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Over-determined System of Linear Equations
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DEFINITION (OVER-DETERMINED SYSTEMS)

A system of linear equations is over-determined if there are
more equations than unknowns.

For an over-determined system of linear equations

a1+ -+ apx, = b

amlxl—i_"'—i_amnxn:bm

we have m > n.

CHEN P OVER-DETERMINED SYSTEMS & ORTHOGONALITY



THEOREM (SOLVING AN OVER-DETERMINED SYSTEM)

Let Ax = b be an over-determined system of linear equations.
Suppose the columns of A are linearly independent. Exactly
one of the following must be true.

© Unique solution

© No solution
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FROM ELIMINATION TO MINIMIZATION
Let £ be an over-determined system of linear equations.
e Elimination is often not good for solving £

@ Minimization always works

Let Ax = b be an over-determined system of linear equations
with m equations and n unknowns, and the rank of A be r.

e Elimination produces m — r equations with 0 left sides.

e If any equation with O left side has a non-zero right side,
a solution does not exist.
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DEFINITION (LEAST-SQUARES SOLUTION)

Let £ : Ax = b be an over-determined system of linear equa-
tions. The sum of squared errors of L is

E(CB) = Z(aﬂxl + -+ ATy — bl)z
=1

A least-squares solution of £, denoted by &, minimizes E(x)

& = argmin F(x)

If there exists an exact solution xy of L, then oy must be a
least-squares solution of L since E(xy) =0 and

E(x) > 0= E(x)
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DEFINITION (INNER PRODUCT)

Let V be a vector space and u,v be vectors of V. An inner
product of w and v, denoted by (u, v), is a scalar function with
the following properties.

o Non-negativity
(u,u) >0, (u,u)=0 = u=0
o Linearity

(u+v,w) = (v,w) + (v,w), (u,cv)=c(u,v)

The dot product defined by

=1

is an inner product.
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Let V be a vector space and u, v be vectors of V. Then u and
v are orthogonal if and only if (u,v) = 0.

That v and v are orthogonal is denoted by

ulov

[m} = =
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Let V be a vector space and x, y be vectors of V.

@ The length of x is

lz| = (w,w)% or equivalently ||z||? = (z, =)
@ The distance between x and y is

|z -yl

=

PR N6
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(0,0,3) g=-======-==5
(1,2) Ir'::* ( ‘:3) has length /14
(0,2) 2 = ot + 23 +25 !
5=12422 i :
W5/ |, : |
14=124+2243 | i
| »(0,2,0)
) / - i
(1,0,0) #mmmmamoo T 271, 2,0) has length v/5
(a) (b)

Figure 3.1: The length of vectors (xy,x2) and (x1,x2,x3).
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Let x and y be vectors of R? and © L y. Then

l]1* + lyl* = ll= — ylI*

We have

xly & (z,y) =0 & my1 + 2292 =0
& (af+23)+ Wi+ vs) = (21— 1) + (22 — p2)?

< lzl® +llyl* = llz — y|”

=] = = = = 9DAC 3/75
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Exaweis (Pymaconas)
=[] 2

1
\/5< ;@0 Ix: [3]
0

Right angle
2Ty =0

25
ly =

\‘\] 2Ty >0
greater than 90° -

>~ less than 90°
Figure 3.2: A right triangle with 5420 = 25. Dotted angle 100°, dashed angle 30°.
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Orthogonal Sets and Spaces
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DEFINITION (ORTHOGONAL SETS)

Let & and W be sets of vectors of space V. U and W are
orthogonal sets if every vector of U is orthogonal to every vector
of W.

Examples
{loo1)™y L{[to0]*,[010"}
{(roo} L{lo10"}
{lroo’, oo} {010/ [001]"}

@ orthogonal spanning sets
@ orthogonal bases

@ orthogonal subspaces
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LEMMA (ORTHOGONAL FUNDAMENTAL SUBSPACES)
Let A be a matrix of order m x n.

@ Row space is orthogonal to nullspace
N(A) L C(A")
e Column space is orthogonal to left nullspace

N(AT) L C(A)

xeNA) = Az =0 = a;x=0, Vi
= (w,agj) =0, Vi = (:I;,ZC@Z) =0, V¢
= x L (Zciag) , Ve, = ax L C(AT)
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JUST A SPANNING SET
Let ¢ and WV be sets of vectors of space V.
@ Suppose U is a subspace. W | U if and only if W is
orthogonal to a spanning set (e.g. a basis) of U.

@ Suppose both ¢/ and WV are subspaces. W 1 U if and only
if spanning sets of ¥V and U are orthogonal.

Suppose
dimi/ =3, dimW =2

It suffices to check 3 basis vectors (instead of every vector) of
U against 2 basis vectors of W.
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v’ the z axis and the z—y plane

v’ the x axis and the y axis

x the x—z plane and the y—2z plane

[m] [ =
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LEMMA (ORTHOGONAL = LINEARLY INDEPENDENT)

Let U = {vy,...,v,} be a set of non-zero vectors that are
mutually orthogonal. Then U is linearly independent.

v

PROOF.

Suppose > c;v; = 0. For any j
i=1

(’Uj,ZCﬂ)Z) =0 = ZC,’ (’Uj,’l)i) = (0
=1

=1
= Cj ('Uj, 'Uj) =0
= Cj = 0

So U is linearly independent. O]
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DEFINITION (ORTHOGONAL COMPLEMENT )

Let S be a subspace of space V. The orthogonal complement
of S is the set of all vectors orthogonal to S.

e Notation for orthogonal complement
St={v|v LS}
@ Orthogonal complement is maximal. For any T 1. S
veET = v 1S = veSt

SO
T cSt
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Let S be a subspace of space V. S* is a subspace of V.
For any u € S, scalars ¢y, ¢y and vy, v, € S*

(u, Cc1v1 + 02’02) = cl(u, ’01) + CQ(’LL, ’02) =0

= (cl'vl -+ 02’02) LS

= U1 + Uy € ST
Thus S* is a subspace.

[m] [ =

PR N6
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w
Two orthogonal axes in R?
Not orthogonal complements

\2

Line W perpendicular to plane V

Orthogonal complements V = W+
7

—————V
I

Figure 3.3: Orthogonal complements in R>: a plane and a line (not two lines).
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THEOREM (FUNDAMENTAL THEOREM PART II)
Let A be a matrix of order m X n.

@ Nullspace is the orthogonal complement of row space
(c(a7)) =)

e Left nullspace is the orthogonal complement of column
space
(C(A))" =N(AT)

vE((C(AT))L & vJ_C(AT) s v lal, Vi
S a,v=0, Vs
& Av=0
< veN(A)
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THEOREM (SUM OF DIMENSIONS)
Let S be a subspace of V.

dimS + dimS* = dimV

PROOF.

Let dimS = r, dimS* =k, dimV = n. Let B = {vy,...,v,}
be a basis of S, and B’ = {v],...,v}} be a basis of S*.

@ BU KB is a linearly independent set of V, sor+ k < n

@ Augment B a basis of V, say {vq,...,v,,V41,...,0,},
and ensure v; L span(vy,...,v;_;) for j=r+1,... n.
Let W =span({v,1,...,v,}). ThendimW =n —r.

WIS = WecSt=dmW<dimSt=n—-—r<k
=r+k>n

Hence r + k = n. ]
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Let A be a matrix of order m x n with rank r.

@ We have

N(4) = C (A7)
o We also have
dimC (AT) +dimN(A)=r+(n—r)=n
@ Thus

dimC (A”) + dimC (AT)L — dimR"

OB <EraEr T DQC 9475
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dimn —1r

left
nullspace

dimm —r

Figure 3.4: The true action Ax = A(X;ow +Xnui) of any m by n matrix.
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DEFINITION (PROJECTION AS THE CLOSEST POINT)

Let V be a space, b be a vector of V, and S be a subspace of V.
The projection of b to S is the vector p € S with the shortest
distance to b

p =argmin||b — v||
veS

@ Projection minimizes the length of error vector
e=b—-v

e Note
. - 2 . _
min [[b —v||* # min [|b — v]|
argmin ||b — v||* = argmin ||b — v||
ve ve

e Dealing with ||b — v||? is easier than ||b — v]].
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min AND arg min
Let f(x) be a (multi-variate) function of x.

@ The minimum value of f(x) is denoted by
@ A value of x that minimizes f(x) is denoted by
arg min f(2)

o Let f* =min f(x) and * = argmin f(x).

fl&™) = [
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projection of b
p =

onto line through a

Figure 3.5: The projection p is the point (on the line through a) closest to b.
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'ORTHOGONALITY CONDITION OF PROJECTION |
Let p be the projection of b to S.
@ We have

(b—p) LS
@ In particular, since p € S, we have

(b—p) L p

[m] [ =
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PROJECTION TO A VECTOR AND PROJECTION MATRIX
Let a and b be vectors of space V.

@ The projection of b to a is

=—a
P=Ta
@ Projection is left multiplication by a projection matrix

Tb T
a _aa b= Pb

p = a —_— =
ala ala
where
aal
P=——
ala
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Let p = ax. By the orthogonality condition

(p,b—p)=0=a’(b—az)=0
T

= (a'a)r =a’b

N a’b
= —
ala
Hence
p=azr
a’b
ala
=Pb
O
=] = = = E Qe 34/75
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o Th
Figure 3.7: The projection p of b onto a, with cos 8 = Zp _ a0
Ob  |lall[|b]|

Note that
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Least-squares Solution of Over-determined System
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SQUARED ERRORS AND LEAST-SQUARES SOLUTION
Let Ax = b be a system of m equations and n unknowns.

e Error of equation ¢

(ai:m — bz)
@ Sum of squared errors
E(z) =) (aix —b;)’
i=1

@ Least-squares solution

& = argmin F(x)

Note
E(z) = || Az — b|?
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Consider
r = 2
2 = 3

r—2 = 0
g —a = (0
An z incurs an error of (x—2) for the first equation and (22 —3)
for the second equation. Hence, a least-squares solution is

Re-write it as

& = argmin E(x)

= arg;nin ((:U —2)%+ (27 — 3)2)

IR = = T 9DaAC 33/75
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Let ax = b be an over-determined system with 2 equations and

1 unknown
L { a1xr = b1

At = bz

The sum of squared errors is
E(z) = (a2 — b1)? + (agx — by)?

A least-squares solution minimizes E(z). By calculus

Ir = in £/ =
% = arg min (x) o

A a . a1by 4+ aqzb
= 2[(a1& — b1)as + (ae — br)as] =0 = & = : ; 32
ay + a3

[m] [ = =

v
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LEMMA (LEAST-SQUARES = PROJECTION)

Let a and b be vectors in space V. Let T be the least-squares
solution of ax = b and p be the projection of b to a.

p=az

PROOF.

IS
I

arg min ||az — b||*> = argmin ||b — az|”
x x

= ai = argmin ||b — v|?

v=axr
Also
p = argmin||b—v|* = argmln |6 — v]?
vEspan(a)
Hence

]
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The least-squares solution of ax = b is

N a1b1 T a2b2 a,Tb
Tr = =
a? + a3 a’a
The projection of b to a is
i i
aa a'b
=Pb=—>b=a—
L ala ala
Hence
p=azr

=} = = E E DA™ 41/75
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THEOREM (LEAST—SQUARES SOLUTION AND PROJECTION)

Let & be a least-squares solution of Ax = b and p be the
projection of b to C(A).

p=AZ

PROOF.

A

& = argmin || Az — b||> = argmin ||b — Ax|?

= A% = argmin ||b — v|?

V=AT

Also

p = argmin ||b — v|* = argmin ||b — v||?
veC(A) v=Azx

Hence p = AZ. O

o’
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THEOREM (NORMAL EQUATION)
Let & be a least-squares solution of Ax = b.

ATAz = ATp

PROOF.

The projection of b to C(A) is A&. It follows that the error
vector (b — A&) is orthogonal to C(A).

(b— Az) L C(A) = (b— Az) L a;, Vi
= al(b— Az) =0, Vi
= AT(b—- Az)=0
= ATAz = A"b
O
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column a;

afe=0
afe=0
combine into
column as

ATe = AT(b— AR) =0

Figure 3.8: Projection onto the column space of a 3 by 2 matrix.
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UNIQUE LEAST-SQUARES SOLUTION

Let A be a matrix of order m x n with linearly independent
columns and m > n. Ax = b has unique least-squares solution

4= (ATA)’1 AT b

PROOF.

Ar=0= ATAz=0=2"TATAz=0= Az =0

So N(ATA) = N(A) and dimN(A”A) = dimN(A) = 0.
Thus rank(A” A) = n and (ATA) is invertible. Hence the
normal equation AT A& = A”b has unique solution

&= (ATA) A" b

]
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Find a least-squares solution of an over-determined system of
linear equations Ax = b, where

1 2 4
1 3, b=|5
0 0 6

A:

=] = = = E DA 46/75
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THEOREM (PROJECTION TO COLUMN SPACE)
Let A be a matrix with linearly independent columns.

@ The projection of any b to column space C(A) is
p=A(A"A) ATb
e The projection matrix is

P-A (ATA)_l AT

The least-squares solution of Ax = b is
&= (ATA) " ATb
The projection of b to C(A) is
p=Ai=A(A"A) ATb

projection matrix
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Fitting Data
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REGRESSION
e Given a data set {(t1,¥1),- -, (tm, Ym) }
e Find a function § = f(t) to fit the data set

@ For example, we may assume
g=f(t)=c+dt

@ The parameters c and d are decided by minimizing the error
between data and function, i.e. between y; and f(¢;)
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LINEAR FITTING FUNCTION

We assume
g=f(t)=c+dt

@ The difference (error) between y; and f(¢;) is
yi — f(ti) = yi — (c+dt;)
o ldeally, we want ¢ and d such that
yi=ft)=c+dt;, i=1,....m

@ We are solving a system of 2 unknowns (for the parameters
¢ and d) and m equations (for the data points)

y
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A SYSTEM OF LINEAR EQUATIONS
The equations to satisfy can be written as

1 4

Y1
oo el
. . [dl - .
1 t,

Ym

It can be represented by Ax = b where
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SOLUTION BY NORMAL EQUATION
Consider Ax = b arising from fitting a data set to a function.

@ Over-determined if the number of data points is more than

the number of parameters

@ Look for a least-squares solution

ATAz = A"b

e Fordata {(t1,v1),- -, (tm,ym)} and function f(t) = c+dt

[1 11 _
ti .t |
! 1

m St

= m iill
St Yt

=1 =1

el .. 1] |”
CZ - tl tm :
] | o
] El Yi
4] ;tiyi

CHEN P
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Fit data set {(—1,1),(1,1),(2,3)} to a linear function.

It leads to an over-determined system Ax = b where
1 -1 1
1 1|, z= m b=|1
1 2 3

Ta |3 2 T, |9
ara= 3o ane-|g

Thus, the least-squares solution is

A:

We have

o[- |

Among all lines, f(t) = ¢+ dt minimizes rf}(yz — f(t:))2
i :

= E 9DAC 53/75
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(a)

Figure 3.9: Straight-line approximation matches the projection p of b.
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Orthonormal Basis
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DEFINITION (ORTHONORMAL VECTORS)
A group of vectors are orthonormal if
@ the vectors are orthogonal

@ every vector is a unit vector (of length 1)

@ A set with orthonormal vectors is orthonormal

e For an orthonormal set {q,,...,q,}

1, ifi=j
y L) = 51 = ’
(4 q]) ! 0, otherwise

@ A basis with orthonormal vectors is orthonormal
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SIMPLIFICATION WITH ORTHONORMAL VECTORS
Suppose A has linearly independent column vectors.

@ The projection matrix to C(A) is
P=A(ATA) A"

o If the column vectors are orthonormal, we have (ATA> =
I and

P=AA" = Z aja;p
j=1

@ Note .
P:ZP]

P

where P; = aja;-F is the matrix for projection to a;.
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VECTOR REPRESENTATION WITH ORTHONORMAL BASIS

Let @ ={q,,-..,q,} be an orthonormal basis of space V. The
representation of a vector x € V with Q is

(q17 .’B)
[xo] = |
(q,, )

PROOF.

Suppose ¢ = Y z;q,.
i=1

n

(qj,l') = (%wZ%‘%) = Z% (qj7qi> = Z%%‘
i=1 i=1

i=ll

]
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INNER PRODUCT WITH AN ORTHONORMAL BASIS

Let @ = {q;,.-.,q,} be an orthonormal basis of space V.
The inner product of & and y of V is the dot product of the
representation of  and y with O

(z,y) = [xo]" [y

PROOF.

=]

Suppose & = Y 7;q; and y = Y y;q;.
i=1 Jj=1

Z Z Y5 (4, q] Z Z Y04 Z TiYi
=1

i=1j5=1 =1 j5=1
= [zo] [yo]

U
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Let g be a unit vector. The matrix for the projection to q is

P =qq"
We have ¢7q = ||q||*> =1, so
@
qq
P=-—= qq”
q94q
O
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PROJECTION TO COLUMN SPACE: ORTHOGONAL MATRIX

Let Q be a matrix with orthonormal column vectors. The matrix
for the projection to C(Q) is

P =QQ"

P=Q(Q"Q) Q" =QQ"
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PROJECTION TO A SPACE WITH AN ORTHONORMAL BASIS

Let {q,,...,q,} be an orthonormal basis of space V. Any
x € V is the sum of the projections of x to the basis vectors

qlu"'7qn'

PROOF.

Let @ be the matrix with columns q,, ...
matrix to C(Q) =V is

,q,,- The projection

P=QQ" = Zq]qj

For any x € V, we have

]
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GRAM-SCHMIDT PROCESS
G.-S. process converts a basis to an orthonormal one

{a/17-~7an} — {qla"‘aqn}

For j =1,...,n, do the following operations
e projection of a; to span(qy,...,q; ;)
p;=q(q.aj) +-+q;.4(q;-1,a;)
e normalization

b,
1b;]]

bj:a'j_pj#oa q; =

Note
span(qy,...,q;) =span(ay,...,a;)
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Figure 3.10: The g; component of b is removed; a and B normalized to g; and g,.
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a; =

— O -
=)
(3]
|
(@]
=)
w
|

= b =ay, ‘h:m:

1 1
2 b, V2
by =a;—q(q,a2)= | 0|, g=7"7=10
=1 1221 -
2 V2
0 0
b; = a3 — q,(q1,a3) — q2(qs,a3) = |1], g5 = |1
0 0
o = = = = 9DQQ
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THEOREM (QR FACTORIZATION)

Suppose A has linearly independent columns. Then A = QR,
where Q has orthonormal columns and R is right-triangular.

PROOF.
Let the columns of A be ai,...,a,  Apply G.-S. to
{ai,...,a,} to get an orthonormal basis {q,,...,q,}.
a; :Zqi(qi,aj), j=1,...,n
i=1
Construct @ with columns q,,...,q, and R with elements

ri; = (q;,a;) so A= QR. Ris right-triangular since for i > j

qu‘{qb?q]} = qz J‘ a’j Espan(q17"'7qj)
= (qiaa’j)zo

]
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SPACE OF FUNCTIONS AND AN INNER PRODUCT
@ The set of real-valued functions is a space
e We denote f(t) by f since it is a vector in a space

@ An inner product in this space is defined by

(£.9) = [ F@g0)at

@ Two functions are orthogonal if

(f.9) = [ fDg(®)dt = 0

@ The length of a function is defined by

IF12 = (£, £) = [ @t
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FUNCTION APPROXIMATION BY POLYNOMIAL
Consider the function approximation problem

f(t) = co + et + cot?
e Denote f = f(t), f1=1, fo=1t, f3=1> We have

f=afi+af+caf;

@ In matrix and vectors

F x
——
Co
Fi fo f3||a|=F
C2

@ This is an over-determined system of linear equations

CHEN P OVER-DETERMINED SYSTEMS & ORTHOGONALITY



NORMAL EQUATION AND LEAST-SQUARES SOLUTION
@ The over-determined system is

@ The normal equation is

@ That is

(f17f1)
(f2>f1)
(vafl)

FT

(flqu)
(f2af2)
(f3jf2)

Fx=f

Fz=FTf

(fl’ f3)] |:60] |:(.f17 f)]
(f27f3) a| = (f27f)
(.f37f3) é2 (fS?.f)

@ The least-squares solution is

o= (

F'F) F'f
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Approximate f = t° by p = ¢ + dt in the interval T = (0, 1).

@ Shortest distance

A,

(¢,d) = argmin || f — p|*

¢,d)

@ Over-determined system and least-squares solution

ie. [(Ffi=1) (fy=1) m =(f=t)

Fz = f,

@ Projection

=] = = E E 9OHACG
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SHORTEST DISTANCE
@ The distance between f and pis || f — p||

1
1F =Pl = [ (¢ —c—atyat

1
= / (t° + & + d** — 2ct® — 2dt° + 2cdt)dt
0

1 g 1, 1 2
= — —d* — —c— =d d
11—|—c +3 30 7+c

@ At the shortest distance, the partial derivatives are zero

A 1

2% +d=-
T S R .
é+gc2=2 21’ 7

3 7
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OVER-DETERMINED SYSTEM AND SOLUTION
@ The over-determined system is

Fx=f
@ The least-squares solution is
&= (F'F) F'f
@ That is

H- [y G [ana]
|-

ENRERRE

(
(
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PROJECTION METHOD
e Find the projection directly
@ An orthogonal basis makes projection easy
e Find an orthogonal basis from (non-orthogonal) {f,, f5}

1

a, = f1 b2:f2_(h(‘haf2>:t_§

@ The projection is
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