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Over-determined System of Linear Equations
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Definition (over-determined systems)
A system of linear equations is over-determined if there are
more equations than unknowns.

For an over-determined system of linear equations

a11 x1 + · · ·+ a1n xn = b1
...
...
...

am1 x1 + · · ·+ amn xn = bm

we have m > n.

Chen P Over-determined Systems & Orthogonality



5/75

Theorem (solving an over-determined system)
Let Ax = b be an over-determined system of linear equations.
Suppose the columns of A are linearly independent. Exactly
one of the following must be true.

1 Unique solution
2 No solution
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from elimination to minimization
Let L be an over-determined system of linear equations.

Elimination is often not good for solving L
Minimization always works

Let Ax = b be an over-determined system of linear equations
with m equations and n unknowns, and the rank of A be r.

Elimination produces m− r equations with 0 left sides.
If any equation with 0 left side has a non-zero right side,
a solution does not exist.
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Definition (least-squares solution)
Let L : Ax = b be an over-determined system of linear equa-
tions. The sum of squared errors of L is

E(x) =
m∑

i=1
(ai1x1 + · · ·+ ainxn − bi)2

A least-squares solution of L, denoted by x̂, minimizes E(x)

x̂ = arg min
x

E(x)

If there exists an exact solution x0 of L, then x0 must be a
least-squares solution of L since E(x0) = 0 and

E(x) ≥ 0 = E(x0)
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Inner Product
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Definition (inner product)
Let V be a vector space and u,v be vectors of V. An inner
product of u and v, denoted by (u,v), is a scalar function with
the following properties.

Non-negativity

(u,u) ≥ 0, (u,u) = 0 ⇒ u = 0

Linearity

(u + v,w) = (u,w) + (v,w), (u, cv) = c(u,v)

The dot product defined by

(x,y) =
n∑

i=1
xiyi

is an inner product.
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Definition (orthogonal vectors)
Let V be a vector space and u,v be vectors of V. Then u and
v are orthogonal if and only if (u,v) = 0.

That u and v are orthogonal is denoted by

u ⊥ v
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Definition (length and distance)
Let V be a vector space and x,y be vectors of V.

The length of x is

‖x‖ = (x,x) 1
2 or equivalently ‖x‖2 = (x,x)

The distance between x and y is

‖x− y‖
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Example (length of vector)
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Theorem (Pythagoras theorem)
Let x and y be vectors of R2 and x ⊥ y. Then

‖x‖2 + ‖y‖2 = ‖x− y‖2

We have

x ⊥ y ⇔ (x,y) = 0 ⇔ x1y1 + x2y2 = 0

⇔ (x2
1 + x2

2) + (y2
1 + y2

2) = (x1 − y1)2 + (x2 − y2)2

⇔ ‖x‖2 + ‖y‖2 = ‖x− y‖2
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Example (Pythagoras)
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Orthogonal Sets and Spaces
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Definition (orthogonal sets)
Let U and W be sets of vectors of space V. U and W are
orthogonal sets if every vector of U is orthogonal to every vector
of W .

Examples

{[0 0 1]T} ⊥ {[1 0 0]T , [0 1 0]T}
{[1 0 0]T} ⊥ {[0 1 0]T}

{[1 0 0]T , [0 0 1]T} 6⊥ {[0 1 0]T , [0 0 1]T}

orthogonal spanning sets
orthogonal bases
orthogonal subspaces
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Lemma (orthogonal fundamental subspaces)
Let A be a matrix of order m× n.

Row space is orthogonal to nullspace

N(A) ⊥ C
(
AT

)
Column space is orthogonal to left nullspace

N(AT ) ⊥ C (A)

x ∈ N(A) ⇒ Ax = 0 ⇒ ai:x = 0, ∀i

⇒
(
x,aT

i:

)
= 0, ∀i ⇒

(
x,
∑

i

cia
T
i:

)
= 0, ∀ci

⇒ x ⊥
(∑

i

cia
T
i:

)
, ∀ci ⇒ x ⊥ C

(
AT

)
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just a spanning set
Let U and W be sets of vectors of space V.

Suppose U is a subspace. W ⊥ U if and only if W is
orthogonal to a spanning set (e.g. a basis) of U .
Suppose both U andW are subspaces. W ⊥ U if and only
if spanning sets of W and U are orthogonal.

Suppose
dimU = 3, dimW = 2

It suffices to check 3 basis vectors (instead of every vector) of
U against 2 basis vectors of W .
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Example (orthogonal subspaces)
X the z axis and the x–y plane
X the x axis and the y axis
× the x–z plane and the y–z plane
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Lemma (orthogonal ⇒ linearly independent)
Let U = {v1, . . . ,vn} be a set of non-zero vectors that are
mutually orthogonal. Then U is linearly independent.

Proof.

Suppose
n∑

i=1
civi = 0. For any j

(
vj,

n∑
i=1

civi

)
= 0 ⇒

n∑
i=1

ci (vj,vi) = 0

⇒ cj (vj,vj) = 0
⇒ cj = 0

So U is linearly independent.
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Definition (orthogonal complement)
Let S be a subspace of space V. The orthogonal complement
of S is the set of all vectors orthogonal to S.

Notation for orthogonal complement

S⊥ = {v | v ⊥ S}

Orthogonal complement is maximal. For any T ⊥ S

v ∈ T ⇒ v ⊥ S ⇒ v ∈ S⊥

so
T ⊂ S⊥

Chen P Over-determined Systems & Orthogonality



22/75

an orthogonal complement is a subspace
Let S be a subspace of space V. S⊥ is a subspace of V.

Proof.
For any u ∈ S, scalars c1, c2 and v1,v2 ∈ S⊥

(u, c1v1 + c2v2) = c1(u,v1) + c2(u,v2) = 0

⇒ (c1v1 + c2v2) ⊥ S

⇒ c1v1 + c2v2 ∈ S⊥

Thus S⊥ is a subspace.
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Theorem (fundamental theorem part ii)
Let A be a matrix of order m× n.

Nullspace is the orthogonal complement of row space(
C
(
AT

))⊥
= N(A)

Left nullspace is the orthogonal complement of column
space

(C (A))⊥ = N(AT )

v ∈
(
C
(
AT

))⊥
⇔ v ⊥ C

(
AT

)
⇔ v ⊥ aT

i: , ∀i
⇔ ai:v = 0, ∀i
⇔ Av = 0
⇔ v ∈ N(A)
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Theorem (sum of dimensions)
Let S be a subspace of V.

dim S + dim S⊥ = dimV

Proof.
Let dim S = r, dim S⊥ = k, dimV = n. Let B = {v1, . . . ,vr}
be a basis of S, and B′ = {v′1, . . . ,v′k} be a basis of S⊥.

1 B ∪ B′ is a linearly independent set of V, so r + k ≤ n

2 Augment B a basis of V, say {v1, . . . ,vr,vr+1, . . . ,vn},
and ensure vj ⊥ span(v1, . . . ,vj−1) for j = r + 1, . . . , n.
Let W = span({vr+1, . . . ,vn}). Then dimW = n− r.

W ⊥ S ⇒ W ⊂ S⊥ ⇒ dimW ≤ dim S⊥ ⇒ n− r ≤ k

⇒ r + k ≥ n

Hence r + k = n.
Chen P Over-determined Systems & Orthogonality
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Example (sum of dimensions)
Let A be a matrix of order m× n with rank r.

We have
N(A) = C

(
AT

)⊥
We also have

dimC
(
AT

)
+ dimN(A) = r + (n− r) = n

Thus

dimC
(
AT

)
+ dimC

(
AT

)⊥
= dimRn
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Projection
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Definition (projection as the closest point)
Let V be a space, b be a vector of V, and S be a subspace of V.
The projection of b to S is the vector p ∈ S with the shortest
distance to b

p = arg min
v∈S

‖b− v‖

Projection minimizes the length of error vector

e = b− v

Note
min
v∈S
‖b− v‖2 6= min

v∈S
‖b− v‖

arg min
v∈S

‖b− v‖2 = arg min
v∈S

‖b− v‖

Dealing with ‖b− v‖2 is easier than ‖b− v‖.
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min and arg min
Let f(x) be a (multi-variate) function of x.

The minimum value of f(x) is denoted by

min
x
f(x)

A value of x that minimizes f(x) is denoted by

arg min
x

f(x)

Let f ∗ = min
x
f(x) and x∗ = arg min

x
f(x).

f(x∗) = f ∗

Chen P Over-determined Systems & Orthogonality
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orthogonality condition of projection
Let p be the projection of b to S.

We have
(b− p) ⊥ S

In particular, since p ∈ S, we have

(b− p) ⊥ p

Chen P Over-determined Systems & Orthogonality
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projection to a vector and projection matrix
Let a and b be vectors of space V.

The projection of b to a is

p = aT b

aT a
a

Projection is left multiplication by a projection matrix

p = a
aT b

aT a
= aaT

aT a
b = P b

where
P = aaT

aT a
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Proof.
Let p = ax. By the orthogonality condition

(p, b− p) = 0⇒ aT (b− ax) = 0
⇒ (aT a)x = aT b

⇒ x = aT b

aT a

Hence
p = ax

= a
aT b

aT a
= P b

Chen P Over-determined Systems & Orthogonality
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Note that
Op = aT b

‖a‖

Chen P Over-determined Systems & Orthogonality
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Least-squares Solution of Over-determined System
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squared errors and least-squares solution
Let Ax = b be a system of m equations and n unknowns.

Error of equation i

(ai:x− bi)

Sum of squared errors

E(x) =
m∑

i=1
(ai:x− bi)2

Least-squares solution

x̂ = arg min
x

E(x)

Note
E(x) = ‖Ax− b‖2
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Example (least-squares solution)
Consider {

x = 2
2x = 3

Re-write it as {
x− 2 = 0

2x− 3 = 0

An x incurs an error of (x−2) for the first equation and (2x−3)
for the second equation. Hence, a least-squares solution is

x̂ = arg min
x

E(x)

= arg min
x

(
(x− 2)2 + (2x− 3)2

)
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Example (2 equations and 1 unknown)
Let ax = b be an over-determined system with 2 equations and
1 unknown

L :
{
a1x = b1
a2x = b2

The sum of squared errors is

E(x) = (a1x− b1)2 + (a2x− b2)2

A least-squares solution minimizes E(x). By calculus

x̂ = arg min
x

E(x) ⇒ dE(x)
dx

∣∣∣∣∣
x=x̂

= 0

⇒ 2[(a1x̂− b1)a1 + (a2x̂− b2)a2] = 0 ⇒ x̂ = a1b1 + a2b2

a2
1 + a2

2
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Lemma (least-squares = projection)
Let a and b be vectors in space V. Let x̂ be the least-squares
solution of ax = b and p be the projection of b to a.

p = ax̂

Proof.
x̂ = arg min

x
‖ax− b‖2 = arg min

x
‖b− ax‖2

⇒ ax̂ = arg min
v=ax

‖b− v‖2

Also
p = arg min

v∈span(a)
‖b− v‖2 = arg min

v=ax
‖b− v‖2

Hence
p = ax̂
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Example (2 equations and 1 unknown)
The least-squares solution of ax = b is

x̂ = a1b1 + a2b2

a2
1 + a2

2
= aT b

aT a

The projection of b to a is

p = P b = aaT

aT a
b = a

aT b

aT a

Hence
p = ax̂

Chen P Over-determined Systems & Orthogonality
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Theorem (least-squares solution and projection)
Let x̂ be a least-squares solution of Ax = b and p be the
projection of b to C(A).

p = Ax̂

Proof.

x̂ = arg min
x
‖Ax− b‖2 = arg min

x
‖b−Ax‖2

⇒ Ax̂ = arg min
v=Ax

‖b− v‖2

Also
p = arg min

v∈C(A)
‖b− v‖2 = arg min

v=Ax
‖b− v‖2

Hence p = Ax̂.

Chen P Over-determined Systems & Orthogonality
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Theorem (normal equation)
Let x̂ be a least-squares solution of Ax = b.

AT Ax̂ = AT b

Proof.
The projection of b to C(A) is Ax̂. It follows that the error
vector (b−Ax̂) is orthogonal to C(A).

(b−Ax̂) ⊥ C(A) ⇒ (b−Ax̂) ⊥ ai, ∀i
⇒ aT

i (b−Ax̂) = 0, ∀i
⇒ AT (b−Ax̂) = 0
⇒ AT Ax̂ = AT b

Chen P Over-determined Systems & Orthogonality
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unique least-squares solution
Let A be a matrix of order m × n with linearly independent
columns and m > n. Ax = b has unique least-squares solution

x̂ =
(
AT A

)−1
AT b

Proof.

Ax = 0⇒ AT Ax = 0⇒ xT AT Ax = 0⇒ Ax = 0

So N(AT A) = N(A) and dimN(AT A) = dimN(A) = 0.
Thus rank(AT A) = n and

(
AT A

)
is invertible. Hence the

normal equation AT Ax̂ = AT b has unique solution

x̂ =
(
AT A

)−1
AT b

Chen P Over-determined Systems & Orthogonality
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Example (unique least-squares solution)
Find a least-squares solution of an over-determined system of
linear equations Ax = b, where

A =

1 2
1 3
0 0

 , b =

4
5
6



x̂ =
(
AT A

)−1
AT b =

[
13 −5
−5 2

] [
1 1 0
2 3 0

] 4
5
6

 =
[
2
1

]

Chen P Over-determined Systems & Orthogonality
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Theorem (projection to column space)
Let A be a matrix with linearly independent columns.

The projection of any b to column space C(A) is

p = A
(
AT A

)−1
AT b

The projection matrix is

P = A
(
AT A

)−1
AT

The least-squares solution of Ax = b is

x̂ =
(
AT A

)−1
AT b

The projection of b to C(A) is

p = Ax̂ = A
(
AT A

)−1
AT︸ ︷︷ ︸

projection matrix

b

Chen P Over-determined Systems & Orthogonality
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Fitting Data
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regression
Given a data set {(t1, y1), . . . , (tm, ym)}
Find a function ŷ = f(t) to fit the data set

For example, we may assume

ŷ = f(t) = c+ d t

The parameters c and d are decided by minimizing the error
between data and function, i.e. between yi and f(ti)

Chen P Over-determined Systems & Orthogonality
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linear fitting function
We assume

ŷ = f(t) = c+ d t

The difference (error) between yi and f(ti) is

yi − f(ti) = yi − (c+ d ti)

Ideally, we want c and d such that

yi = f(ti) = c+ d ti, i = 1, . . . ,m

We are solving a system of 2 unknowns (for the parameters
c and d) and m equations (for the data points)

Chen P Over-determined Systems & Orthogonality
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a system of linear equations
The equations to satisfy can be written as

1 t1
... ...
1 tm


[
c
d

]
=


y1
...
ym


It can be represented by Ax = b where

A =


1 t1
... ...
1 tm

 , x =
[
c
d

]
, b =


y1
...
ym



Chen P Over-determined Systems & Orthogonality
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solution by normal equation
Consider Ax = b arising from fitting a data set to a function.

Over-determined if the number of data points is more than
the number of parameters
Look for a least-squares solution

AT Ax̂ = AT b

For data {(t1, y1), . . . , (tm, ym)} and function f(t) = c+dt

[
1 . . . 1
t1 . . . tm

] 
1 t1
... ...
1 tm


[
ĉ

d̂

]
=
[

1 . . . 1
t1 . . . tm

] 
y1
...
ym



⇒

 m
m∑

i=1
ti

m∑
i=1

ti
m∑

i=1
t2i


[
ĉ

d̂

]
=


m∑

i=1
yi

m∑
i=1

tiyi


Chen P Over-determined Systems & Orthogonality
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Example (fitting a linear function)
Fit data set {(−1, 1), (1, 1), (2, 3)} to a linear function.

It leads to an over-determined system Ax = b where

A =

1 −1
1 1
1 2

 , x =
[
c
d

]
, b =

1
1
3


We have

AT A =
[
3 2
2 6

]
, AT b =

[
5
6

]
Thus, the least-squares solution is

x̂ =
[
ĉ

d̂

]
= (AT A)−1AT b =

[
9
7
4
7

]

Among all lines, f(t) = ĉ+ d̂t minimizes
m∑

i=1
(yi − f(ti))2.

Chen P Over-determined Systems & Orthogonality
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Orthonormal Basis
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Definition (orthonormal vectors)
A group of vectors are orthonormal if

the vectors are orthogonal
every vector is a unit vector (of length 1)

A set with orthonormal vectors is orthonormal
For an orthonormal set {q1, . . . , qn}

(qi, qj) = δij =

1, if i = j

0, otherwise

A basis with orthonormal vectors is orthonormal

Chen P Over-determined Systems & Orthogonality
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simplification with orthonormal vectors
Suppose A has linearly independent column vectors.

The projection matrix to C(A) is

P = A
(
AT A

)−1
AT

If the column vectors are orthonormal, we have
(
AT A

)
=

I and
P = AAT =

n∑
j=1

aja
T
j

Note
P =

n∑
j=1

P j

where P j = aja
T
j is the matrix for projection to aj.

Chen P Over-determined Systems & Orthogonality
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vector representation with orthonormal basis
Let Q = {q1, . . . , qn} be an orthonormal basis of space V. The
representation of a vector x ∈ V with Q is

[xQ] =


(q1,x)

...
(qn,x)


Proof.

Suppose x =
n∑

i=1
xiqi.

(qj,x) =
(

qj,
n∑

i=1
xiqi

)
=

n∑
i=1

xi

(
qj, qi

)
=

n∑
i=1

xiδij

= xj

Chen P Over-determined Systems & Orthogonality
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inner product with an orthonormal basis
Let Q = {q1, . . . , qn} be an orthonormal basis of space V.
The inner product of x and y of V is the dot product of the
representation of x and y with Q

(x,y) = [xQ]T [yQ]

Proof.

Suppose x =
n∑

i=1
xiqi and y =

n∑
j=1

yjqj.

(x,y) =
n∑

i=1

n∑
j=1

xiyj(qi, qj) =
n∑

i=1

n∑
j=1

xiyjδij =
n∑

i=1
xiyi

= [xQ]T [yQ]

Chen P Over-determined Systems & Orthogonality
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projection to a unit vector
Let q be a unit vector. The matrix for the projection to q is

P = qqT

Proof.
We have qT q = ‖q‖2 = 1, so

P = qqT

qT q
= qqT

Chen P Over-determined Systems & Orthogonality
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projection to column space: orthogonal matrix
Let Q be a matrix with orthonormal column vectors. The matrix
for the projection to C(Q) is

P = QQT

P = Q
(
QT Q

)−1
QT = QQT

Chen P Over-determined Systems & Orthogonality
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projection to a space with an orthonormal basis
Let {q1, . . . , qn} be an orthonormal basis of space V. Any
x ∈ V is the sum of the projections of x to the basis vectors
q1, . . . , qn.

Proof.
Let Q be the matrix with columns q1, . . . , qn. The projection
matrix to C(Q) = V is

P = QQT =
n∑

j=1
qjq

T
j

For any x ∈ V, we have

x = P x =
 n∑

j=1
qjq

T
j

x =
n∑

j=1
qj

(
qT

j x
)

Chen P Over-determined Systems & Orthogonality
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Gram-Schmidt process
G.-S. process converts a basis to an orthonormal one

{a1, . . . ,an} −→ {q1, . . . , qn}

For j = 1, . . . , n, do the following operations
projection of aj to span(q1, . . . , qj−1)

pj = q1(q1,aj) + · · ·+ qj−1(qj−1,aj)

normalization

bj = aj − pj 6= 0, qj = bj

‖bj‖

Note
span(q1, . . . , qj) = span(a1, . . . ,aj)

Chen P Over-determined Systems & Orthogonality
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Example (Gram-Schmidt process)

a1 =

1
0
1

 , a2 =

1
0
0

 , a3 =

2
1
0



⇒ b1 = a1, q1 = b1

‖b1‖
=


1√
2

0
1√
2



b2 = a2 − q1(q1,a2) =


1
2
0
−1
2

 , q2 = b2

‖b2‖
=


1√
2

0
−1√

2


b3 = a3 − q1(q1,a3)− q2(q2,a3) =

0
1
0

 , q3 =

0
1
0


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Theorem (QR factorization)
Suppose A has linearly independent columns. Then A = QR,
where Q has orthonormal columns and R is right-triangular.

Proof.
Let the columns of A be a1, . . . ,an. Apply G.-S. to
{a1, . . . ,an} to get an orthonormal basis {q1, . . . , qn}.

aj =
n∑

i=1
qi(qi,aj), j = 1, . . . , n

Construct Q with columns q1, . . . , qn and R with elements
rij = (qi,aj) so A = QR. R is right-triangular since for i > j

qi ⊥ {q1, . . . , qj} ⇒ qi ⊥ aj ∈ span(q1, . . . , qj)
⇒ (qi,aj) = 0
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Example (QR factorization)

A =

1 1 2
0 0 1
1 0 0

 =


1√
2

1√
2 0

0 0 1
1√
2
−1√

2 0



√

2 1√
2

√
2

0 1√
2

√
2

0 0 1



A =

a1 a2 a3

 G.-S.−−−→ Q =


1√
2

1√
2 0

0 0 1
1√
2
−1√

2 0

 =

q1 q2 q3



R = {(qi,aj)} =


√

2 1√
2

√
2

0 1√
2

√
2

0 0 1


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Function Approximation∗
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space of functions and an inner product
The set of real-valued functions is a space
We denote f(t) by f since it is a vector in a space
An inner product in this space is defined by

(f , g) =
∫

I
f(t)g(t)dt

Two functions are orthogonal if

(f , g) =
∫

I
f(t)g(t)dt = 0

The length of a function is defined by

‖f‖2 = (f ,f) =
∫

I
f 2(t)dt
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function approximation by polynomial
Consider the function approximation problem

f(t) .= c0 + c1t+ c2t
2

Denote f = f(t), f 1 = 1, f 2 = t, f 3 = t2. We have

f
.= c0f 1 + c1f 2 + c2f 3

In matrix and vectors
F︷ ︸︸ ︷f 1 f 2 f 3


x︷ ︸︸ ︷c0
c1
c2

 .= f

This is an over-determined system of linear equations
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normal equation and least-squares solution
The over-determined system is

F x = f

The normal equation is

F T F x̂ = F T f

That is(f 1,f 1) (f 1,f 2) (f 1,f 3)
(f 2,f 1) (f 2,f 2) (f 2,f 3)
(f 3,f 1) (f 3,f 2) (f 3,f 3)


ĉ0
ĉ1
ĉ2

 =

(f 1,f)
(f 2,f)
(f 3,f)


The least-squares solution is

x̂ =
(
F T F

)−1
F T f
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Example (function approximation)
Approximate f = t5 by p = c+ dt in the interval I = (0, 1).

Shortest distance

(ĉ, d̂) = arg min
(c,d)

‖f − p‖2

Over-determined system and least-squares solution

F x = f , i.e.

(f 1 = 1) (f 2 = t)

 [c
d

]
= (f = t5)

Projection
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shortest distance
The distance between f and p is ‖f − p‖

‖f − p‖2 =
∫ 1

0
(t5 − c− dt)2dt

=
∫ 1

0
(t10 + c2 + d2t2 − 2ct5 − 2dt6 + 2cdt)dt

= 1
11 + c2 + 1

3d
2 − 1

3c−
2
7d+ cd

At the shortest distance, the partial derivatives are zero
2ĉ+ d̂ = 1

3
ĉ+ 2

3 d̂ = 2
7

⇒ ĉ = − 4
21 , d̂ = 5

7
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over-determined system and solution
The over-determined system is

F x = f

The least-squares solution is

x̂ =
(
F T F

)−1
F T f

That is[
ĉ

d̂

]
=
[
(f 1,f 1) (f 1,f 2)
(f 2,f 1) (f 2,f 2)

]−1 [(f 1,f)
(f 2,f)

]

=
[
1 1

2
1
2

1
3

]−1 [1
6
1
7

]
=
[

4 −6
−6 12

] [
1
6
1
7

]
=
[
−4
21
5
7

]
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projection method
Find the projection directly
An orthogonal basis makes projection easy
Find an orthogonal basis from (non-orthogonal) {f 1,f 2}

q1 = f 1, b2 = f 2 − q1(q1,f 2) = t− 1
2

The projection is

p = q1(q1,f) + b2
(b2,f)
(b2, b2)

= 1
∫ 1

0
(t5)(1)dt+

(
t− 1

2

) ∫ 1
0 (t5)

(
t− 1

2

)
dt∫ 1

0

(
t− 1

2

) (
t− 1

2

)
dt

= 1
6 +

1
7 −

1
12

1
3 −

1
2 + 1

4

(
t− 1

2

)
= − 4

21 + 5
7t
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