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Over-determined System of Linear Equations
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Definition (over-determined systems)
A system of linear equations is over-determined if there are
more equations than unknowns.

For an over-determined system of linear equations

a11 x1 + · · ·+ a1n xn = b1
...
...
...

am1 x1 + · · ·+ amn xn = bm

we have m > n.
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Theorem (solving an over-determined system)
Let Ax = b be an over-determined system of linear equations.
Suppose the columns of A are linearly independent. Exactly
one of the following must be true.

1 Unique solution
2 No solution
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from elimination to minimization
Let L be an over-determined system of linear equations.

Elimination is often not good for solving L
Minimization always works

Let Ax = b be an over-determined system of linear equations
with m equations and n unknowns, and the rank of A be r.

Elimination produces m− r equations with 0 left sides.
If any equation with 0 left side has a non-zero right side,
a solution does not exist.
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Definition (least-squares solution)
Let L : Ax = b be an over-determined system of linear equa-
tions. The sum of squared errors of L is

E(x) =
m∑

i=1
(ai1x1 + · · ·+ ainxn − bi)2

A least-squares solution of L, denoted by x̂, minimizes E(x)

x̂ = arg min
x

E(x)

If there exists an exact solution x0 of L, then x0 must be a
least-squares solution of L since E(x0) = 0 and

E(x) ≥ 0 = E(x0)

Chen P Over-determined Systems & Orthogonality



8/75

Inner Product
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Definition (inner product)
Let V be a vector space and u,v be vectors of V. An inner
product of u and v, denoted by (u,v), is a scalar function with
the following properties.

Non-negativity

(u,u) ≥ 0, (u,u) = 0 ⇒ u = 0

Linearity

(u + v,w) = (u,w) + (v,w), (u, cv) = c(u,v)

The dot product defined by

(x,y) =
n∑

i=1
xiyi

is an inner product.
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Definition (orthogonal vectors)
Let V be a vector space and u,v be vectors of V. Then u and
v are orthogonal if and only if (u,v) = 0.

That u and v are orthogonal is denoted by

u ⊥ v
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Definition (length and distance)
Let V be a vector space and x,y be vectors of V.

The length of x is

‖x‖ = (x,x) 1
2 or equivalently ‖x‖2 = (x,x)

The distance between x and y is

‖x− y‖
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Example (length of vector)
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Theorem (Pythagoras theorem)
Let x and y be vectors of R2 and x ⊥ y. Then

‖x‖2 + ‖y‖2 = ‖x− y‖2

We have

x ⊥ y ⇔ (x,y) = 0 ⇔ x1y1 + x2y2 = 0

⇔ (x2
1 + x2

2) + (y2
1 + y2

2) = (x1 − y1)2 + (x2 − y2)2

⇔ ‖x‖2 + ‖y‖2 = ‖x− y‖2

Chen P Over-determined Systems & Orthogonality



14/75

Example (Pythagoras)
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Orthogonal Sets and Spaces
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Definition (orthogonal sets)
Let U and W be sets of vectors of space V. U and W are
orthogonal sets if every vector of U is orthogonal to every vector
of W .

Examples

{[0 0 1]T} ⊥ {[1 0 0]T , [0 1 0]T}
{[1 0 0]T} ⊥ {[0 1 0]T}

{[1 0 0]T , [0 0 1]T} 6⊥ {[0 1 0]T , [0 0 1]T}

orthogonal spanning sets
orthogonal bases
orthogonal subspaces
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Lemma (orthogonal fundamental subspaces)
Let A be a matrix of order m× n.

Row space is orthogonal to nullspace

N(A) ⊥ C
(
AT

)
Column space is orthogonal to left nullspace

N(AT ) ⊥ C (A)

x ∈ N(A) ⇒ Ax = 0 ⇒ ai:x = 0, ∀i

⇒
(
x,aT

i:

)
= 0, ∀i ⇒

(
x,
∑

i

cia
T
i:

)
= 0, ∀ci

⇒ x ⊥
(∑

i

cia
T
i:

)
, ∀ci ⇒ x ⊥ C

(
AT

)
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just a spanning set
Let U and W be sets of vectors of space V.

Suppose U is a subspace. W ⊥ U if and only if W is
orthogonal to a spanning set (e.g. a basis) of U .
Suppose both U andW are subspaces. W ⊥ U if and only
if spanning sets of W and U are orthogonal.

Suppose
dimU = 3, dimW = 2

It suffices to check 3 basis vectors (instead of every vector) of
U against 2 basis vectors of W .
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Example (orthogonal subspaces)
X the z axis and the x–y plane
X the x axis and the y axis
× the x–z plane and the y–z plane
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Lemma (orthogonal ⇒ linearly independent)
Let U = {v1, . . . ,vn} be a set of non-zero vectors that are
mutually orthogonal. Then U is linearly independent.

Proof.

Suppose
n∑

i=1
civi = 0. For any j

(
vj,

n∑
i=1

civi

)
= 0 ⇒

n∑
i=1

ci (vj,vi) = 0

⇒ cj (vj,vj) = 0
⇒ cj = 0

So U is linearly independent.
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Definition (orthogonal complement)
Let S be a subspace of space V. The orthogonal complement
of S is the set of all vectors orthogonal to S.

Notation for orthogonal complement

S⊥ = {v | v ⊥ S}

Orthogonal complement is maximal. For any T ⊥ S

v ∈ T ⇒ v ⊥ S ⇒ v ∈ S⊥

so
T ⊂ S⊥
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an orthogonal complement is a subspace
Let S be a subspace of space V. S⊥ is a subspace of V.

Proof.
For any u ∈ S, scalars c1, c2 and v1,v2 ∈ S⊥

(u, c1v1 + c2v2) = c1(u,v1) + c2(u,v2) = 0

⇒ (c1v1 + c2v2) ⊥ S

⇒ c1v1 + c2v2 ∈ S⊥

Thus S⊥ is a subspace.
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Theorem (fundamental theorem part ii)
Let A be a matrix of order m× n.

Nullspace is the orthogonal complement of row space(
C
(
AT

))⊥
= N(A)

Left nullspace is the orthogonal complement of column
space

(C (A))⊥ = N(AT )

v ∈
(
C
(
AT

))⊥
⇔ v ⊥ C

(
AT

)
⇔ v ⊥ aT

i: , ∀i
⇔ ai:v = 0, ∀i
⇔ Av = 0
⇔ v ∈ N(A)
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Theorem (sum of dimensions)
Let S be a subspace of V.

dim S + dim S⊥ = dimV

Proof.
Let dim S = r, dim S⊥ = k, dimV = n. Let B = {v1, . . . ,vr}
be a basis of S, and B′ = {v′1, . . . ,v′k} be a basis of S⊥.

1 B ∪ B′ is a linearly independent set of V, so r + k ≤ n

2 Augment B a basis of V, say {v1, . . . ,vr,vr+1, . . . ,vn},
and ensure vj ⊥ span(v1, . . . ,vj−1) for j = r + 1, . . . , n.
Let W = span({vr+1, . . . ,vn}). Then dimW = n− r.

W ⊥ S ⇒ W ⊂ S⊥ ⇒ dimW ≤ dim S⊥ ⇒ n− r ≤ k

⇒ r + k ≥ n

Hence r + k = n.
Chen P Over-determined Systems & Orthogonality
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Example (sum of dimensions)
Let A be a matrix of order m× n with rank r.

We have
N(A) = C

(
AT

)⊥
We also have

dimC
(
AT

)
+ dimN(A) = r + (n− r) = n

Thus

dimC
(
AT

)
+ dimC

(
AT

)⊥
= dimRn
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Projection
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Definition (projection as the closest point)
Let V be a space, b be a vector of V, and S be a subspace of V.
The projection of b to S is the vector p ∈ S with the shortest
distance to b

p = arg min
v∈S

‖b− v‖

Projection minimizes the length of error vector

e = b− v

Note
min
v∈S
‖b− v‖2 6= min

v∈S
‖b− v‖

arg min
v∈S

‖b− v‖2 = arg min
v∈S

‖b− v‖

Dealing with ‖b− v‖2 is easier than ‖b− v‖.
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30/75

min and arg min
Let f(x) be a (multi-variate) function of x.

The minimum value of f(x) is denoted by

min
x
f(x)

A value of x that minimizes f(x) is denoted by

arg min
x

f(x)

Let f ∗ = min
x
f(x) and x∗ = arg min

x
f(x).

f(x∗) = f ∗

Chen P Over-determined Systems & Orthogonality
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orthogonality condition of projection
Let p be the projection of b to S.

We have
(b− p) ⊥ S

In particular, since p ∈ S, we have

(b− p) ⊥ p

Chen P Over-determined Systems & Orthogonality
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projection to a vector and projection matrix
Let a and b be vectors of space V.

The projection of b to a is

p = aT b

aT a
a

Projection is left multiplication by a projection matrix

p = a
aT b

aT a
= aaT

aT a
b = P b

where
P = aaT

aT a
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Proof.
Let p = ax. By the orthogonality condition

(p, b− p) = 0⇒ aT (b− ax) = 0
⇒ (aT a)x = aT b

⇒ x = aT b

aT a

Hence
p = ax

= a
aT b

aT a
= P b
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Note that
Op = aT b

‖a‖

Chen P Over-determined Systems & Orthogonality



36/75

Least-squares Solution of Over-determined System
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squared errors and least-squares solution
Let Ax = b be a system of m equations and n unknowns.

Error of equation i

(ai:x− bi)

Sum of squared errors

E(x) =
m∑

i=1
(ai:x− bi)2

Least-squares solution

x̂ = arg min
x

E(x)

Note
E(x) = ‖Ax− b‖2
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Example (least-squares solution)
Consider {

x = 2
2x = 3

Re-write it as {
x− 2 = 0

2x− 3 = 0

An x incurs an error of (x−2) for the first equation and (2x−3)
for the second equation. Hence, a least-squares solution is

x̂ = arg min
x

E(x)

= arg min
x

(
(x− 2)2 + (2x− 3)2

)
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Example (2 equations and 1 unknown)
Let ax = b be an over-determined system with 2 equations and
1 unknown

L :
{
a1x = b1
a2x = b2

The sum of squared errors is

E(x) = (a1x− b1)2 + (a2x− b2)2

A least-squares solution minimizes E(x). By calculus

x̂ = arg min
x

E(x) ⇒ dE(x)
dx

∣∣∣∣∣
x=x̂

= 0

⇒ 2[(a1x̂− b1)a1 + (a2x̂− b2)a2] = 0 ⇒ x̂ = a1b1 + a2b2

a2
1 + a2

2
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Lemma (least-squares = projection)
Let a and b be vectors in space V. Let x̂ be the least-squares
solution of ax = b and p be the projection of b to a.

p = ax̂

Proof.
x̂ = arg min

x
‖ax− b‖2 = arg min

x
‖b− ax‖2

⇒ ax̂ = arg min
v=ax

‖b− v‖2

Also
p = arg min

v∈span(a)
‖b− v‖2 = arg min

v=ax
‖b− v‖2

Hence
p = ax̂
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Example (2 equations and 1 unknown)
The least-squares solution of ax = b is

x̂ = a1b1 + a2b2

a2
1 + a2

2
= aT b

aT a

The projection of b to a is

p = P b = aaT

aT a
b = a

aT b

aT a

Hence
p = ax̂

Chen P Over-determined Systems & Orthogonality
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Theorem (least-squares solution and projection)
Let x̂ be a least-squares solution of Ax = b and p be the
projection of b to C(A).

p = Ax̂

Proof.

x̂ = arg min
x
‖Ax− b‖2 = arg min

x
‖b−Ax‖2

⇒ Ax̂ = arg min
v=Ax

‖b− v‖2

Also
p = arg min

v∈C(A)
‖b− v‖2 = arg min

v=Ax
‖b− v‖2

Hence p = Ax̂.

Chen P Over-determined Systems & Orthogonality
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Theorem (normal equation)
Let x̂ be a least-squares solution of Ax = b.

AT Ax̂ = AT b

Proof.
The projection of b to C(A) is Ax̂. It follows that the error
vector (b−Ax̂) is orthogonal to C(A).

(b−Ax̂) ⊥ C(A) ⇒ (b−Ax̂) ⊥ ai, ∀i
⇒ aT

i (b−Ax̂) = 0, ∀i
⇒ AT (b−Ax̂) = 0
⇒ AT Ax̂ = AT b

Chen P Over-determined Systems & Orthogonality
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unique least-squares solution
Let A be a matrix of order m × n with linearly independent
columns and m > n. Ax = b has unique least-squares solution

x̂ =
(
AT A

)−1
AT b

Proof.

Ax = 0⇒ AT Ax = 0⇒ xT AT Ax = 0⇒ Ax = 0

So N(AT A) = N(A) and dimN(AT A) = dimN(A) = 0.
Thus rank(AT A) = n and

(
AT A

)
is invertible. Hence the

normal equation AT Ax̂ = AT b has unique solution

x̂ =
(
AT A

)−1
AT b

Chen P Over-determined Systems & Orthogonality
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Example (unique least-squares solution)
Find a least-squares solution of an over-determined system of
linear equations Ax = b, where

A =

1 2
1 3
0 0

 , b =

4
5
6



x̂ =
(
AT A

)−1
AT b =

[
13 −5
−5 2

] [
1 1 0
2 3 0

] 4
5
6

 =
[
2
1

]
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Theorem (projection to column space)
Let A be a matrix with linearly independent columns.

The projection of any b to column space C(A) is

p = A
(
AT A

)−1
AT b

The projection matrix is

P = A
(
AT A

)−1
AT

The least-squares solution of Ax = b is

x̂ =
(
AT A

)−1
AT b

The projection of b to C(A) is

p = Ax̂ = A
(
AT A

)−1
AT︸ ︷︷ ︸

projection matrix

b

Chen P Over-determined Systems & Orthogonality
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Fitting Data

Chen P Over-determined Systems & Orthogonality



49/75

regression
Given a data set {(t1, y1), . . . , (tm, ym)}
Find a function ŷ = f(t) to fit the data set

For example, we may assume

ŷ = f(t) = c+ d t

The parameters c and d are decided by minimizing the error
between data and function, i.e. between yi and f(ti)

Chen P Over-determined Systems & Orthogonality
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linear fitting function
We assume

ŷ = f(t) = c+ d t

The difference (error) between yi and f(ti) is

yi − f(ti) = yi − (c+ d ti)

Ideally, we want c and d such that

yi = f(ti) = c+ d ti, i = 1, . . . ,m

We are solving a system of 2 unknowns (for the parameters
c and d) and m equations (for the data points)

Chen P Over-determined Systems & Orthogonality
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a system of linear equations
The equations to satisfy can be written as

1 t1
... ...
1 tm


[
c
d

]
=


y1
...
ym


It can be represented by Ax = b where

A =


1 t1
... ...
1 tm

 , x =
[
c
d

]
, b =


y1
...
ym
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solution by normal equation
Consider Ax = b arising from fitting a data set to a function.

Over-determined if the number of data points is more than
the number of parameters
Look for a least-squares solution

AT Ax̂ = AT b

For data {(t1, y1), . . . , (tm, ym)} and function f(t) = c+dt

[
1 . . . 1
t1 . . . tm

] 
1 t1
... ...
1 tm


[
ĉ

d̂

]
=
[

1 . . . 1
t1 . . . tm

] 
y1
...
ym



⇒

 m
m∑

i=1
ti

m∑
i=1

ti
m∑

i=1
t2i


[
ĉ

d̂

]
=


m∑

i=1
yi

m∑
i=1

tiyi
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Example (fitting a linear function)
Fit data set {(−1, 1), (1, 1), (2, 3)} to a linear function.

It leads to an over-determined system Ax = b where

A =

1 −1
1 1
1 2

 , x =
[
c
d

]
, b =

1
1
3


We have

AT A =
[
3 2
2 6

]
, AT b =

[
5
6

]
Thus, the least-squares solution is

x̂ =
[
ĉ

d̂

]
= (AT A)−1AT b =

[
9
7
4
7

]

Among all lines, f(t) = ĉ+ d̂t minimizes
m∑

i=1
(yi − f(ti))2.

Chen P Over-determined Systems & Orthogonality
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Orthonormal Basis
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Definition (orthonormal vectors)
A group of vectors are orthonormal if

the vectors are orthogonal
every vector is a unit vector (of length 1)

A set with orthonormal vectors is orthonormal
For an orthonormal set {q1, . . . , qn}

(qi, qj) = δij =

1, if i = j

0, otherwise

A basis with orthonormal vectors is orthonormal

Chen P Over-determined Systems & Orthogonality
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simplification with orthonormal vectors
Suppose A has linearly independent column vectors.

The projection matrix to C(A) is

P = A
(
AT A

)−1
AT

If the column vectors are orthonormal, we have
(
AT A

)
=

I and
P = AAT =

n∑
j=1

aja
T
j

Note
P =

n∑
j=1

P j

where P j = aja
T
j is the matrix for projection to aj.

Chen P Over-determined Systems & Orthogonality
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vector representation with orthonormal basis
Let Q = {q1, . . . , qn} be an orthonormal basis of space V. The
representation of a vector x ∈ V with Q is

[xQ] =


(q1,x)

...
(qn,x)


Proof.

Suppose x =
n∑

i=1
xiqi.

(qj,x) =
(

qj,
n∑

i=1
xiqi

)
=

n∑
i=1

xi

(
qj, qi

)
=

n∑
i=1

xiδij

= xj

Chen P Over-determined Systems & Orthogonality
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inner product with an orthonormal basis
Let Q = {q1, . . . , qn} be an orthonormal basis of space V.
The inner product of x and y of V is the dot product of the
representation of x and y with Q

(x,y) = [xQ]T [yQ]

Proof.

Suppose x =
n∑

i=1
xiqi and y =

n∑
j=1

yjqj.

(x,y) =
n∑

i=1

n∑
j=1

xiyj(qi, qj) =
n∑

i=1

n∑
j=1

xiyjδij =
n∑

i=1
xiyi

= [xQ]T [yQ]

Chen P Over-determined Systems & Orthogonality
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projection to a unit vector
Let q be a unit vector. The matrix for the projection to q is

P = qqT

Proof.
We have qT q = ‖q‖2 = 1, so

P = qqT

qT q
= qqT

Chen P Over-determined Systems & Orthogonality
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projection to column space: orthogonal matrix
Let Q be a matrix with orthonormal column vectors. The matrix
for the projection to C(Q) is

P = QQT

P = Q
(
QT Q

)−1
QT = QQT

Chen P Over-determined Systems & Orthogonality
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projection to a space with an orthonormal basis
Let {q1, . . . , qn} be an orthonormal basis of space V. Any
x ∈ V is the sum of the projections of x to the basis vectors
q1, . . . , qn.

Proof.
Let Q be the matrix with columns q1, . . . , qn. The projection
matrix to C(Q) = V is

P = QQT =
n∑

j=1
qjq

T
j

For any x ∈ V, we have

x = P x =
 n∑

j=1
qjq

T
j

x =
n∑

j=1
qj

(
qT

j x
)

Chen P Over-determined Systems & Orthogonality
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Gram-Schmidt process
G.-S. process converts a basis to an orthonormal one

{a1, . . . ,an} −→ {q1, . . . , qn}

For j = 1, . . . , n, do the following operations
projection of aj to span(q1, . . . , qj−1)

pj = q1(q1,aj) + · · ·+ qj−1(qj−1,aj)

normalization

bj = aj − pj 6= 0, qj = bj

‖bj‖

Note
span(q1, . . . , qj) = span(a1, . . . ,aj)

Chen P Over-determined Systems & Orthogonality



64/75
Chen P Over-determined Systems & Orthogonality



65/75

Example (Gram-Schmidt process)

a1 =

1
0
1

 , a2 =

1
0
0

 , a3 =

2
1
0



⇒ b1 = a1, q1 = b1

‖b1‖
=


1√
2

0
1√
2



b2 = a2 − q1(q1,a2) =


1
2
0
−1
2

 , q2 = b2

‖b2‖
=


1√
2

0
−1√

2


b3 = a3 − q1(q1,a3)− q2(q2,a3) =

0
1
0

 , q3 =

0
1
0
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Theorem (QR factorization)
Suppose A has linearly independent columns. Then A = QR,
where Q has orthonormal columns and R is right-triangular.

Proof.
Let the columns of A be a1, . . . ,an. Apply G.-S. to
{a1, . . . ,an} to get an orthonormal basis {q1, . . . , qn}.

aj =
n∑

i=1
qi(qi,aj), j = 1, . . . , n

Construct Q with columns q1, . . . , qn and R with elements
rij = (qi,aj) so A = QR. R is right-triangular since for i > j

qi ⊥ {q1, . . . , qj} ⇒ qi ⊥ aj ∈ span(q1, . . . , qj)
⇒ (qi,aj) = 0

Chen P Over-determined Systems & Orthogonality
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Example (QR factorization)

A =

1 1 2
0 0 1
1 0 0

 =


1√
2

1√
2 0

0 0 1
1√
2
−1√

2 0



√

2 1√
2

√
2

0 1√
2

√
2

0 0 1



A =

a1 a2 a3
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Function Approximation∗
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space of functions and an inner product
The set of real-valued functions is a space
We denote f(t) by f since it is a vector in a space
An inner product in this space is defined by

(f , g) =
∫

I
f(t)g(t)dt

Two functions are orthogonal if

(f , g) =
∫

I
f(t)g(t)dt = 0

The length of a function is defined by

‖f‖2 = (f ,f) =
∫

I
f 2(t)dt
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function approximation by polynomial
Consider the function approximation problem

f(t) .= c0 + c1t+ c2t
2

Denote f = f(t), f 1 = 1, f 2 = t, f 3 = t2. We have

f
.= c0f 1 + c1f 2 + c2f 3

In matrix and vectors
F︷ ︸︸ ︷f 1 f 2 f 3


x︷ ︸︸ ︷c0
c1
c2

 .= f

This is an over-determined system of linear equations
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normal equation and least-squares solution
The over-determined system is

F x = f

The normal equation is

F T F x̂ = F T f

That is(f 1,f 1) (f 1,f 2) (f 1,f 3)
(f 2,f 1) (f 2,f 2) (f 2,f 3)
(f 3,f 1) (f 3,f 2) (f 3,f 3)


ĉ0
ĉ1
ĉ2

 =

(f 1,f)
(f 2,f)
(f 3,f)


The least-squares solution is

x̂ =
(
F T F

)−1
F T f
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Example (function approximation)
Approximate f = t5 by p = c+ dt in the interval I = (0, 1).

Shortest distance

(ĉ, d̂) = arg min
(c,d)

‖f − p‖2

Over-determined system and least-squares solution

F x = f , i.e.

(f 1 = 1) (f 2 = t)

 [c
d

]
= (f = t5)

Projection
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shortest distance
The distance between f and p is ‖f − p‖

‖f − p‖2 =
∫ 1

0
(t5 − c− dt)2dt

=
∫ 1

0
(t10 + c2 + d2t2 − 2ct5 − 2dt6 + 2cdt)dt

= 1
11 + c2 + 1

3d
2 − 1

3c−
2
7d+ cd

At the shortest distance, the partial derivatives are zero
2ĉ+ d̂ = 1

3
ĉ+ 2

3 d̂ = 2
7

⇒ ĉ = − 4
21 , d̂ = 5

7
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over-determined system and solution
The over-determined system is

F x = f

The least-squares solution is

x̂ =
(
F T F

)−1
F T f

That is[
ĉ

d̂

]
=
[
(f 1,f 1) (f 1,f 2)
(f 2,f 1) (f 2,f 2)

]−1 [(f 1,f)
(f 2,f)

]

=
[
1 1

2
1
2

1
3

]−1 [1
6
1
7

]
=
[

4 −6
−6 12

] [
1
6
1
7

]
=
[
−4
21
5
7

]
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projection method
Find the projection directly
An orthogonal basis makes projection easy
Find an orthogonal basis from (non-orthogonal) {f 1,f 2}

q1 = f 1, b2 = f 2 − q1(q1,f 2) = t− 1
2

The projection is

p = q1(q1,f) + b2
(b2,f)
(b2, b2)

= 1
∫ 1

0
(t5)(1)dt+

(
t− 1

2

) ∫ 1
0 (t5)

(
t− 1

2

)
dt∫ 1

0

(
t− 1

2

) (
t− 1

2

)
dt

= 1
6 +

1
7 −

1
12

1
3 −

1
2 + 1

4

(
t− 1

2

)
= − 4

21 + 5
7t
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