# Orthogonality 

Chia-Ping Chen

Professor<br>Department of Computer Science and Engineering<br>National Sun Yat-sen University

Linear Algebra

## Outline

- Over-determined System $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$
- Inner Product ( $\boldsymbol{u}, \boldsymbol{v}$ )
- Vector Length $\|\boldsymbol{v}\|$
- Orthogonality $\boldsymbol{u} \perp \boldsymbol{v}$
- Orthogonal Complement $\mathbb{S}^{\perp}$
- Orthogonality of Fundamental Subspaces
- Projection
- Gram-Schmidt Process
- Function Approximation*


# Over-determined System of Linear Equations 

## DEFINITION (OVER-DETERMINED SYSTEMS)

A system of linear equations is over-determined if there are more equations than unknowns.

For an over-determined system of linear equations

we have $m>n$.

THEOREM (SOLVING AN OVER-DETERMINED SYSTEM)
Let $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ be an over-determined system of linear equations. Suppose the columns of $\boldsymbol{A}$ are linearly independent. Exactly one of the following must be true.
(1) Unique solution
(2) No solution

## FROM ELIMINATION TO MINIMIZATION

Let $\mathcal{L}$ be an over-determined system of linear equations.

- Elimination is often not good for solving $\mathcal{L}$
- Minimization always works

Let $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ be an over-determined system of linear equations with $m$ equations and $n$ unknowns, and the rank of $\boldsymbol{A}$ be $r$.

- Elimination produces $m-r$ equations with 0 left sides.
- If any equation with 0 left side has a non-zero right side, a solution does not exist.


## DEFINITION (LEAST-SQUARES SOLUTION)

Let $\mathcal{L}: \boldsymbol{A x}=\boldsymbol{b}$ be an over-determined system of linear equations. The sum of squared errors of $\mathcal{L}$ is

$$
E(\boldsymbol{x})=\sum_{i=1}^{m}\left(a_{i 1} x_{1}+\cdots+a_{i n} x_{n}-b_{i}\right)^{2}
$$

A least-squares solution of $\mathcal{L}$, denoted by $\hat{\boldsymbol{x}}$, minimizes $E(\boldsymbol{x})$

$$
\hat{\boldsymbol{x}}=\underset{\boldsymbol{x}}{\arg \min } E(\boldsymbol{x})
$$

If there exists an exact solution $\boldsymbol{x}_{0}$ of $\mathcal{L}$, then $\boldsymbol{x}_{0}$ must be a least-squares solution of $\mathcal{L}$ since $E\left(\boldsymbol{x}_{0}\right)=0$ and

$$
E(\boldsymbol{x}) \geq 0=E\left(\boldsymbol{x}_{0}\right)
$$

## Inner Product

## DEFINITION (INNER PRODUCT)

Let $\mathbb{V}$ be a vector space and $\boldsymbol{u}, \boldsymbol{v}$ be vectors of $\mathbb{V}$. An inner product of $\boldsymbol{u}$ and $\boldsymbol{v}$, denoted by $(\boldsymbol{u}, \boldsymbol{v})$, is a scalar function with the following properties.

- Non-negativity

$$
(\boldsymbol{u}, \boldsymbol{u}) \geq 0,(\boldsymbol{u}, \boldsymbol{u})=0 \Rightarrow \boldsymbol{u}=\mathbf{0}
$$

- Linearity

$$
(\boldsymbol{u}+\boldsymbol{v}, \boldsymbol{w})=(\boldsymbol{u}, \boldsymbol{w})+(\boldsymbol{v}, \boldsymbol{w}),(\boldsymbol{u}, c \boldsymbol{v})=c(\boldsymbol{u}, \boldsymbol{v})
$$

The dot product defined by

$$
(\boldsymbol{x}, \boldsymbol{y})=\sum_{i=1}^{n} x_{i} y_{i}
$$

is an inner product.

DEFINITION (ORTHOGONAL VECTORS)
Let $\mathbb{V}$ be a vector space and $\boldsymbol{u}, \boldsymbol{v}$ be vectors of $\mathbb{V}$. Then $\boldsymbol{u}$ and $\boldsymbol{v}$ are orthogonal if and only if $(\boldsymbol{u}, \boldsymbol{v})=0$.

That $\boldsymbol{u}$ and $\boldsymbol{v}$ are orthogonal is denoted by

$$
\boldsymbol{u} \perp \boldsymbol{v}
$$

## DEFINITION (LENGTH AND DISTANCE)

Let $\mathbb{V}$ be a vector space and $\boldsymbol{x}, \boldsymbol{y}$ be vectors of $\mathbb{V}$.

- The length of $\boldsymbol{x}$ is

$$
\|\boldsymbol{x}\|=(\boldsymbol{x}, \boldsymbol{x})^{\frac{1}{2}} \text { or equivalently }\|\boldsymbol{x}\|^{2}=(\boldsymbol{x}, \boldsymbol{x})
$$

- The distance between $\boldsymbol{x}$ and $\boldsymbol{y}$ is

$$
\|\boldsymbol{x}-\boldsymbol{y}\|
$$

## ExAmple (LENGTH OF VECTOR)


(a)

$$
\begin{gathered}
\|x\|^{2}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \\
5=1^{2}+2^{2} \\
14=1^{2}+2^{2}+3^{2}
\end{gathered}
$$

$(1,0,0)$

(b)

Figure 3.1: The length of vectors $\left(x_{1}, x_{2}\right)$ and $\left(x_{1}, x_{2}, x_{3}\right)$.

## TheOrem (Pythagoras theorem)

Let $\boldsymbol{x}$ and $\boldsymbol{y}$ be vectors of $\mathbb{R}^{2}$ and $\boldsymbol{x} \perp \boldsymbol{y}$. Then

$$
\|\boldsymbol{x}\|^{2}+\|\boldsymbol{y}\|^{2}=\|\boldsymbol{x}-\boldsymbol{y}\|^{2}
$$

We have

$$
\begin{aligned}
\boldsymbol{x} \perp \boldsymbol{y} & \Leftrightarrow(\boldsymbol{x}, \boldsymbol{y})=0 \Leftrightarrow x_{1} y_{1}+x_{2} y_{2}=0 \\
& \Leftrightarrow\left(x_{1}^{2}+x_{2}^{2}\right)+\left(y_{1}^{2}+y_{2}^{2}\right)=\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2} \\
& \Leftrightarrow\|\boldsymbol{x}\|^{2}+\|\boldsymbol{y}\|^{2}=\|\boldsymbol{x}-\boldsymbol{y}\|^{2}
\end{aligned}
$$

## EXAMPLE (PYTHAGORAS)



Figure 3.2: A right triangle with $5+20=25$. Dotted angle $100^{\circ}$, dashed angle $30^{\circ}$.

# Orthogonal Sets and Spaces 

## DEFINITION (ORTHOGONAL SETS)

Let $\mathcal{U}$ and $\mathcal{W}$ be sets of vectors of space $\mathbb{V} . \mathcal{U}$ and $\mathcal{W}$ are orthogonal sets if every vector of $\mathcal{U}$ is orthogonal to every vector of $\mathcal{W}$.

Examples

$$
\begin{aligned}
\left\{\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]^{T}\right\} & \perp\left\{\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]^{T},\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right]^{T}\right\} \\
\left\{\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]^{T}\right\} & \perp\left\{\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right]^{T}\right\} \\
\left\{\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]^{T},\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]^{T}\right\} & \not \perp\left\{\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right]^{T},\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]^{T}\right\}
\end{aligned}
$$

- orthogonal spanning sets
- orthogonal bases
- orthogonal subspaces


## LEMMA (ORTHOGONAL FUNDAMENTAL SUBSPACES)

Let $\boldsymbol{A}$ be a matrix of order $m \times n$.

- Row space is orthogonal to nullspace

$$
\mathbb{N}(\boldsymbol{A}) \perp \mathbb{C}\left(\boldsymbol{A}^{T}\right)
$$

- Column space is orthogonal to left nullspace

$$
\mathbb{N}\left(\boldsymbol{A}^{T}\right) \perp \mathbb{C}(\boldsymbol{A})
$$

$$
\begin{aligned}
\boldsymbol{x} \in \mathbb{N}(\boldsymbol{A}) & \Rightarrow \boldsymbol{A} \boldsymbol{x}=\mathbf{0} \Rightarrow \boldsymbol{a}_{i:} \boldsymbol{x}=0, \forall i \\
& \Rightarrow\left(\boldsymbol{x}, \boldsymbol{a}_{i:}^{T}\right)=0, \forall i \Rightarrow\left(\boldsymbol{x}, \sum_{i} c_{i} \boldsymbol{a}_{i:}^{T}\right)=0, \forall c_{i} \\
& \Rightarrow \boldsymbol{x} \perp\left(\sum_{i} c_{i} \boldsymbol{a}_{i:}^{T}\right), \forall c_{i} \Rightarrow \boldsymbol{x} \perp \mathbb{C}\left(\boldsymbol{A}^{T}\right)
\end{aligned}
$$

## JUST A SPANNING SET

Let $\mathcal{U}$ and $\mathcal{W}$ be sets of vectors of space $\mathbb{V}$.

- Suppose $\mathcal{U}$ is a subspace. $\mathcal{W} \perp \mathcal{U}$ if and only if $\mathcal{W}$ is orthogonal to a spanning set (e.g. a basis) of $\mathcal{U}$.
- Suppose both $\mathcal{U}$ and $\mathcal{W}$ are subspaces. $\mathcal{W} \perp \mathcal{U}$ if and only if spanning sets of $\mathcal{W}$ and $\mathcal{U}$ are orthogonal.

Suppose

$$
\operatorname{dim} \mathcal{U}=3, \operatorname{dim} \mathcal{W}=2
$$

It suffices to check 3 basis vectors (instead of every vector) of $\mathcal{U}$ against 2 basis vectors of $\mathcal{W}$.

## EXAMPLE (ORTHOGONAL SUBSPACES)

$\checkmark$ the $z$ axis and the $x-y$ plane
$\checkmark$ the $x$ axis and the $y$ axis
$\times$ the $x-z$ plane and the $y-z$ plane

## LEMMA (ORTHOGONAL $\Rightarrow$ LINEARLY INDEPENDENT)

Let $\mathcal{U}=\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right\}$ be a set of non-zero vectors that are mutually orthogonal. Then $\mathcal{U}$ is linearly independent.

## Proof.

Suppose $\sum_{i=1}^{n} c_{i} \boldsymbol{v}_{i}=\mathbf{0}$. For any $j$

$$
\begin{aligned}
\left(\boldsymbol{v}_{j}, \sum_{i=1}^{n} c_{i} \boldsymbol{v}_{i}\right)=0 & \Rightarrow \sum_{i=1}^{n} c_{i}\left(\boldsymbol{v}_{j}, \boldsymbol{v}_{i}\right)=0 \\
& \Rightarrow c_{j}\left(\boldsymbol{v}_{j}, \boldsymbol{v}_{j}\right)=0 \\
& \Rightarrow c_{j}=0
\end{aligned}
$$

So $\mathcal{U}$ is linearly independent.

## DEFINITION (ORTHOGONAL COMPLEMENT)

Let $\mathbb{S}$ be a subspace of space $\mathbb{V}$. The orthogonal complement of $\mathbb{S}$ is the set of all vectors orthogonal to $\mathbb{S}$.

- Notation for orthogonal complement

$$
\mathbb{S}^{\perp}=\{\boldsymbol{v} \mid \boldsymbol{v} \perp \mathbb{S}\}
$$

- Orthogonal complement is maximal. For any $\mathbb{T} \perp \mathbb{S}$

$$
\boldsymbol{v} \in \mathbb{T} \Rightarrow \boldsymbol{v} \perp \mathbb{S} \Rightarrow \boldsymbol{v} \in \mathbb{S}^{\perp}
$$

SO

$$
\mathbb{T} \subset \mathbb{S}^{\perp}
$$

## AN ORTHOGONAL COMPLEMENT IS A SUBSPACE

Let $\mathbb{S}$ be a subspace of space $\mathbb{V}$. $\mathbb{S}^{\perp}$ is a subspace of $\mathbb{V}$.

## Proof.

For any $\boldsymbol{u} \in \mathbb{S}$, scalars $c_{1}, c_{2}$ and $\boldsymbol{v}_{1}, \boldsymbol{v}_{2} \in \mathbb{S}^{\perp}$

$$
\begin{gathered}
\left(\boldsymbol{u}, c_{1} \boldsymbol{v}_{1}+c_{2} \boldsymbol{v}_{2}\right)=c_{1}\left(\boldsymbol{u}, \boldsymbol{v}_{1}\right)+c_{2}\left(\boldsymbol{u}, \boldsymbol{v}_{2}\right)=0 \\
\Rightarrow\left(c_{1} \boldsymbol{v}_{1}+c_{2} \boldsymbol{v}_{2}\right) \perp \mathbb{S} \\
\Rightarrow c_{1} \boldsymbol{v}_{1}+c_{2} \boldsymbol{v}_{2} \in \mathbb{S}^{\perp}
\end{gathered}
$$

Thus $\mathbb{S}^{\perp}$ is a subspace.


Figure 3.3: Orthogonal complements in $\mathbf{R}^{3}$ : a plane and a line (not two lines).

## THEOREM (FUNDAMENTAL THEOREM PART II)

Let $\boldsymbol{A}$ be a matrix of order $m \times n$.

- Nullspace is the orthogonal complement of row space

$$
\left(\mathbb{C}\left(\boldsymbol{A}^{T}\right)\right)^{\perp}=\mathbb{N}(\boldsymbol{A})
$$

- Left nullspace is the orthogonal complement of column space

$$
(\mathbb{C}(\boldsymbol{A}))^{\perp}=\mathbb{N}\left(\boldsymbol{A}^{T}\right)
$$

$$
\begin{aligned}
\boldsymbol{v} \in\left(\mathbb{C}\left(\boldsymbol{A}^{T}\right)\right)^{\perp} & \Leftrightarrow \boldsymbol{v} \perp \mathbb{C}\left(\boldsymbol{A}^{T}\right) \Leftrightarrow \boldsymbol{v} \perp \boldsymbol{a}_{i:}^{T}, \forall i \\
& \Leftrightarrow \boldsymbol{a}_{i:} \boldsymbol{v}=0, \forall i \\
& \Leftrightarrow \boldsymbol{A} \boldsymbol{v}=\mathbf{0} \\
& \Leftrightarrow \boldsymbol{v} \in \mathbb{N}(\boldsymbol{A})
\end{aligned}
$$

## Theorem (sum of dimensions)

Let $\mathbb{S}$ be a subspace of $\mathbb{V}$.

$$
\operatorname{dim} \mathbb{S}+\operatorname{dim} \mathbb{S}^{\perp}=\operatorname{dim} \mathbb{V}
$$

## Proof.

Let $\operatorname{dim} \mathbb{S}=r, \operatorname{dim} \mathbb{S}^{\perp}=k, \operatorname{dim} \mathbb{V}=n$. Let $\mathcal{B}=\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{r}\right\}$ be a basis of $\mathbb{S}$, and $\mathcal{B}^{\prime}=\left\{\boldsymbol{v}_{1}^{\prime}, \ldots, \boldsymbol{v}_{k}^{\prime}\right\}$ be a basis of $\mathbb{S}^{\perp}$.
(1) $\mathcal{B} \cup \mathcal{B}^{\prime}$ is a linearly independent set of $\mathbb{V}$, so $r+k \leq n$
(2) Augment $\mathcal{B}$ a basis of $\mathbb{V}$, say $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{r}, \boldsymbol{v}_{r+1}, \ldots, \boldsymbol{v}_{n}\right\}$, and ensure $\boldsymbol{v}_{j} \perp \operatorname{span}\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{j-1}\right)$ for $j=r+1, \ldots, n$. Let $\mathbb{W}=\boldsymbol{\operatorname { s p a n }}\left(\left\{\boldsymbol{v}_{r+1}, \ldots, \boldsymbol{v}_{n}\right\}\right)$. Then $\boldsymbol{\operatorname { d i m }} \mathbb{W}=n-r$.

$$
\begin{aligned}
\mathbb{W} \perp \mathbb{S} & \Rightarrow \mathbb{W} \subset \mathbb{S}^{\perp} \Rightarrow \operatorname{dim} \mathbb{W} \leq \operatorname{dim} \mathbb{S}^{\perp} \Rightarrow n-r \leq k \\
& \Rightarrow r+k \geq n
\end{aligned}
$$

Hence $r+k=n$.

## EXAMPLE (SUM OF DIMENSIONS)

Let $\boldsymbol{A}$ be a matrix of order $m \times n$ with rank $r$.

- We have

$$
\mathbb{N}(\boldsymbol{A})=\mathbb{C}\left(\boldsymbol{A}^{T}\right)^{\perp}
$$

- We also have

$$
\operatorname{dim} \mathbb{C}\left(\boldsymbol{A}^{T}\right)+\operatorname{dim} \mathbb{N}(\boldsymbol{A})=r+(n-r)=n
$$

- Thus

$$
\operatorname{dim} \mathbb{C}\left(\boldsymbol{A}^{T}\right)+\operatorname{dim} \mathbb{C}\left(\boldsymbol{A}^{T}\right)^{\perp}=\operatorname{dim} \mathbb{R}^{n}
$$



Figure 3.4: The true action $A x=A\left(x_{\text {row }}+x_{\text {null }}\right)$ of any $m$ by $n$ matrix.

## Projection

## DEFINITION (PROJECTION AS THE CLOSEST POINT)

Let $\mathbb{V}$ be a space, $\boldsymbol{b}$ be a vector of $\mathbb{V}$, and $\mathbb{S}$ be a subspace of $\mathbb{V}$. The projection of $\boldsymbol{b}$ to $\mathbb{S}$ is the vector $\boldsymbol{p} \in \mathbb{S}$ with the shortest distance to $\boldsymbol{b}$

$$
\boldsymbol{p}=\underset{\boldsymbol{v} \in \mathbb{S}}{\arg \min }\|\boldsymbol{b}-\boldsymbol{v}\|
$$

- Projection minimizes the length of error vector

$$
e=b-v
$$

- Note

$$
\begin{gathered}
\min _{\boldsymbol{v} \in \mathbb{S}}\|\boldsymbol{b}-\boldsymbol{v}\|^{2} \neq \min _{\boldsymbol{v} \in \mathbb{S}}\|\boldsymbol{b}-\boldsymbol{v}\| \\
\underset{\boldsymbol{v} \in \mathbb{S}}{\arg \min }\|\boldsymbol{b}-\boldsymbol{v}\|^{2}=\underset{\boldsymbol{v} \in \mathbb{S}}{\arg \min }\|\boldsymbol{b}-\boldsymbol{v}\|
\end{gathered}
$$

- Dealing with $\|\boldsymbol{b}-\boldsymbol{v}\|^{2}$ is easier than $\|\boldsymbol{b}-\boldsymbol{v}\|$.


## min AND $\arg \min$

Let $f(\boldsymbol{x})$ be a (multi-variate) function of $\boldsymbol{x}$.

- The minimum value of $f(\boldsymbol{x})$ is denoted by

$$
\min _{\boldsymbol{x}} f(\boldsymbol{x})
$$

- A value of $\boldsymbol{x}$ that minimizes $f(\boldsymbol{x})$ is denoted by

$$
\underset{\boldsymbol{x}}{\arg \min } f(\boldsymbol{x})
$$

- Let $f^{*}=\min _{\boldsymbol{x}} f(\boldsymbol{x})$ and $\boldsymbol{x}^{*}=\underset{\boldsymbol{x}}{\arg \min } f(\boldsymbol{x})$.

$$
f\left(\boldsymbol{x}^{*}\right)=f^{*}
$$



Figure 3.5: The projection $p$ is the point (on the line through $a$ ) closest to $b$.

## ORTHOGONALITY CONDITION OF PROJECTION

Let $\boldsymbol{p}$ be the projection of $\boldsymbol{b}$ to $\mathbb{S}$.

- We have

$$
(b-p) \perp \mathbb{S}
$$

- In particular, since $\boldsymbol{p} \in \mathbb{S}$, we have

$$
(b-p) \perp p
$$

## PROJECTION TO A VECTOR AND PROJECTION MATRIX

Let $\boldsymbol{a}$ and $\boldsymbol{b}$ be vectors of space $\mathbb{V}$.

- The projection of $\boldsymbol{b}$ to $\boldsymbol{a}$ is

$$
\boldsymbol{p}=\frac{\boldsymbol{a}^{T} \boldsymbol{b}}{\boldsymbol{a}^{T} \boldsymbol{a}} \boldsymbol{a}
$$

- Projection is left multiplication by a projection matrix

$$
\boldsymbol{p}=\boldsymbol{a} \frac{\boldsymbol{a}^{T} \boldsymbol{b}}{\boldsymbol{a}^{T} \boldsymbol{a}}=\frac{\boldsymbol{a} \boldsymbol{a}^{T}}{\boldsymbol{a}^{T} \boldsymbol{a}} \boldsymbol{b}=\boldsymbol{P} \boldsymbol{b}
$$

where

$$
\boldsymbol{P}=\frac{\boldsymbol{a} \boldsymbol{a}^{T}}{\boldsymbol{a}^{T} \boldsymbol{a}}
$$

## Proof.

Let $\boldsymbol{p}=\boldsymbol{a} x$. By the orthogonality condition

$$
\begin{aligned}
(\boldsymbol{p}, \boldsymbol{b}-\boldsymbol{p})=0 & \Rightarrow \boldsymbol{a}^{T}(\boldsymbol{b}-\boldsymbol{a} x)=0 \\
& \Rightarrow\left(\boldsymbol{a}^{T} \boldsymbol{a}\right) x=\boldsymbol{a}^{T} \boldsymbol{b} \\
& \Rightarrow x=\frac{\boldsymbol{a}^{T} \boldsymbol{b}}{\boldsymbol{a}^{T} \boldsymbol{a}}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\boldsymbol{p} & =\boldsymbol{a} x \\
& =\boldsymbol{a} \frac{\boldsymbol{a}^{T} \boldsymbol{b}}{\boldsymbol{a}^{T} \boldsymbol{a}} \\
& =\boldsymbol{P} \boldsymbol{b}
\end{aligned}
$$



Figure 3.7: The projection $p$ of $b$ onto $a$, with $\cos \theta=\frac{O p}{O b}=\frac{a^{\mathrm{T}} b}{\|a\|\|b\|}$.

Note that

$$
O p=\frac{\boldsymbol{a}^{T} \boldsymbol{b}}{\|\boldsymbol{a}\|}
$$

# Least-squares Solution of Over-determined System 

## SQUARED ERRORS AND LEAST-SQUARES SOLUTION

Let $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ be a system of $m$ equations and $n$ unknowns.

- Error of equation $i$

$$
\left(\boldsymbol{a}_{i:} \boldsymbol{x}-b_{i}\right)
$$

- Sum of squared errors

$$
E(\boldsymbol{x})=\sum_{i=1}^{m}\left(\boldsymbol{a}_{i:} \boldsymbol{x}-b_{i}\right)^{2}
$$

- Least-squares solution

$$
\hat{\boldsymbol{x}}=\underset{\boldsymbol{x}}{\arg \min } E(\boldsymbol{x})
$$

Note

$$
E(\boldsymbol{x})=\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|^{2}
$$

## EXAMPLE (LEAST-SQUARES SOLUTION)

Consider

$$
\left\{\begin{aligned}
x & =2 \\
2 x & =3
\end{aligned}\right.
$$

Re-write it as

$$
\left\{\begin{array}{r}
x-2=0 \\
2 x-3=0
\end{array}\right.
$$

An $x$ incurs an error of $(x-2)$ for the first equation and $(2 x-3)$ for the second equation. Hence, a least-squares solution is

$$
\begin{aligned}
\hat{x} & =\underset{x}{\arg \min } E(x) \\
& =\underset{x}{\arg \min }\left((x-2)^{2}+(2 x-3)^{2}\right)
\end{aligned}
$$

## EXAMPLE ( 2 EQUATIONS AND 1 UNKNOWN)

Let $\boldsymbol{a} x=\boldsymbol{b}$ be an over-determined system with 2 equations and 1 unknown

$$
\mathcal{L}:\left\{\begin{array}{l}
a_{1} x=b_{1} \\
a_{2} x=b_{2}
\end{array}\right.
$$

The sum of squared errors is

$$
E(x)=\left(a_{1} x-b_{1}\right)^{2}+\left(a_{2} x-b_{2}\right)^{2}
$$

A least-squares solution minimizes $E(x)$. By calculus

$$
\begin{gathered}
\hat{x}=\left.\underset{x}{\arg \min } E(x) \Rightarrow \frac{d E(x)}{d x}\right|_{x=\hat{x}}=0 \\
\Rightarrow 2\left[\left(a_{1} \hat{x}-b_{1}\right) a_{1}+\left(a_{2} \hat{x}-b_{2}\right) a_{2}\right]=0 \Rightarrow \hat{x}=\frac{a_{1} b_{1}+a_{2} b_{2}}{a_{1}^{2}+a_{2}^{2}}
\end{gathered}
$$

## LEMMA (LEAST-SQUARES $=$ PROJECTION)

Let $\boldsymbol{a}$ and $\boldsymbol{b}$ be vectors in space $\mathbb{V}$. Let $\hat{x}$ be the least-squares solution of $\boldsymbol{a} x=\boldsymbol{b}$ and $\boldsymbol{p}$ be the projection of $\boldsymbol{b}$ to $\boldsymbol{a}$.

$$
\boldsymbol{p}=\boldsymbol{a} \hat{x}
$$

## Proof.

$$
\begin{aligned}
\hat{x} & =\underset{x}{\arg \min }\|\boldsymbol{a} x-\boldsymbol{b}\|^{2}=\underset{x}{\arg \min }\|\boldsymbol{b}-\boldsymbol{a} x\|^{2} \\
\Rightarrow \boldsymbol{a} \hat{x} & =\underset{\boldsymbol{v}=\boldsymbol{a x}}{\arg \min }\|\boldsymbol{b}-\boldsymbol{v}\|^{2}
\end{aligned}
$$

Also

$$
\boldsymbol{p}=\underset{\boldsymbol{v} \in \operatorname{span}(\boldsymbol{a})}{\arg \min }\|\boldsymbol{b}-\boldsymbol{v}\|^{2}=\underset{\boldsymbol{v}=\boldsymbol{a x}}{\arg \min }\|\boldsymbol{b}-\boldsymbol{v}\|^{2}
$$

Hence

$$
\boldsymbol{p}=\boldsymbol{a} \hat{x}
$$

## EXAMPLE ( 2 EQUATIONS AND 1 UNKNOWN)

The least-squares solution of $\boldsymbol{a} x=\boldsymbol{b}$ is

$$
\hat{x}=\frac{a_{1} b_{1}+a_{2} b_{2}}{a_{1}^{2}+a_{2}^{2}}=\frac{\boldsymbol{a}^{T} \boldsymbol{b}}{\boldsymbol{a}^{T} \boldsymbol{a}}
$$

The projection of $\boldsymbol{b}$ to $\boldsymbol{a}$ is

$$
\boldsymbol{p}=\boldsymbol{P b}=\frac{\boldsymbol{a} \boldsymbol{a}^{T}}{\boldsymbol{a}^{T} \boldsymbol{a}} \boldsymbol{b}=\boldsymbol{a} \frac{\boldsymbol{a}^{T} \boldsymbol{b}}{\boldsymbol{a}^{T} \boldsymbol{a}}
$$

Hence

$$
\boldsymbol{p}=\boldsymbol{a} \hat{x}
$$

THEOREM (LEAST-SQUARES SOLUTION AND PROJECTION) Let $\hat{\boldsymbol{x}}$ be a least-squares solution of $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ and $\boldsymbol{p}$ be the projection of $\boldsymbol{b}$ to $\mathbb{C}(\boldsymbol{A})$.

$$
\boldsymbol{p}=\boldsymbol{A} \hat{\boldsymbol{x}}
$$

## Proof.

$$
\begin{aligned}
\hat{\boldsymbol{x}} & =\underset{\boldsymbol{x}}{\arg \min }\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|^{2}=\underset{\boldsymbol{x}}{\arg \min }\|\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}\|^{2} \\
\Rightarrow \boldsymbol{A} \hat{\boldsymbol{x}} & =\underset{\boldsymbol{v}=\boldsymbol{A} \boldsymbol{x}}{\arg \min }\|\boldsymbol{b}-\boldsymbol{v}\|^{2}
\end{aligned}
$$

Also

$$
\boldsymbol{p}=\underset{\boldsymbol{v} \in \mathbb{C}(\boldsymbol{A})}{\arg \min }\|\boldsymbol{b}-\boldsymbol{v}\|^{2}=\underset{\boldsymbol{v}=\boldsymbol{A} \boldsymbol{x}}{\arg \min }\|\boldsymbol{b}-\boldsymbol{v}\|^{2}
$$

Hence $\boldsymbol{p}=\boldsymbol{A} \hat{\boldsymbol{x}}$.

## THEOREM (NORMAL EQUATION)

Let $\hat{\boldsymbol{x}}$ be a least-squares solution of $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$.

$$
\boldsymbol{A}^{T} \boldsymbol{A} \hat{\boldsymbol{x}}=\boldsymbol{A}^{T} \boldsymbol{b}
$$

Proof.
The projection of $\boldsymbol{b}$ to $\mathbb{C}(\boldsymbol{A})$ is $\boldsymbol{A} \hat{\boldsymbol{x}}$. It follows that the error vector $(\boldsymbol{b}-\boldsymbol{A} \hat{\boldsymbol{x}})$ is orthogonal to $\mathbb{C}(\boldsymbol{A})$.

$$
\begin{aligned}
(\boldsymbol{b}-\boldsymbol{A} \hat{\boldsymbol{x}}) \perp \mathbb{C}(\boldsymbol{A}) & \Rightarrow(\boldsymbol{b}-\boldsymbol{A} \hat{\boldsymbol{x}}) \perp \boldsymbol{a}_{i}, \forall i \\
& \Rightarrow \boldsymbol{a}_{i}^{T}(\boldsymbol{b}-\boldsymbol{A} \hat{\boldsymbol{x}})=0, \forall i \\
& \Rightarrow \boldsymbol{A}^{T}(\boldsymbol{b}-\boldsymbol{A} \hat{\boldsymbol{x}})=\mathbf{0} \\
& \Rightarrow \boldsymbol{A}^{T} \boldsymbol{A} \hat{\boldsymbol{x}}=\boldsymbol{A}^{T} \boldsymbol{b}
\end{aligned}
$$



Figure 3.8: Projection onto the column space of a 3 by 2 matrix.

## UNIQUE LEAST-SQUARES SOLUTION

Let $\boldsymbol{A}$ be a matrix of order $m \times n$ with linearly independent columns and $m>n$. $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ has unique least-squares solution

$$
\hat{\boldsymbol{x}}=\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{T} \boldsymbol{b}
$$

## Proof.

$$
\boldsymbol{A} \boldsymbol{x}=\mathbf{0} \Rightarrow \boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{x}=\mathbf{0} \Rightarrow \boldsymbol{x}^{T} \boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{x}=\mathbf{0} \Rightarrow \boldsymbol{A} \boldsymbol{x}=\mathbf{0}
$$

So $\mathbb{N}\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)=\mathbb{N}(\boldsymbol{A})$ and $\operatorname{dim} \mathbb{N}\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)=\boldsymbol{\operatorname { d i m }} \mathbb{N}(\boldsymbol{A})=0$. Thus $\operatorname{rank}\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)=n$ and $\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)$ is invertible. Hence the normal equation $\boldsymbol{A}^{T} \boldsymbol{A} \hat{\boldsymbol{x}}=\boldsymbol{A}^{T} \boldsymbol{b}$ has unique solution

$$
\hat{\boldsymbol{x}}=\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{T} \boldsymbol{b}
$$

## EXAMPLE (UNIQUE LEAST-SQUARES SOLUTION)

Find a least-squares solution of an over-determined system of linear equations $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, where

$$
\boldsymbol{A}=\left[\begin{array}{ll}
1 & 2 \\
1 & 3 \\
0 & 0
\end{array}\right], \boldsymbol{b}=\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right]
$$

$$
\hat{\boldsymbol{x}}=\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{T} \boldsymbol{b}=\left[\begin{array}{cc}
13 & -5 \\
-5 & 2
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 0 \\
2 & 3 & 0
\end{array}\right]\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

## Theorem (projection to column space)

Let $\boldsymbol{A}$ be a matrix with linearly independent columns.

- The projection of any $\boldsymbol{b}$ to column space $\mathbb{C}(\boldsymbol{A})$ is

$$
\boldsymbol{p}=\boldsymbol{A}\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{T} \boldsymbol{b}
$$

- The projection matrix is

$$
\boldsymbol{P}=\boldsymbol{A}\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{T}
$$

The least-squares solution of $\boldsymbol{A x}=\boldsymbol{b}$ is

$$
\hat{\boldsymbol{x}}=\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{T} \boldsymbol{b}
$$

The projection of $\boldsymbol{b}$ to $\mathbb{C}(\boldsymbol{A})$ is

$$
\boldsymbol{p}=\boldsymbol{A} \hat{\boldsymbol{x}}=\underbrace{\boldsymbol{A}\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{T}}_{\text {projection matrix }} \boldsymbol{b}
$$

Fitting Data

## REGRESSION

- Given a data set $\left\{\left(t_{1}, y_{1}\right), \ldots,\left(t_{m}, y_{m}\right)\right\}$
- Find a function $\hat{y}=f(t)$ to fit the data set
- For example, we may assume

$$
\hat{y}=f(t)=c+d t
$$

- The parameters $c$ and $d$ are decided by minimizing the error between data and function, i.e. between $y_{i}$ and $f\left(t_{i}\right)$


## LINEAR FITTING FUNCTION

We assume

$$
\hat{y}=f(t)=c+d t
$$

- The difference (error) between $y_{i}$ and $f\left(t_{i}\right)$ is

$$
y_{i}-f\left(t_{i}\right)=y_{i}-\left(c+d t_{i}\right)
$$

- Ideally, we want $c$ and $d$ such that

$$
y_{i}=f\left(t_{i}\right)=c+d t_{i}, i=1, \ldots, m
$$

- We are solving a system of 2 unknowns (for the parameters $c$ and $d$ ) and $m$ equations (for the data points)


## A SYSTEM OF LINEAR EQUATIONS

The equations to satisfy can be written as

$$
\left[\begin{array}{cc}
1 & t_{1} \\
\vdots & \vdots \\
1 & t_{m}
\end{array}\right]\left[\begin{array}{l}
c \\
d
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{m}
\end{array}\right]
$$

It can be represented by $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ where

$$
\boldsymbol{A}=\left[\begin{array}{cc}
1 & t_{1} \\
\vdots & \vdots \\
1 & t_{m}
\end{array}\right], \boldsymbol{x}=\left[\begin{array}{l}
c \\
d
\end{array}\right], \boldsymbol{b}=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{m}
\end{array}\right]
$$

## SOLUTION BY NORMAL EQUATION

Consider $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ arising from fitting a data set to a function.

- Over-determined if the number of data points is more than the number of parameters
- Look for a least-squares solution

$$
\boldsymbol{A}^{T} \boldsymbol{A} \hat{\boldsymbol{x}}=\boldsymbol{A}^{T} \boldsymbol{b}
$$

- For data $\left\{\left(t_{1}, y_{1}\right), \ldots,\left(t_{m}, y_{m}\right)\right\}$ and function $f(t)=c+d t$

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & \ldots & 1 \\
t_{1} & \ldots & t_{m}
\end{array}\right]\left[\begin{array}{cc}
1 & t_{1} \\
\vdots & \vdots \\
1 & t_{m}
\end{array}\right]\left[\begin{array}{l}
\hat{c} \\
\hat{d}
\end{array}\right]=\left[\begin{array}{ccc}
1 & \ldots & 1 \\
t_{1} & \ldots & t_{m}
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{m}
\end{array}\right]} \\
& \quad \Rightarrow\left[\begin{array}{cc}
m & \sum_{i=1}^{m} t_{i} \\
\sum_{i=1}^{m} t_{i} & \sum_{i=1}^{m} t_{i}^{2}
\end{array}\right]\left[\begin{array}{l}
\hat{c} \\
\hat{d}
\end{array}\right]=\left[\begin{array}{c}
\sum_{i=1}^{m} y_{i} \\
\sum_{i=1}^{m} t_{i} y_{i}
\end{array}\right]
\end{aligned}
$$

## Example (Fitting a Linear function)

Fit data set $\{(-1,1),(1,1),(2,3)\}$ to a linear function.
It leads to an over-determined system $\boldsymbol{A x}=\boldsymbol{b}$ where

$$
\boldsymbol{A}=\left[\begin{array}{cc}
1 & -1 \\
1 & 1 \\
1 & 2
\end{array}\right], \boldsymbol{x}=\left[\begin{array}{l}
c \\
d
\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{l}
1 \\
1 \\
3
\end{array}\right]
$$

We have

$$
\boldsymbol{A}^{T} \boldsymbol{A}=\left[\begin{array}{ll}
3 & 2 \\
2 & 6
\end{array}\right], \quad \boldsymbol{A}^{T} \boldsymbol{b}=\left[\begin{array}{l}
5 \\
6
\end{array}\right]
$$

Thus, the least-squares solution is

$$
\hat{\boldsymbol{x}}=\left[\begin{array}{c}
\hat{c} \\
\hat{d}
\end{array}\right]=\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{T} \boldsymbol{b}=\left[\begin{array}{c}
\frac{9}{7} \\
\frac{4}{7}
\end{array}\right]
$$

Among all lines, $f(t)=\hat{c}+\hat{d t}$ minimizes $\sum_{i=1}^{m}\left(y_{i}-f\left(t_{i}\right)\right)^{2}$.


Figure 3.9: Straight-line approximation matches the projection $p$ of $b$.

## Orthonormal Basis

## DEFINITION (ORTHONORMAL VECTORS)

A group of vectors are orthonormal if

- the vectors are orthogonal
- every vector is a unit vector (of length 1 )
- A set with orthonormal vectors is orthonormal
- For an orthonormal set $\left\{\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{n}\right\}$

$$
\left(\boldsymbol{q}_{i}, \boldsymbol{q}_{j}\right)=\delta_{i j}= \begin{cases}1, & \text { if } i=j \\ 0, & \text { otherwise }\end{cases}
$$

- A basis with orthonormal vectors is orthonormal


## SIMPLIFICATION WITH ORTHONORMAL VECTORS

Suppose $\boldsymbol{A}$ has linearly independent column vectors.

- The projection matrix to $\mathbb{C}(\boldsymbol{A})$ is

$$
\boldsymbol{P}=\boldsymbol{A}\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{T}
$$

- If the column vectors are orthonormal, we have $\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)=$ $I$ and

$$
\boldsymbol{P}=\boldsymbol{A} \boldsymbol{A}^{T}=\sum_{j=1}^{n} \boldsymbol{a}_{j} \boldsymbol{a}_{j}^{T}
$$

- Note

$$
\boldsymbol{P}=\sum_{j=1}^{n} \boldsymbol{P}_{j}
$$

where $\boldsymbol{P}_{j}=\boldsymbol{a}_{j} \boldsymbol{a}_{j}^{T}$ is the matrix for projection to $\boldsymbol{a}_{j}$.

## VECTOR REPRESENTATION WITH ORTHONORMAL BASIS

Let $\mathcal{Q}=\left\{\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{n}\right\}$ be an orthonormal basis of space $\mathbb{V}$. The representation of a vector $\boldsymbol{x} \in \mathbb{V}$ with $\mathcal{Q}$ is

$$
\left[\boldsymbol{x}_{\mathcal{Q}}\right]=\left[\begin{array}{c}
\left(\boldsymbol{q}_{1}, \boldsymbol{x}\right) \\
\vdots \\
\left(\boldsymbol{q}_{n}, \boldsymbol{x}\right)
\end{array}\right]
$$

## Proof.

Suppose $\boldsymbol{x}=\sum_{i=1}^{n} x_{i} \boldsymbol{q}_{i}$.

$$
\begin{aligned}
\left(\boldsymbol{q}_{j}, \boldsymbol{x}\right) & =\left(\boldsymbol{q}_{j}, \sum_{i=1}^{n} x_{i} \boldsymbol{q}_{i}\right)=\sum_{i=1}^{n} x_{i}\left(\boldsymbol{q}_{j}, \boldsymbol{q}_{i}\right)=\sum_{i=1}^{n} x_{i} \delta_{i j} \\
& =x_{j}
\end{aligned}
$$

## INNER PRODUCT WITH AN ORTHONORMAL BASIS

Let $\mathcal{Q}=\left\{\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{n}\right\}$ be an orthonormal basis of space $\mathbb{V}$. The inner product of $\boldsymbol{x}$ and $\boldsymbol{y}$ of $\mathbb{V}$ is the dot product of the representation of $\boldsymbol{x}$ and $\boldsymbol{y}$ with $\mathcal{Q}$

$$
(\boldsymbol{x}, \boldsymbol{y})=\left[\boldsymbol{x}_{\mathcal{Q}}\right]^{T}\left[\boldsymbol{y}_{\mathcal{Q}}\right]
$$

## Proof.

Suppose $\boldsymbol{x}=\sum_{i=1}^{n} x_{i} \boldsymbol{q}_{i}$ and $\boldsymbol{y}=\sum_{j=1}^{n} y_{j} \boldsymbol{q}_{j}$.

$$
\begin{aligned}
(\boldsymbol{x}, \boldsymbol{y}) & =\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} y_{j}\left(\boldsymbol{q}_{i}, \boldsymbol{q}_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} y_{j} \delta_{i j}=\sum_{i=1}^{n} x_{i} y_{i} \\
& =\left[\boldsymbol{x}_{\mathcal{Q}}\right]^{T}\left[\boldsymbol{y}_{\mathcal{Q}}\right]
\end{aligned}
$$

## PROJECTION TO A UNIT VECTOR

Let $\boldsymbol{q}$ be a unit vector. The matrix for the projection to $\boldsymbol{q}$ is

$$
\boldsymbol{P}=\boldsymbol{q} \boldsymbol{q}^{T}
$$

## Proof.

We have $\boldsymbol{q}^{T} \boldsymbol{q}=\|\boldsymbol{q}\|^{2}=1$, so

$$
\boldsymbol{P}=\frac{\boldsymbol{q} \boldsymbol{q}^{T}}{\boldsymbol{q}^{T} \boldsymbol{q}}=\boldsymbol{q} \boldsymbol{q}^{T}
$$

## PROJECTION TO COLUMN SPACE: ORTHOGONAL MATRIX

Let $\boldsymbol{Q}$ be a matrix with orthonormal column vectors. The matrix for the projection to $\mathbb{C}(\boldsymbol{Q})$ is

$$
\boldsymbol{P}=\boldsymbol{Q} \boldsymbol{Q}^{T}
$$

$$
\boldsymbol{P}=\boldsymbol{Q}\left(\boldsymbol{Q}^{T} \boldsymbol{Q}\right)^{-1} \boldsymbol{Q}^{T}=\boldsymbol{Q} \boldsymbol{Q}^{T}
$$

## PROJECTION TO A SPACE WITH AN ORTHONORMAL BASIS

Let $\left\{\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{n}\right\}$ be an orthonormal basis of space $\mathbb{V}$. Any $\boldsymbol{x} \in \mathbb{V}$ is the sum of the projections of $\boldsymbol{x}$ to the basis vectors $\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{n}$.

## Proof.

Let $\boldsymbol{Q}$ be the matrix with columns $\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{n}$. The projection matrix to $\mathbb{C}(\boldsymbol{Q})=\mathbb{V}$ is

$$
\boldsymbol{P}=\boldsymbol{Q} \boldsymbol{Q}^{T}=\sum_{j=1}^{n} \boldsymbol{q}_{j} \boldsymbol{q}_{j}^{T}
$$

For any $\boldsymbol{x} \in \mathbb{V}$, we have

$$
\boldsymbol{x}=\boldsymbol{P} \boldsymbol{x}=\left(\sum_{j=1}^{n} \boldsymbol{q}_{j} \boldsymbol{q}_{j}^{T}\right) \boldsymbol{x}=\sum_{j=1}^{n} \boldsymbol{q}_{j}\left(\boldsymbol{q}_{j}^{T} \boldsymbol{x}\right)
$$

## Gram-Schmidt process

G.-S. process converts a basis to an orthonormal one

$$
\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}\right\} \longrightarrow\left\{\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{n}\right\}
$$

For $j=1, \ldots, n$, do the following operations

- projection of $\boldsymbol{a}_{j}$ to $\operatorname{span}\left(\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{j-1}\right)$

$$
\boldsymbol{p}_{j}=\boldsymbol{q}_{1}\left(\boldsymbol{q}_{1}, \boldsymbol{a}_{j}\right)+\cdots+\boldsymbol{q}_{j-1}\left(\boldsymbol{q}_{j-1}, \boldsymbol{a}_{j}\right)
$$

- normalization

$$
\boldsymbol{b}_{j}=\boldsymbol{a}_{j}-\boldsymbol{p}_{j} \neq \mathbf{0}, \quad \boldsymbol{q}_{j}=\frac{\boldsymbol{b}_{j}}{\left\|\boldsymbol{b}_{j}\right\|}
$$

Note

$$
\boldsymbol{\operatorname { s p a n }}\left(\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{j}\right)=\boldsymbol{\operatorname { s p a n }}\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{j}\right)
$$



Figure 3.10: The $q_{i}$ component of $b$ is removed; $a$ and $B$ normalized to $q_{1}$ and $q_{2}$.

## Example (Gram-Schmidt process)

$$
\begin{aligned}
\boldsymbol{a}_{1}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \quad \boldsymbol{a}_{2}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad \boldsymbol{a}_{3}=\left[\begin{array}{c}
2 \\
1 \\
0
\end{array}\right] \\
\Rightarrow \boldsymbol{b}_{1}=\boldsymbol{a}_{1}, \quad \boldsymbol{q}_{1}=\frac{\boldsymbol{b}_{1}}{\left\|\boldsymbol{b}_{1}\right\|}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
0 \\
\frac{1}{\sqrt{2}}
\end{array}\right] \\
\boldsymbol{b}_{2}=\boldsymbol{a}_{2}-\boldsymbol{q}_{1}\left(\boldsymbol{q}_{1}, \boldsymbol{a}_{2}\right)=\left[\begin{array}{c}
\frac{1}{2} \\
0 \\
\frac{-1}{2}
\end{array}\right], \quad \boldsymbol{q}_{2}=\frac{\boldsymbol{b}_{2}}{\left\|\boldsymbol{b}_{2}\right\|}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
0 \\
\frac{-1}{\sqrt{2}}
\end{array}\right] \\
\boldsymbol{b}_{3}=\boldsymbol{a}_{3}-\boldsymbol{q}_{1}\left(\boldsymbol{q}_{1}, \boldsymbol{a}_{3}\right)-\boldsymbol{q}_{2}\left(\boldsymbol{q}_{2}, \boldsymbol{a}_{3}\right)=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad \boldsymbol{q}_{3}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
\end{aligned}
$$

## Theorem (QR factorization)

Suppose $\boldsymbol{A}$ has linearly independent columns. Then $\boldsymbol{A}=\boldsymbol{Q R}$, where $\boldsymbol{Q}$ has orthonormal columns and $\boldsymbol{R}$ is right-triangular.

## Proof.

Let the columns of $\boldsymbol{A}$ be $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}$. Apply G.-S. to $\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}\right\}$ to get an orthonormal basis $\left\{\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{n}\right\}$.

$$
\boldsymbol{a}_{j}=\sum_{i=1}^{n} \boldsymbol{q}_{i}\left(\boldsymbol{q}_{i}, \boldsymbol{a}_{j}\right), j=1, \ldots, n
$$

Construct $\boldsymbol{Q}$ with columns $\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{n}$ and $\boldsymbol{R}$ with elements $r_{i j}=\left(\boldsymbol{q}_{i}, \boldsymbol{a}_{j}\right)$ so $\boldsymbol{A}=\boldsymbol{Q R} . \boldsymbol{R}$ is right-triangular since for $i>j$

$$
\begin{aligned}
\boldsymbol{q}_{i} \perp\left\{\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{j}\right\} & \Rightarrow \boldsymbol{q}_{i} \perp \boldsymbol{a}_{j} \in \operatorname{span}\left(\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{j}\right) \\
& \Rightarrow\left(\boldsymbol{q}_{i}, \boldsymbol{a}_{j}\right)=0
\end{aligned}
$$

## Example (QR factorization)

$$
\boldsymbol{A}=\left[\begin{array}{lll}
1 & 1 & 2 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 1 \\
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & 0
\end{array}\right]\left[\begin{array}{ccc}
\sqrt{2} & \frac{1}{\sqrt{2}} & \sqrt{2} \\
0 & \frac{1}{\sqrt{2}} & \sqrt{2} \\
0 & 0 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& \boldsymbol{A}=\left[\begin{array}{lll}
\boldsymbol{a}_{1} & \boldsymbol{a}_{2} & \boldsymbol{a}_{3}
\end{array}\right] \xrightarrow{\text { G.-S. }} \boldsymbol{Q}=\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 1 \\
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & 0
\end{array}\right]=\left[\begin{array}{lll}
\boldsymbol{q}_{1} & \boldsymbol{q}_{2} & \boldsymbol{q}_{3}
\end{array}\right] \\
& \boldsymbol{R}=\left\{\left(\boldsymbol{q}_{i}, \boldsymbol{a}_{j}\right)\right\}=\left[\begin{array}{ccc}
\sqrt{2} & \frac{1}{\sqrt{2}} & \sqrt{2} \\
0 & \frac{1}{\sqrt{2}} & \sqrt{2} \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

## Function Approximation*

## SPACE OF FUNCTIONS AND AN INNER PRODUCT

- The set of real-valued functions is a space
- We denote $f(t)$ by $\boldsymbol{f}$ since it is a vector in a space
- An inner product in this space is defined by

$$
(\boldsymbol{f}, \boldsymbol{g})=\int_{I} f(t) g(t) d t
$$

- Two functions are orthogonal if

$$
(\boldsymbol{f}, \boldsymbol{g})=\int_{I} f(t) g(t) d t=0
$$

- The length of a function is defined by

$$
\|\boldsymbol{f}\|^{2}=(\boldsymbol{f}, \boldsymbol{f})=\int_{I} f^{2}(t) d t
$$

## FUNCTION APPROXIMATION BY POLYNOMIAL

Consider the function approximation problem

$$
f(t) \doteq c_{0}+c_{1} t+c_{2} t^{2}
$$

- Denote $\boldsymbol{f}=f(t), \boldsymbol{f}_{1}=1, \boldsymbol{f}_{2}=t, \boldsymbol{f}_{3}=t^{2}$. We have

$$
\boldsymbol{f} \doteq c_{0} \boldsymbol{f}_{1}+c_{1} \boldsymbol{f}_{2}+c_{2} \boldsymbol{f}_{3}
$$

- In matrix and vectors

$$
\overbrace{\left[\begin{array}{lll}
\boldsymbol{f}_{1} & \boldsymbol{f}_{2} & \boldsymbol{f}_{3}
\end{array}\right]}^{F} \overbrace{\left[\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2}
\end{array}\right]}^{x} \doteq \boldsymbol{f}
$$

- This is an over-determined system of linear equations

NORMAL EQUATION AND LEAST-SQUARES SOLUTION

- The over-determined system is

$$
\boldsymbol{F} \boldsymbol{x}=\boldsymbol{f}
$$

- The normal equation is

$$
\boldsymbol{F}^{T} \boldsymbol{F} \hat{\boldsymbol{x}}=\boldsymbol{F}^{T} \boldsymbol{f}
$$

- That is

$$
\left[\begin{array}{lll}
\left(\boldsymbol{f}_{1}, \boldsymbol{f}_{1}\right) & \left(\boldsymbol{f}_{1}, \boldsymbol{f}_{2}\right) & \left(\boldsymbol{f}_{1}, \boldsymbol{f}_{3}\right) \\
\left(\boldsymbol{f}_{2}, \boldsymbol{f}_{1}\right) & \left(\boldsymbol{f}_{2}, \boldsymbol{f}_{2}\right) & \left(\boldsymbol{f}_{2}, \boldsymbol{f}_{3}\right) \\
\left(\boldsymbol{f}_{3}, \boldsymbol{f}_{1}\right) & \left(\boldsymbol{f}_{3}, \boldsymbol{f}_{2}\right) & \left(\boldsymbol{f}_{3}, \boldsymbol{f}_{3}\right)
\end{array}\right]\left[\begin{array}{l}
\hat{c}_{0} \\
\hat{c}_{1} \\
\hat{c}_{2}
\end{array}\right]=\left[\begin{array}{c}
\left(\boldsymbol{f}_{1}, \boldsymbol{f}\right) \\
\left(\boldsymbol{f}_{2}, \boldsymbol{f}\right) \\
\left(\boldsymbol{f}_{3}, \boldsymbol{f}\right)
\end{array}\right]
$$

- The least-squares solution is

$$
\hat{\boldsymbol{x}}=\left(\boldsymbol{F}^{T} \boldsymbol{F}\right)^{-1} \boldsymbol{F}^{T} \boldsymbol{f}
$$

## EXAMPLE (FUNCTION APPROXIMATION)

Approximate $\boldsymbol{f}=t^{5}$ by $\boldsymbol{p}=c+d t$ in the interval $I=(0,1)$.

- Shortest distance

$$
(\hat{c}, \hat{d})=\underset{(c, d)}{\arg \min }\|\boldsymbol{f}-\boldsymbol{p}\|^{2}
$$

- Over-determined system and least-squares solution

$$
\boldsymbol{F} \boldsymbol{x}=\boldsymbol{f}, \quad \text { i.e. }\left[\left(\boldsymbol{f}_{1}=1\right) \quad\left(\boldsymbol{f}_{2}=t\right)\right]\left[\begin{array}{l}
c \\
d
\end{array}\right]=\left(\boldsymbol{f}=t^{5}\right)
$$

- Projection


## SHORTEST DISTANCE

- The distance between $\boldsymbol{f}$ and $\boldsymbol{p}$ is $\|f-\boldsymbol{p}\|$

$$
\begin{aligned}
\|\boldsymbol{f}-\boldsymbol{p}\|^{2} & =\int_{0}^{1}\left(t^{5}-c-d t\right)^{2} d t \\
& =\int_{0}^{1}\left(t^{10}+c^{2}+d^{2} t^{2}-2 c t^{5}-2 d t^{6}+2 c d t\right) d t \\
& =\frac{1}{11}+c^{2}+\frac{1}{3} d^{2}-\frac{1}{3} c-\frac{2}{7} d+c d
\end{aligned}
$$

- At the shortest distance, the partial derivatives are zero

$$
\left\{\begin{array}{l}
2 \hat{c}+\hat{d}=\frac{1}{3} \\
\hat{c}+\frac{2}{3} \hat{d}=\frac{2}{7}
\end{array} \quad \Rightarrow \quad \hat{c}=-\frac{4}{21}, \hat{d}=\frac{5}{7}\right.
$$

## OVER-DETERMINED SYSTEM AND SOLUTION

- The over-determined system is

$$
F x=f
$$

- The least-squares solution is

$$
\hat{\boldsymbol{x}}=\left(\boldsymbol{F}^{T} \boldsymbol{F}\right)^{-1} \boldsymbol{F}^{T} \boldsymbol{f}
$$

- That is

$$
\begin{aligned}
{\left[\begin{array}{c}
\hat{c} \\
\hat{d}
\end{array}\right] } & =\left[\begin{array}{ll}
\left(\boldsymbol{f}_{1}, \boldsymbol{f}_{1}\right) & \left(\boldsymbol{f}_{1}, \boldsymbol{f}_{2}\right) \\
\left(\boldsymbol{f}_{2}, \boldsymbol{f}_{1}\right) & \left(\boldsymbol{f}_{2}, \boldsymbol{f}_{2}\right)
\end{array}\right]^{-1}\left[\begin{array}{l}
\left(\boldsymbol{f}_{1}, \boldsymbol{f}\right) \\
\left(\boldsymbol{f}_{2}, \boldsymbol{f}\right)
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{3}
\end{array}\right]^{-1}\left[\begin{array}{c}
\frac{1}{6} \\
\frac{1}{7}
\end{array}\right]=\left[\begin{array}{cc}
4 & -6 \\
-6 & 12
\end{array}\right]\left[\begin{array}{c}
\frac{1}{6} \\
\frac{1}{7}
\end{array}\right]=\left[\begin{array}{c}
\frac{-4}{21} \\
\frac{5}{7}
\end{array}\right]
\end{aligned}
$$

## PROJECTION METHOD

- Find the projection directly
- An orthogonal basis makes projection easy
- Find an orthogonal basis from (non-orthogonal) $\left\{\boldsymbol{f}_{1}, \boldsymbol{f}_{2}\right\}$

$$
\boldsymbol{q}_{1}=\boldsymbol{f}_{1}, \boldsymbol{b}_{2}=\boldsymbol{f}_{2}-\boldsymbol{q}_{1}\left(\boldsymbol{q}_{1}, \boldsymbol{f}_{2}\right)=t-\frac{1}{2}
$$

- The projection is

$$
\begin{aligned}
\boldsymbol{p} & =\boldsymbol{q}_{1}\left(\boldsymbol{q}_{1}, \boldsymbol{f}\right)+\boldsymbol{b}_{2} \frac{\left(\boldsymbol{b}_{2}, \boldsymbol{f}\right)}{\left(\boldsymbol{b}_{2}, \boldsymbol{b}_{2}\right)} \\
& =1 \int_{0}^{1}\left(t^{5}\right)(1) d t+\left(t-\frac{1}{2}\right) \frac{\int_{0}^{1}\left(t^{5}\right)\left(t-\frac{1}{2}\right) d t}{\int_{0}^{1}\left(t-\frac{1}{2}\right)\left(t-\frac{1}{2}\right) d t} \\
& =\frac{1}{6}+\frac{\frac{1}{7}-\frac{1}{12}}{\frac{1}{3}-\frac{1}{2}+\frac{1}{4}}\left(t-\frac{1}{2}\right)=-\frac{4}{21}+\frac{5}{7} t
\end{aligned}
$$

