A−1

)
= ABB−1A−1

= A
(
BB−1

)
A−1

= AInA
−1

= AA−1

= In

So
(AB)−1 = B−1A−1
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inverse of a triangular matrix
Let A be an invertible matrix.

If A is lower-triangular, A−1 is lower-triangular
If A is upper-triangular, A−1 is upper-triangular
If A is diagonal, A−1 is diagonal

This can be shown by constructing A−1, one row by one row.
Details are omitted.
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inverse of a unit triangular matrix
Let A be an invertible matrix.

If A is unit lower-triangular, A−1 is unit lower-triangular
If A is unit upper-triangular, A−1 is unit upper-triangular

This can be shown by row-by-row construction of A−1. Details
are omitted.
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column-by-column computation of matrix inverse
Let A be an invertible matrix of order n× n.

A−1 exists and
AA−1 = In

Explicitly

A

A−1︷ ︸︸ ︷u . . . z

 =

Au . . . Az

 =

In︷ ︸︸ ︷i1 . . . in


Columns u, . . . ,z of A−1 can be found by solving systems

Ax = i1, . . . , Ax = in
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Gauss-Jordan method
Let A be invertible. The Gauss-Jordan method

finds the columns of A−1 simultaneously
is a sequence of row operations and scalar multiplications

Suppose
A = LU

Gauss-Jordan method[
A | I

] row operations−−−−−−−−→
[
U |L−1

]

row operations∗−−−−−−−−−→
[
I |U−1L−1

]
=
[
I |A−1

]
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Example (Gauss-Jordan method)

A =

 2 1 1
4 −6 0
−2 7 2


[
A | I

]
︷ ︸︸ ︷ 2 1 1 1 0 0

4 −6 0 0 1 0
−2 7 2 0 0 1

 row ops−−−−→

[
U |L−1

]
︷ ︸︸ ︷ 2 1 1 1 0 0

0 −8 −2 −2 1 0
0 0 1 −1 1 1



row ops∗−−−−→

 1 0 0 3
4 −

5
16 −

3
8

0 1 0 1
2 −3

8 −
1
4

0 0 1 −1 1 1


︸ ︷︷ ︸[

I |U−1L−1
]

=
[
I |A−1

]
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Gauss-Jordan with row exchange
Let A be a non-singular matrix whose LU decomposition re-
quires permutation

PA = LU

The Gauss-Jordan method still finds the inverse of A[
A | I

] row exchanges−−−−−−−−→
[
P A |P

]
row operation∗−−−−−−−−−→

[
I |U−1L−1P

]
=
[
I |A−1P−1P

]
=
[
I |A−1

]
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Definition (matrix transpose)
The transpose of a matrix A is denoted by AT . It is defined by(

AT
)
ji

= (A)ij

Taking transpose flips a matrix with respect to its diagonal
The transpose of an m× n matrix is an n×m matrix
For example

[
2 1 1
4 −6 0

]T
=

2 4
1 −6
1 0


The transpose of a lower-triangular matrix is upper-triangular
The transpose of a diagonal matrix is diagonal
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transpose of matrix product
Let A and B be matrices and AB not be undefined. Then

(AB)T = BTAT

Proof.
(
(AB)T

)
ij

= (AB)ji =
l∑

k=1
ajkbki =

l∑
k=1

(
BT

)
ik

(
AT

)
kj

=
(
BTAT

)
ij

Thus
(AB)T = BTAT

( )T
=
( )T ( )T

=
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transpose and inverse
Let A be a square matrix of order n× n. Then(

A−1
)T

=
(
AT

)−1
= A−T

AA−1 = In ⇒
(
AA−1

)T
= In

⇒
(
A−1

)T
AT = In

⇒
(
A−1

)T
=
(
AT

)−1
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Definition (symmetric matrix)
Let A be a matrix. A is symmetric if AT = A.

A symmetric matrix must be square
The product of a matrix and its transpose is symmetric(

RTR
)T

= RT
(
RT

)T
= RTR

(
RRT

)T
=
(
RT

)T
RT = RRT
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Differential Equations with Linear Algebra
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Example (differential equations in physics)
 Newton’s second law of motion

f = ma = m
d2r

dt2

Maxwell’s equations
∇ ·E = ρ

ε0

∇ ·B = 0
∇×E = −∂B

∂t

∇×B = µ0(J + ε0
∂E
∂t

)

Schrödinger equation

i~
dψ

dt
= Hψ
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ordinary differential equation
Consider an ordinary differential equation (abbr. ODE)

−d
2u(x)
dx2 = f(x), 0 ≤ x ≤ 1

with boundary condition

u(0) = 0, u(1) = 0

u(x) is an unknown function
f(x) is a given function
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discretization
We solve discretized version of ODE for approximate solution.

only look at n discrete points

xi = ih = i
( 1
n+ 1

)
, i = 1, . . . , n

large n ⇒ small h ⇒ fine granularity
introduce unknowns

ui = u(xi), i = 1, . . . , n

denote values

fi = f(xi), i = 1, . . . , n

Chen P System of Linear Equations & Matrix



88/90

approximation for derivatives
1st-order

du

dx

∣∣∣∣∣
x=xi

= lim
∆x→0

u(xi + ∆x)− u(xi)
∆x

≈ u(xi+1)− u(xi)
xi+1 − xi

≈ ui+1 − ui
h

2nd-order
d2u

dx2

∣∣∣∣∣
x=xi

= d

dx

(
du

dx

) ∣∣∣∣∣
x=xi

≈
du
dx

(xi)− du
dx

(xi−1)
h

≈ ui+1 − 2ui + ui−1

h2
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conversion to linear algebra
Recall the ODE

−d
2u(x)
dx2 = f(x), 0 ≤ x ≤ 1, u(0) = 0, u(1) = 0

For the discretized version, we have a system of linear equations.
n unknowns: u(x) at the discrete points

u1, . . . , un

n equations: approximate derivatives at the discrete points

−d
2u(xi)
dx2 = f(xi)

⇒ − ui+1 − 2ui + ui−1

h2 = fi

⇒ − ui+1 + 2ui − ui−1 = h2fi
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Example (Solve ODE with linear algebra)
Suppose f(x) = 6x and n = 5. We have

h = 1
n+ 1 = 1

6 , xi = ih = i

6 , ui = u(xi), fi = f(xi) = 6xi = i

The first equation (i = 1) is

−u2 + 2u1 − u0 = h2f1

The system is
2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2




u1
u2
u3
u4
u5

 = h2


f1
f2
f3
f4
f5

 = 1
36


1
2
3
4
5
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