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notation
xTAx: quadratic form
f(x): multi-variate function
∇f(x): gradient vector of f(x)
H(x): Hessian matrix
σ: singular value
Σ: singular value matrix
A = UΣV T : singular value decomposition of A

A+: pseudo-inverse of A
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Quadratic Function and Quadratic Form
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Definition (quadratic function)
A quadratic function of n variables is a sum of second-order
terms.

f(x1, . . . , xn) =
n∑
i=1

n∑
j=1

cijxixj

Definition (quadratic form)
Let A be a matrix of order n× n.

The quadratic form of A is xTAx

xTAx is a quadratic function of n variables
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symmetric matrices suffice
Consider

f(x1, . . . , xn) =
n∑
i=1

n∑
j=1

cijxixj

Define matrix A

aij = 1
2(cij + cji)

Then
f(x1, . . . , xn) = xTAx

A is symmetric
Eigenvalues of A are real
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Example (Quadratic form)

A =
[
a b
b c

]

Quadratic form of A

xTAx =
[
x1 x2

] [a b
b c

] [
x1
x2

]
= ax2

1 + 2bx1x2 + cx2
2

Quadratic function of (x1, x2)
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Definition (positive definite matrix)
Let A be a real symmetric matrix.

A is positive definite if the quadratic form of A is positive
Specifically

xTAx > 0

for any x 6= 0
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Lemma (positive definite ⇒ positive eigenvalues)
Let A be positive definite. The eigenvalues of A are positive.

Proof.
Let λ be an eigenvalue of A and s be a corresponding eigen-
vector. Then

As = λs

It follows that
sTAs = λ(sTs)

Hence
λ = sTAs

sTs
> 0
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Lemma (positive eigenvalues ⇒ positive definite)
If all eigenvalues of A are positive, A is positive definite.

Proof.
Let A have spectral decomposition A = QΛQT where Q is
orthogonal. Consider the quadratic form of A.

xTAx =
yT︷ ︸︸ ︷

xTQ Λ

y︷ ︸︸ ︷
QTx = yTΛy =

∑
i

λiy
2
i

For x 6= 0, we have y 6= 0 and thus xTAx = ∑
i λiy

2
i > 0.

Hence A is positive definite.
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Lemma (positive definite ⇒ positive determinant)
Let A be positive definite. Every leading principal sub-matrix
of A has a positive determinant.

Proof.
Consider xT =

[
xT
k 0T

]
with xk ∈ Rk. For xk 6= 0

xTAx =
[
xT
k 0T

] [Ak B
BT C

] [
xk

0

]
= xT

kAkxk > 0

So Ak is positive definite, the eigenvalues of Ak are positive,
and

|Ak| =
k∏
i=1

λk,i > 0

where λk,i is an eigenvalue of Ak.
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Lemma (positive determinants ⇒ positive pivots)
If every leading principal sub-matrix of A has positive determi-
nant, the pivots of A are positive.

Proof.
Let A have LDU decomposition A = LDU . Then[

Ak B
BT C

]
=
[
Lk 0
∗ ∗

] [
Dk 0
0 ∗

] [
U k ∗
0 ∗

]
=
[
LkDkU k ∗
∗ ∗

]

So Ak = LkDkU k. Let d1, . . . , dn be the pivots of A. Then

d1 = a11 > 0, dk = |Dk|
|Dk−1|

= |Ak|
|Ak−1|

> 0, k = 2, . . . , n
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Lemma (positive pivots ⇒ positive definite)
If the pivots of A are positive, A is positive definite.

Proof.
Let A have LDU decomposition A = LDU .

A = AT ⇒ LDU = UTDLT ⇒ U = LT

Thus
A = LDLT = LD1/2D1/2LT = RTR

where R = D1/2LT is non-singular. For x 6= 0

xTAx = xTRTRx = (Rx)T (Rx) = ‖Rx‖2 > 0

Hence A is positive definite.

Chen P Positive Definite Matrix



14/57

Theorem (conditions for positive definite)
The following conditions are equivalent.

1 A is positive definite
2 The eigenvalues of A are positive
3 The determinants of the leading principal sub-matrices of

A are positive
4 The pivots of A are positive

The previous slides show

1© ⇔ 2©

and
1© ⇒ 3© ⇒ 4© ⇒ 1©
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Example (positive definite matrix)

A =

 2 −1 0
−1 2 −1
0 −1 2


Quadratic form

xTAx = 2x2
1 + 2x2

2 + 2x2
3 − 2x1x2 − 2x2x3

= 2
(
x1 −

1
2x2

)2
+ 3

2

(
x2 −

2
3x3

)2
+ 4

3x
2
3

Eigenvalues, determinants, pivots

spectrum(A) = {2, 2±
√

2}, |A1| = 2, |A2| = 3, |A3| = 4

A =

 1 0 0
−1

2 1 0
0 −2

3 1


2

3
2

4
3


1 −1

2 0
0 1 −2

3
0 0 1
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ellipsoid
Let A be positive definite. xTAx = 1 defines an ellipsoid.

With a spectral decomposition A = QΛQT

xTAx = xTQΛQTx = yTΛy =
∑
i

λiy
2
i

where Q =
[
q1 . . . qn

]
and y = QTx

{q1, . . . qn} is an orthonormal eigenbasis
yiqi is the projection of x on qi
With axes q1, . . . qn, the coordinates are y1, . . . , yn
xTAx = 1⇒ ∑

i λiy
2
i = 1 is an ellipsoid

The intercepts are

li = ±
(√

λi

)−1
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Example (quadratic form and ellipse)

Chen P Positive Definite Matrix



18/57

Definition (negative definite and semidefinite)
Let A be a real symmetric matrix.

A is negative definite if xTAx < 0 for x 6= 0
A is positive semidefinite if xTAx ≥ 0 for any x

A is negative semidefinite if xTAx ≤ 0 for any x
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Approximation
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Definition (partial derivatives)
Let f(x1, . . . , xn) be a multi-variate function.

First-order partial derivatives

fxi
= ∂f

∂xi
, i = 1, . . . , n

Second-order partial derivatives

fxixj
= ∂fxi

∂xj
= ∂2f

∂xj∂xi
, i, j = 1, . . . , n

Note that
fxixj

= fxjxi
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Definition (gradient and Hessian)
Let f(x1, . . . , xn) be a function.

Gradient vector

∇f =


fx1

...
fxn


Hessian matrix

H =


fx1x1 . . . fx1xn

... . . . ...
fxnx1 . . . fxnxn
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function approximation
Let f(x) be a function.

First-order approximation near x0

f(x) ≈ f(x0) + ∇f(x0)T (x− x0)

Second-order approximation near x0

f(x) ≈ f(x0) + ∇f(x0)T (x− x0)

+ 1
2(x− x0)TH(x0)(x− x0)
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Definition (stationary points)
Let f(x) be a function. x0 is a stationary point of f(x) if

∇f(x0) = 0

Let x0 be a stationary point of f(x). Near x0, we have

f(x) ≈ f(x0) + 1
2(x− x0)TH(x0)(x− x0)
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Example (function approximation)
Approximate

f(x, y) = 2x2 + 4xy + y2

near (0, 0).

∇f =
[
fx
fy

]
=
[
4x+ 4y
4x+ 2y

]
, H =

[
fxx fxy
fyx fyy

]
=
[
4 4
4 2

]

f(0) = 0, ∇f(0) = 0, H(0) =
[
4 4
4 2

]

f(x) ≈ f(0) + 1
2(x− 0)TH(0)(x− 0) = 2x2 + 4xy + y2
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Example (function approximation)
Approximate

F (x, y) = 7 + 2(x+ y)2 − y sin y − x3

near (0, 0).

∇F =
[
Fx
Fy

]
=
[

4(x+ y)− 3x2

4(x+ y)− sin y − y cos y

]

H =
[
Fxx Fxy
Fyx Fyy

]
=
[
4− 6x 4

4 4− 2 cos y + y sin y

]

F (0) = 7, ∇F (0) = 0, H(0) =
[
4 4
4 2

]

F (x) ≈ F (0) + 1
2(x− 0)TH(0)(x− 0) = 7 + 2x2 + 4xy+ y2
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Definition (local minimum and local maximum)
Let f(x) be a function.

x0 is a local minimum if in a neighborhood of x0

f(x) ≥ f(x0)

x0 is a local maximum if in a neighborhood of x0

f(x) ≤ f(x0)
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optimality of a stationary point
Let f(x) be a function. Let x0 be a stationary point and H
be the Hessian matrix at x0.

x0 is a local minimum if H is positive semidefinite
x0 is a local maximum if H is negative semidefinite
x0 is a saddle point if it is neither a local maximum nor a
local minimum

For example, (0, 0) is a saddle point of F (x, y).
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bowl or saddle
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Singular Value Decomposition
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basic idea
Let A be a real matrix.

Real symmetric
(
ATA

)
and

(
AAT

)
Decompose A with the eigenvalues and eigenvectors of(
ATA

)
and

(
AAT

)
An extension of eigen-decomposition

(
ATA

)T
= AT

(
AT

)T
=
(
ATA

)
(
AAT

)T
=
(
AT

)T
AT =

(
AAT

)
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(
ATA

)
and

(
AAT

)
Let A be a real matrix.

Positive semi-definite
(
ATA

)
and

(
AAT

)
Non-negative eigenvalues
Real and orthonormal eigenvectors

xT
(
ATA

)
x = (Ax)T (Ax) = ‖Ax‖2 ≥ 0

yT
(
AAT

)
y =

(
ATy

)T (
ATy

)
= ‖ATy‖2 ≥ 0
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Definition (singular value and singular vector)
Let A be a real matrix. Square roots of the positive eigenvalues
of
(
ATA

)
are the singular values of A.

Let σ be a singular value of A.
σ2 is an eigenvalue of

(
ATA

)
∃v 6= 0 (

ATA
)

v = σ2v

σ2 is also an eigenvalue of
(
AAT

)
∃u 6= 0 (

AAT
)

u = σ2u

u is left singular vector and v is right singular vector
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Definition (singular space)
Let A be a real matrix and σ be a singular value of A.

Right singular space

Rσ(A) =
{
v |
(
ATA

)
v = σ2v

}
Left singular space

Lσ(A) =
{
u |
(
AAT

)
u = σ2u

}
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Lemma (linearly independent singular vectors∗)
Let A be a real matrix of rank r. There exists a linearly inde-
pendent set containing r right singular vectors of A.

Proof.
Suppose N(A) is of dimension n− r. N

(
ATA

)
= N(A) since

(
ATA

)
x = 0⇒ xTATAx = 0⇒ Ax = 0⇒

(
ATA

)
x = 0

So eigenvalue 0 of
(
ATA

)
has multiplicity (n − r), and the

non-zero eigenvalues of
(
ATA

)
have total multiplicity

n− (n− r) = r

Thus, there are r linearly independent right singular vectors.
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Theorem (singular value decomposition)
Let A be a real matrix of order m× n.

A = UΣV T

Σ is an m× n ”diagonal” matrix with the singular values
of A as the leading diagonal elements
U is an m×m orthogonal matrix with the eigenvectors of(
AAT

)
as columns

V is an n× n orthogonal matrix with the eigenvectors of(
ATA

)
as columns
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matrix construction
Find singular values σ1 . . . σr

Find orthonormal right singular vectors v1 . . . vr

Find orthonormal left singular vectors ui = Avi

σi

Find orthonormal vr+1 . . . vn in E0
(
ATA

)
Find orthonormal ur+1 . . . um in E0

(
AAT

)

Σ =


σ1 . . . 0
... . . . ... 0
0 . . . σr

0 0



U =

u1 . . . um

 , V =

v1 . . . vn
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proof of singular value decomposition.
For j = 1, . . . , r and i = 1, . . . ,m

(
AAT

)
uj = AATAvj

σj
=

Aσ2
jvj

σj
= σ2

juj

uT
i uj =

(
Avi
σi

)T (
Avj
σj

)
= vTi ATAvj

σiσj
= δij

(UTAV )ij = uT
i Avj = uT

i (σjuj) = σjδij

For j = r + 1, . . . , n and i = 1, . . . ,m

(UTAV )ij = uT
i Avj = uT

i 0 = 0

Thus
UTAV = Σ ⇒ A = UΣV T
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matrices in singular value decomposition
Suppose A has SVD A = UΣV T .

U is eigenvector matrix of
(
AAT

)

AAT =
(
UΣV T

) (
V ΣTUT

)
= U

diagonal︷ ︸︸ ︷(
ΣΣT

)
UT

V is eigenvector matrix of
(
ATA

)

ATA =
(
V ΣTUT

) (
UΣV T

)
= V

diagonal︷ ︸︸ ︷(
ΣTΣ

)
V T
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singular vectors and fundamental subspaces∗

Suppose A has SVD A = UΣV T .
The right singular vectors of A in V form an orthonormal
basis of C

(
AT

)
The left singular vectors of A in U form an orthonormal
basis of C (A)
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Suppose A has order m× n and rank r.
vr+1, . . . ,vn are eigenvectors of

(
ATA

)
with eigenvalue

0 (
ATA

)
vj = 0 vj = 0

so they form a basis of N(ATA) = N(A). It follows that
v1, . . . ,vr form a basis of the orthogonal complement of
N(A), i.e. C

(
AT

)
.

The first r columns of AV = UΣ means

Avi = σiui

Thus u1, . . . ,ur are vectors in C (A). Since they are lin-
early independent, they form a basis of C(A).
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Example (singular value decomposition)

A =
[
−1 1 0
0 −1 1

]

Singular values

ATA =

 1 −1 0
−1 2 −1
0 −1 1


The eigenvalues are λ1 = 3, λ2 = 1, λ3 = 0. The singular
values are

σ1 =
√

3, σ2 = 1
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Right singular vectors (and orthonormal eigenvectors)

v1 = 1√
6

 1
−2
1

 , v2 = 1√
2

−1
0
1

 , v3 = 1√
3

1
1
1


Left singular vectors (and orthonormal eigenvectors)

u1 = Av1

σ1
= 1√

2

[
−1
1

]
, u2 = Av2

σ2
= 1√

2

[
1
1

]

SVD

A = UΣV T =
[
− 1√

2
1√
2

1√
2

1√
2

] [√
3 0 0

0 1 0

] 
1√
6 − 2√

6
1√
6

− 1√
2 0 1√

2
1√
3

1√
3

1√
3
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SVD for approximation
Suppose A has rank r and SVD A = UΣV T .

A = UΣV T

= σ1u1v
T
1 + · · ·+ σrurv

T
r

= A1 + · · ·+ Ar

A is the sum of r matrices of rank 1
An image of size 1000 × 1000 can be compressed with a
rate of 90% when 50 terms are used
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Theorem (pseudo-inverse∗ and SVD)
Suppose A has SVD A = UΣV T .

The pseudo inverse of A is

A+ = V Σ+UT

For any b, the minimum-length least-squares solution to
Ax = b is

x+ = A+b
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Minimum Principles∗
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minimum principle for square system
Let A be positive definite. Consider Ax = b.

The system is non-singular
It can be solved by minimum principle: x0 is a solution of
Ax = b if and only if it minimizes

P (x) = 1
2xTAx− xTb

Note
∇
(
xTAx

)
= 2Ax, ∇

(
xTb

)
= b

so
∇P (x) = Ax− b
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minimum principle for over-determined system
Let Ax = b be an over-determined system of linear equations.
Such a system can be solved by minimum principle.

Specifically, the sum of squared errors as a function of x is

E(x) = ‖Ax− b‖2

= (Ax− b)T (Ax− b)
= xTATAx− 2xTATb + bTb

An x0 that achieves the minimum of E(x) satisfies

∇E(x)
∣∣∣∣∣
x=x0

= 0

That is
ATAx0 = ATb
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Definition (Rayleigh quotient)
Let A be a symmetric matrix. The Rayleigh quotient of A is

R(x) = xTAx

xTx

Let Q = q1, . . . , qn be an orthonormal eigenbasis of A,
corresponding to eigenvalues λ1 ≤ · · · ≤ λn
For any x = ∑

i
xiqi, we have

R(x) = xTAx

xTx
=

(∑
i
xiqi

)T
A
(∑

i
xiqi

)
(∑

i
xiqi

)T (∑
i
xiqi

)

=

∑
i
λix

2
i∑

i
x2
i
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Theorem (extremum of Rayleigh quotient)
Let A be a symmetric matrix and Q = {q1, . . . , qn} be or-
thonormal eigenbasis of A, corresponding to eigenvalues

λ1 ≤ · · · ≤ λn

The global minimum of the Rayleigh quotient of A is λ1

The global maximum of the Rayleigh quotient of A is λn
The minimum λ1 is attained by q1 (i.e. [xQ] = {δi,1})

λ1 = min
x
R(x)

The maximum λn is attained by qn (i.e. [xQ] = {δi,n})

λn = max
x

R(x)
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diagonal elements and eigenvalues
Let A be a symmetric matrix.

For a unit vector along coordinate axis, R(ei) = aii

Thus aii is bounded by eigenvalues

λ1 ≤ aii ≤ λn

In the cases of all positive eigenvalues for A, we have

1√
λn
≤ 1
√
aii
≤ 1√

λ1

The intercept of ellipsoid xTAx = 1 along a coordinate
axis is bounded
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Theorem (saddle points of Rayleigh quotient)
Let A be a symmetric matrix and Q = {q1, . . . , qn} be or-
thonormal eigenbasis of A, corresponding to eigenvalues

λ1 ≤ · · · ≤ λn

The eigenvectors q2, . . . , qn−1 are saddle points of R(x).

Consider q2 for example.
If we move from q2 along q1, R(x) decreases
If we move from q2 along q2, R(x) does not change
If we move from q2 along q3, R(x) increases
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Theorem (Rayleigh quotient in a hyperplane)
Let A be a symmetric matrix with orthonormal eigenvectors
q1, . . . , qn and eigenvalues λ1 ≤ · · · ≤ λn.

λ2 = max
v

[
min
x∈v⊥

R(x)
]

Let v be a vector and consider R(x) in the subspace v⊥.
For v = q1

λ2 = min
x∈q⊥

1

R(x)

Given v, R(x) can be smaller as x can have component
along q1

λ2 ≥ min
x∈v⊥

R(x)

Thus
λ2 = max

v

[
min
x∈v⊥

R(x)
]
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Corollary (Rayleigh quotient in a subspace)
For the maximum in a hyperplane, we have

λn−1 ≤ max
x∈v⊥

R(x)

λn−1 = min
v

[
max
x∈v⊥

R(x)
]

Let V be a subspace of dimension j. We have

λj+1 = max
V

[
min
x∈V⊥

R(x)
]

λn−j = min
V

[
max
x∈V⊥

R(x)
]
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Theorem (intertwining of eigenvalues)
Let A be a real symmetric matrix and B be (n− 1)× (n− 1)
matrix formed by stripping the last row and column of A.

λ1(A) ≤ λ1(B) ≤ λ2(A) ≤ λ2(B) ≤ · · · ≤ λn−1(B) ≤ λn(A)

Example (intertwining of eigenvalues)

A =

 2 −1 0
−1 2 −1
0 −1 2

 , B =
[

2 −1
−1 2

]

λ1(A) = 2−
√

2, λ2(A) = 2, λ3(A) = 2 +
√

2

λ1(B) = 1, λ2(B) = 3
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