Positive Definite Matrix

Chia-Ping Chen

Professor
Department of Computer Science and Engineering
National Sun Yat-sen University

Linear Algebra
Outline and Notation

- $x^T A x$: quadratic form
- $f(x)$: multi-variate function
- $\nabla f(x)$: gradient vector
- H: Hessian matrix
- σ_i: singular value
- Σ: singular value matrix
- $A = U \Sigma V^T$: singular value decomposition of A
- A^+: pseudo-inverse of A
Quadratic Function and Matrix
A quadratic function of variables \(x_1, \ldots, x_n \) is a linear combination of the second-order terms \(x_i^2 \) and \(x_i x_j \).

Details. Let \(c_{ij} \) be the coefficient of term \(x_i x_j \) of a quadratic function of \(n \) variables \(f(x_1, \ldots, x_n) \). Then

\[
f(x_1, \ldots, x_n) = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_i x_j
\]
A quadratic function of n variables can be represented by a symmetric matrix of order $n \times n$.

Construction of matrix. For $f(x_1, \ldots, x_n) = \sum_{i,j=1}^{n} c_{ij}x_ix_j$, define matrix A with $a_{ij} = \frac{1}{2}(c_{ij} + c_{ji})$. Note $a_{ij} = a_{ji}$ so A is symmetric. Furthermore, $a_{ij} + a_{ji} = c_{ij} + c_{ji}$, so

$$f(x_1, \ldots, x_n) = \sum_{i,j=1}^{n} c_{ij}x_ix_j = \sum_{i,j=1}^{n} a_{ij}x_ix_j = \mathbf{x}^T A \mathbf{x}$$

Example. $f(x, y) = ax^2 + 2bxy + cy^2$ can be represented by $f(x) = \mathbf{x}^T A \mathbf{x}$ where

$$\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}, \quad A = \begin{bmatrix} a & b \\ b & c \end{bmatrix}$$
The function $x^T A x$ is called the quadratic form of A.

Positive definite. Matrix A is said to be positive definite if its quadratic form $x^T A x$ is positive for any $x \neq 0$.
Positivity of Eigenvalues

Every eigenvalue of a positive definite matrix is positive.

Proof. Suppose A is a positive definite matrix. Let λ be an eigenvalue of A, and s be an eigenvector of A corresponding to λ. We have

$$As = \lambda s$$

It follows that

$$s^T As = \lambda (s^T s)$$

Hence

$$\lambda = \frac{s^T As}{s^T s} > 0$$
A matrix is positive definite if every eigenvalue of the matrix is positive.

Proof. Suppose every eigenvalue of \(A \) is positive. By spectral theorem, \(A \) has an eigenvalue decomposition \(A = Q \Lambda Q^T \). It follows that

\[
x^T A x = x^T Q \Lambda Q^T x = y^T \Lambda y = \sum_i \lambda_i y_i^2
\]

Hence, the quadratic form \(x^T A x \) is positive for any \(x \neq 0 \), and \(A \) is positive definite.
If a matrix is positive definite, then the determinant of every leading principal sub-matrix is positive.

\textbf{Proof.} Suppose } \mathbf{A} \text{ is positive definite. For every } k, \text{ consider } \mathbf{x}^T = \begin{bmatrix} \mathbf{x}_k^T & 0^T \end{bmatrix} \text{ with } \mathbf{x}_k \in \mathbb{R}^k. \text{ For a non-zero } \mathbf{x}_k, \text{ we have } \mathbf{x} \neq 0, \text{ and}

\[\mathbf{x}^T \mathbf{A} \mathbf{x} = \begin{bmatrix} \mathbf{x}_k^T & 0^T \end{bmatrix} \begin{bmatrix} \mathbf{A}_k & \mathbf{B} \\ \mathbf{B}^T & \mathbf{C} \end{bmatrix} \begin{bmatrix} \mathbf{x}_k \\ 0 \end{bmatrix} = \mathbf{x}_k^T \mathbf{A}_k \mathbf{x}_k > 0 \]

So } \mathbf{A}_k, \text{ the leading principle sub-matrix of } \mathbf{A} \text{ of order } k \times k, \text{ is positive definite. Since the determinant of a matrix is the product of eigenvalues, and every eigenvalue of } \mathbf{A}_k \text{ is positive, } |\mathbf{A}_k| \text{ must be positive.
Positivity of Pivots

If the determinant of every leading principal sub-matrix of a matrix is positive, then the matrix has full positive pivots.

Proof. By assumption $|A| > 0$, so A is non-singular. Let $A = LDU$ be the LDU decomposition of A. Explicitly

$$
\begin{bmatrix}
A_k & B \\
B^T & C
\end{bmatrix}
= \begin{bmatrix}
L_k & 0 \\
0 & * \\
0 & *
\end{bmatrix}
\begin{bmatrix}
D_k & 0 \\
0 & *
\end{bmatrix}
\begin{bmatrix}
U_k & * \\
0 & *
\end{bmatrix}
= \begin{bmatrix}
L_k D_k U_k & * \\
* & *
\end{bmatrix}
$$

So $A_k = L_k D_k U_k$ and $|A_k| = |D_k| = d_1 \ldots d_k$ where d_i is a pivot. Thus

$$
d_k = \frac{|A_k|}{|A_{k-1}|} > 0, \quad k = 1, \ldots, n
$$
Positive Pivots

If a matrix has full positive pivots, then the matrix is positive definite.

Proof. By assumption, A has full pivots, so it is non-singular. Let $A = LDU$ be the LDU decomposition of A. Since A is symmetric, $A = A^T$ or $LDU = U^TDL^T$, so $U = L^T$. Thus

$$A = LDL^T = LD^{1/2}D^{1/2}L^T = R^TR$$

where $R = D^{1/2}L^T$ is non-singular. The quadratic form of A is

$$x^TAx = x^TR^TRx = (Rx)^T(Rx) = \|Rx\|^2$$

which is positive for $x \neq 0$. Hence A is positive definite.
Equivalent Statements for PDM

There are many ways to say a matrix is positive definite.

1. \(A\) is positive definite.
2. Every eigenvalue of \(A\) is positive.
3. The determinant of every leading principal sub-matrices of \(A\) is positive.
4. \(A\) has full positive pivots.

What we have shown in the previous slides are

\[1 \iff 2\]

and

\[1 \implies 3 \implies 4 \implies 1\]
Example

\[
A = \begin{bmatrix}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{bmatrix}
\]

The quadratic form of \(A \) is

\[
x^T A x = 2x_1^2 + 2x_2^2 + 2x_3^2 - 2x_1x_2 - 2x_2x_3
\]

\[
= 2 \left(x_1 - \frac{1}{2}x_2 \right)^2 + \frac{3}{2} \left(x_2 - \frac{2}{3}x_3 \right)^2 + \frac{4}{3}x_3^2
\]

The eigenvalues, the determinants, and the pivots are

\[
\text{spectrum}(A) = \{2, 2 \pm \sqrt{2}\}, \ |A_1| = 2, \ |A_2| = 3, \ |A_3| = 4
\]
Let A be a positive definite matrix. Then the equation $x^T A x = 1$ is an **ellipsoid**.

Explanation. By spectral theorem $A = Q \Lambda Q^T$. Note that $\{q_1, \ldots, q_n\}$ is an orthonormal basis, and the representation of x in this basis is $Q^T x$. By a change of basis, $x^T A x = 1$ can be converted to

$$x^T Q \Lambda Q^T x = y^T \Lambda y = \sum_i \lambda_i y_i^2 = 1$$

This is an ellipsoid with the axes of symmetry along q_i’s, with the intercepts of

$$y_i = \pm \left(\sqrt{\lambda_i}\right)^{-1}$$
Negative definite. Matrix A is said to be negative definite if its quadratic form $x^T Ax$ is negative for any $x \neq 0$.

Semi-definite. Matrix A is said to be positive semi-definite (resp. negative semi-definite) if its quadratic form $x^T Ax$ is non-negative (resp. non-positive) for any x.
Approximation and Extremal Points
The first-order approximation to a multi-variate function $f(x)$ near x_0 is

$$f(x) \approx f(x_0) + \nabla f(x_0)^T(x - x_0)$$

where

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} \\ \vdots \\ \frac{\partial f(x)}{\partial x_n} \end{bmatrix}$$

Gradient. $\nabla f(x)$ is called the gradient of $f(x)$.

Chen P Positive Definite Matrix
The second-order approximation to \(f(x) \) near \(x_0 \) is

\[
f(x) \approx f(x_0) + \nabla f(x_0)^T (x - x_0) + \frac{1}{2} (x - x_0)^T H(x_0) (x - x_0)
\]

where

\[
H(x) = \begin{bmatrix}
\frac{\partial^2 f(x)}{\partial x_1^2} & \cdots & \frac{\partial^2 f(x)}{\partial x_1 \partial x_n} \\
\vdots & \ddots & \vdots \\
\frac{\partial^2 f(x)}{\partial x_i \partial x_j} & \cdots & \frac{\partial^2 f(x)}{\partial x_j^2}
\end{bmatrix}
\]

Hessian. \(H(x) \) is called the Hessian of \(f(x) \).
x_0 is called a **stationary point** of $f(x)$ if $\nabla f(x_0) = 0$.

Near a stationary point. Suppose x_0 is a stationary point of $f(x)$. Near x_0, the second-order approximation to $f(x)$ is

$$f(x) \approx f(x_0) + \frac{1}{2}(x - x_0)^T H(x_0)(x - x_0)$$
Example

Find the second-order approximation near $x_0 = 0$ to

$$f(x) = 2x^2 + 4xy + y^2$$

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x} \\ \frac{\partial f(x)}{\partial y} \end{bmatrix} = \begin{bmatrix} 4x + 4y \\ 4x + 2y \end{bmatrix}, \quad H(x) = \begin{bmatrix} \frac{\partial}{\partial x} \left(\frac{\partial f(x)}{\partial x} \right) & \frac{\partial}{\partial y} \left(\frac{\partial f(x)}{\partial x} \right) \\ \frac{\partial}{\partial x} \left(\frac{\partial f(x)}{\partial y} \right) & \frac{\partial}{\partial y} \left(\frac{\partial f(x)}{\partial y} \right) \end{bmatrix}$$

$$f(0) = 0, \quad \nabla f(0) = 0, \quad H(0) = \begin{bmatrix} 4 & 4 \\ 4 & 2 \end{bmatrix}$$

$$f(x) \approx f(0) + \frac{1}{2}(x - 0)^T H(0)(x - 0) = 2x^2 + 4xy + y^2$$
Example

Find the second-order approximation near $x_0 = 0$ to

$$F(x) = 7 + 2(x + y)^2 - y \sin y - x^3$$

\[
\begin{align*}
\nabla F(x) &= \left[\frac{\partial F(x)}{\partial x}, \frac{\partial F(x)}{\partial y}\right] = \begin{bmatrix} 4(x + y) - 3x^2 \\ 4(x + y) - \sin y - y \cos y \end{bmatrix} \\
H(x) &= \begin{bmatrix}
\frac{\partial}{\partial x} \left(\frac{\partial F(x)}{\partial x} \right) & \frac{\partial}{\partial y} \left(\frac{\partial F(x)}{\partial x} \right) \\
\frac{\partial}{\partial x} \left(\frac{\partial F(x)}{\partial y} \right) & \frac{\partial}{\partial y} \left(\frac{\partial F(x)}{\partial y} \right)
\end{bmatrix} = \begin{bmatrix} 4 - 6x & 4 \\ 4 & 4 - 2 \cos y + y \sin y \end{bmatrix}
\end{align*}
\]

$$F(0) = 7, \quad \nabla F(0) = 0, \quad H(0) = \begin{bmatrix} 4 & 4 \\ 4 & 2 \end{bmatrix}$$

$$F(x) \approx F(0) + \frac{1}{2}(x - 0)^T H(0)(x - 0) = 7 + 2x^2 + 4xy + y^2$$
A point x_0 is called a **local minimum** of $f(x)$ if $f(x) \geq f(x_0)$ for every point in a small neighborhood of x_0.

Similarly, x_0 is called a **local maximum** if $f(x) \leq f(x_0)$ in a small neighborhood of x_0.
Let x_0 be a stationary point of $f(x)$.

- x_0 is **local minimum** if $H(x_0)$ is positive definite.
- x_0 is **local maximum** if $H(x_0)$ is negative definite.
- x_0 is a **saddle point** if it is neither local maximum nor local minimum.

For example, 0 is a stationary point of $F(x)$, and it is a saddle point because $2x^2 + 4xy + y^2$ can be positive or negative as x and y vary.
Singular Value Decomposition
A **singular value** of a real matrix A is the square root of a non-zero eigenvalue of (A^TA).

It means to find the singular values of A, one needs to find the non-zero eigenvalues of (A^TA).

Singular vector. If σ is a singular value of A, then there exists $\mathbf{v} \neq 0$ such that

$$
(A^TA)\mathbf{v} = \sigma^2\mathbf{v}
$$

Such a \mathbf{v} is called a right singular vector of A with singular value σ. It is an eigenvector of (A^TA) with eigenvalue σ^2.
A singular value is always positive.

The matrix \((A^T A)\) is positive semi-definite:

\[x^T (A^T A) x = (Ax)^T (Ax) = \|Ax\|^2 \geq 0 \]

so the eigenvalues of \((A^T A)\) must be non-negative, and the non-zero eigenvalues must be positive. Hence a singular value is positive.
A matrix of rank \(r \) has exactly \(r \) singular values.

Proof. Note \((A^T A)x = 0 \Leftrightarrow x^T A^T A x = 0 \Leftrightarrow A x = 0\), so \(\mathcal{N}(A^T A) = \mathcal{N}(A)\). Let \(A \) be of order \(m \times n \) with rank \(r \). Then \(\dim \mathcal{N}(A) = n - r = \dim \mathcal{N}(A^T A) \). Matrix \((A^T A)\) is non-defective, so the algebraic multiplicity of eigenvalue 0 is \((n - r) \). It follows that the total algebraic multiplicities of the non-zero eigenvalues of \((A^T A)\) is

\[
n - (n - r) = r
\]

Notation. Singular values are denoted by \(\sigma_1, \ldots, \sigma_r \).
A real matrix can be decomposed by its singular values and singular vectors. This is called singular value decomposition.

A matrix of order $m \times n$ has SVD

$$A = U \Sigma V^T$$

where Σ is an $m \times n$ "diagonal" matrix with the singular values of A as the leading diagonal elements, U is an $m \times m$ orthogonal matrix with the eigenvectors of $(A A^T)$ as columns, and V is an $n \times n$ orthogonal matrix with the eigenvectors of $(A^T A)$ as columns.
Proof of SVD 1

Let r be the rank of A. Let $\sigma_1 \ldots \sigma_r$ be the singular values of A. Let $v_1 \ldots v_r$ be orthonormal eigenvectors of $(A^T A)$ with positive eigenvalues σ_i^2 and $u_1 \ldots u_r$ be defined by $u_i = \frac{Av_i}{\sigma_i}$. Note

$$(AA^T)u_i = \frac{AA^T Av_i}{\sigma_i} = \frac{A\sigma_i^2 v_i}{\sigma_i} = \sigma_i^2 u_i, \quad i = 1, \ldots, r$$

So u_i is an eigenvector of (AA^T) with the same eigenvalue σ_i^2. Let $v_{r+1} \ldots v_n$ be orthonormal eigenvectors of $(A^T A)$ with eigenvalue 0, and $u_{r+1} \ldots u_m$ be eigenvectors of (AA^T) with eigenvalue 0. Construct matrices U and V by

$$U = \begin{bmatrix} u_1 & \ldots & u_m \end{bmatrix}, \quad V = \begin{bmatrix} v_1 & \ldots & v_n \end{bmatrix}$$
We show $\mathbf{U}^T \mathbf{A} \mathbf{V} = \Sigma$ which leads to SVD $\mathbf{A} = \mathbf{U} \Sigma \mathbf{V}^T$. For $j = 1 \ldots r$, we have $\mathbf{u}_j = \frac{\mathbf{A}\mathbf{v}_j}{\sigma_j}$, so $\mathbf{A}\mathbf{v}_j = \sigma_j \mathbf{u}_j$ and

$$(\mathbf{U}^T \mathbf{A} \mathbf{V})_{ij} = \mathbf{u}_i^T \mathbf{A} \mathbf{v}_j = \mathbf{u}_i^T (\sigma_j \mathbf{u}_j) = \sigma_j \delta_{ij}, \ i = 1, \ldots, m$$

For $j = r + 1 \ldots n$, we have $(\mathbf{A}^T \mathbf{A}) \mathbf{v}_j = 0$, so $\mathbf{A} \mathbf{v}_j = 0$ and

$$(\mathbf{U}^T \mathbf{A} \mathbf{V})_{ij} = \mathbf{u}_i^T \mathbf{A} \mathbf{v}_j = 0, \ i = 1, \ldots, m$$

Combining the results, we get

$$\mathbf{U}^T \mathbf{A} \mathbf{V} = \Sigma$$

Hence

$$\mathbf{A} = \mathbf{U} \Sigma \mathbf{V}^T$$
Matrices in SVD

For a matrix of order $m \times n$ with SVD $A = U\Sigma V^T$, the column vectors of U (resp. V) is an orthonormal basis of \mathbb{R}^m (resp. \mathbb{R}^n).

U must be an eigenvector matrix of AA^T.

$$AA^T = (U\Sigma V^T)(V\Sigma^T U^T) = U \begin{pmatrix} \Sigma \Sigma^T \end{pmatrix} U^T$$

Similarly, V must be an eigenvector matrix of $A^T A$.

$$A^T A = (V\Sigma^T U^T)(U\Sigma V^T) = V \begin{pmatrix} \Sigma^T \Sigma \end{pmatrix} V^T$$
The right (resp. left) singular vectors in an SVD of a matrix form an orthonormal basis of the row space (resp. column space) of the matrix.

Row space. \(\{v_{r+1}, \ldots, v_n\} \) contains eigenvectors of \((A^T A) \) with eigenvalue 0, so it is a basis of \(N(A^T A) = N(A) \). This implies \(\{v_1, \ldots, v_r\} \) is a basis of the orthogonal complement of \(N(A) \), i.e. the row space of \(A \).

Column space. We have \(AV = U\Sigma \). The first \(r \) columns are

\[
Av_i = \sigma_i u_i, \quad i = 1, \ldots, r
\]

So \(\{u_1, \ldots, u_r\} \) is a linearly independent set in the column space of \(A \). Hence, it is a basis of \(C(A) \).
Example

Find SVD of

$$A = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$

The eigenvalues of $$A^T A$$ are

$$\begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix}$$

are $$\lambda_1 = 3, \lambda_2 = 1, \lambda_3 = 0$$. Hence the singular values of $$A$$ are

$$\sigma_1 = \sqrt{3}, \sigma_2 = 1$$
Orthonormal eigenvectors of \((A^T A) \) are

\[
\mathbf{v}_1 = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}, \quad \mathbf{v}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \quad \mathbf{v}_3 = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}
\]

The corresponding left singular vectors of \(A \) are

\[
\mathbf{u}_1 = \frac{A \mathbf{v}_1}{\sigma_1} = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \quad \mathbf{u}_2 = \frac{A \mathbf{v}_2}{\sigma_2} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}
\]

So

\[
A = U \Sigma V^T = \begin{bmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \sqrt{3} & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{bmatrix}
\]
Every real matrix of rank r is the sum of r real matrices of rank 1 based on singular values and singular vectors.

By SVD

$$A = U \Sigma V^T = \sigma_1 u_1 v_1^T + \cdots + \sigma_r u_r v_r^T$$

$$= A_1 + \cdots + A_r$$

Image approximation. For an image of size 1000×1000, a compression rate of 90% is achieved if 50 terms are used.

Data Compression with SVD
Let $A = UΣV^T$ be an SVD of A. For a rectangular system of linear equations $Ax = b$, the least-squares solution with the minimum length is $x^+ = VΣ^+U^Tb$.

Pseudo-inverse. The minimum-length least-squares solution can be written as $x^+ = A^+b$, where $A^+ = VΣ^+U^T$. A^+ is called the **pseudo-inverse** of A.