Positive Definite Matrix

Chia-Ping Chen

Professor
Department of Computer Science and Engineering
National Sun Yat-sen University

Linear Algebra

Outline

- Quadratic form
- Function approximation
- Singular value decomposition
- Minimum principles

NOTATION

- $\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}$: quadratic form
- $f(\boldsymbol{x})$: multi-variate function
- $\boldsymbol{\nabla} f(\boldsymbol{x})$: gradient vector of $f(\boldsymbol{x})$
- $\boldsymbol{H}(\boldsymbol{x})$: Hessian matrix
- σ : singular value
- Σ : singular value matrix
- $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}$: singular value decomposition of \boldsymbol{A}
- \boldsymbol{A}^{+}: pseudo-inverse of \boldsymbol{A}

Quadratic Function and Quadratic Form

Definition (Quadratic function)

A quadratic function of n variables is a sum of second-order terms.

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} x_{i} x_{j}
$$

DEFINITION (QUADRATIC FORM)

Let \boldsymbol{A} be a matrix of order $n \times n$.

- The quadratic form of \boldsymbol{A} is $\boldsymbol{x}^{T} \boldsymbol{A x}$
- $\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}$ is a quadratic function of n variables

SYMMETRIC MATRICES SUFFICE

Consider

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} x_{i} x_{j}
$$

Define matrix \boldsymbol{A}

$$
a_{i j}=\frac{1}{2}\left(c_{i j}+c_{j i}\right)
$$

Then

$$
f\left(x_{1}, \ldots, x_{n}\right)=\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}
$$

- \boldsymbol{A} is symmetric
- Eigenvalues of \boldsymbol{A} are real

Example (Quadratic Form)

$$
\boldsymbol{A}=\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]
$$

- Quadratic form of \boldsymbol{A}

$$
\begin{aligned}
\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x} & =\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
& =a x_{1}^{2}+2 b x_{1} x_{2}+c x_{2}^{2}
\end{aligned}
$$

- Quadratic function of $\left(x_{1}, x_{2}\right)$

DEFINITION (POSITIVE DEFINITE MATRIX)
Let \boldsymbol{A} be a real symmetric matrix.

- \boldsymbol{A} is positive definite if the quadratic form of \boldsymbol{A} is positive
- Specifically

$$
\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}>0
$$

for any $\boldsymbol{x} \neq \mathbf{0}$

LEMMA (POSITIVE DEFINITE \Rightarrow POSITIVE EIGENVALUES)

Let \boldsymbol{A} be positive definite. The eigenvalues of \boldsymbol{A} are positive.

Proof.

Let λ be an eigenvalue of \boldsymbol{A} and \boldsymbol{s} be a corresponding eigenvector. Then

$$
\boldsymbol{A} \boldsymbol{s}=\lambda \boldsymbol{s}
$$

It follows that

$$
\boldsymbol{s}^{T} \boldsymbol{A} \boldsymbol{s}=\lambda\left(\boldsymbol{s}^{T} \boldsymbol{s}\right)
$$

Hence

$$
\lambda=\frac{\boldsymbol{s}^{T} \boldsymbol{A} \boldsymbol{s}}{\boldsymbol{s}^{T} \boldsymbol{s}}>0
$$

LEMMA (POSITIVE EIGENVALUES \Rightarrow POSITIVE DEFINITE)

 If all eigenvalues of \boldsymbol{A} are positive, \boldsymbol{A} is positive definite.
Proof.

Let \boldsymbol{A} have spectral decomposition $\boldsymbol{A}=\boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^{T}$ where \boldsymbol{Q} is orthogonal. Consider the quadratic form of \boldsymbol{A}.

$$
\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}=\overbrace{\boldsymbol{x}^{T} \boldsymbol{Q}}^{\boldsymbol{y}^{T}} \boldsymbol{\Lambda} \overbrace{\boldsymbol{Q}^{T} \boldsymbol{x}}^{\boldsymbol{y}}=\boldsymbol{y}^{T} \boldsymbol{\Lambda} \boldsymbol{y}=\sum_{i} \lambda_{i} y_{i}^{2}
$$

For $\boldsymbol{x} \neq \mathbf{0}$, we have $\boldsymbol{y} \neq \mathbf{0}$ and thus $\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}=\sum_{i} \lambda_{i} y_{i}^{2}>0$. Hence \boldsymbol{A} is positive definite.

LEMMA (POSITIVE DEFINITE \Rightarrow POSITIVE DETERMINANT)
Let \boldsymbol{A} be positive definite. Every leading principal sub-matrix of \boldsymbol{A} has a positive determinant.

Proof.

Consider $\boldsymbol{x}^{T}=\left[\begin{array}{ll}\boldsymbol{x}_{k}^{T} & \mathbf{0}^{T}\end{array}\right]$ with $\boldsymbol{x}_{k} \in \mathbb{R}^{k}$. For $\boldsymbol{x}_{k} \neq \mathbf{0}$

$$
\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}=\left[\begin{array}{ll}
\boldsymbol{x}_{k}^{T} & \mathbf{0}^{T}
\end{array}\right]\left[\begin{array}{ll}
\boldsymbol{A}_{k} & \boldsymbol{B} \\
\boldsymbol{B}^{T} & \boldsymbol{C}
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{x}_{k} \\
\mathbf{0}
\end{array}\right]=\boldsymbol{x}_{k}^{T} \boldsymbol{A}_{k} \boldsymbol{x}_{k}>0
$$

So \boldsymbol{A}_{k} is positive definite, the eigenvalues of \boldsymbol{A}_{k} are positive, and

$$
\left|\boldsymbol{A}_{k}\right|=\prod_{i=1}^{k} \lambda_{k, i}>0
$$

where $\lambda_{k, i}$ is an eigenvalue of \boldsymbol{A}_{k}.

LEmMA (POSITIVE DETERMINANTS \Rightarrow POSITIVE PIVOTS)
If every leading principal sub-matrix of \boldsymbol{A} has positive determinant, the pivots of \boldsymbol{A} are positive.

Proof.

Let \boldsymbol{A} have LDU decomposition $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{D U}$. Then

$$
\left[\begin{array}{ll}
\boldsymbol{A}_{k} & \boldsymbol{B} \\
\boldsymbol{B}^{T} & \boldsymbol{C}
\end{array}\right]=\left[\begin{array}{cc}
\boldsymbol{L}_{k} & \mathbf{0} \\
* & *
\end{array}\right]\left[\begin{array}{cc}
\boldsymbol{D}_{k} & \mathbf{0} \\
\mathbf{0} & *
\end{array}\right]\left[\begin{array}{cc}
\boldsymbol{U}_{k} & * \\
\mathbf{0} & *
\end{array}\right]=\left[\begin{array}{cc}
\boldsymbol{L}_{k} \boldsymbol{D}_{k} \boldsymbol{U}_{k} & * \\
* & *
\end{array}\right]
$$

So $\boldsymbol{A}_{k}=\boldsymbol{L}_{k} \boldsymbol{D}_{k} \boldsymbol{U}_{k}$. Let d_{1}, \ldots, d_{n} be the pivots of \boldsymbol{A}. Then

$$
d_{1}=a_{11}>0, \quad d_{k}=\frac{\left|\boldsymbol{D}_{k}\right|}{\left|\boldsymbol{D}_{k-1}\right|}=\frac{\left|\boldsymbol{A}_{k}\right|}{\left|\boldsymbol{A}_{k-1}\right|}>0, \quad k=2, \ldots, n
$$

Lemma (POSITIVE PIVOTS \Rightarrow POSITIVE DEFINITE)
If the pivots of \boldsymbol{A} are positive, \boldsymbol{A} is positive definite.

Proof.

Let \boldsymbol{A} have LDU decomposition $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{D U}$.

$$
\boldsymbol{A}=\boldsymbol{A}^{T} \Rightarrow \boldsymbol{L} \boldsymbol{D} \boldsymbol{U}=\boldsymbol{U}^{T} \boldsymbol{D} \boldsymbol{L}^{T} \Rightarrow \boldsymbol{U}=\boldsymbol{L}^{T}
$$

Thus

$$
\boldsymbol{A}=\boldsymbol{L} \boldsymbol{D} \boldsymbol{L}^{T}=\boldsymbol{L} \boldsymbol{D}^{1 / 2} \boldsymbol{D}^{1 / 2} \boldsymbol{L}^{T}=\boldsymbol{R}^{T} \boldsymbol{R}
$$

where $\boldsymbol{R}=\boldsymbol{D}^{1 / 2} \boldsymbol{L}^{T}$ is non-singular. For $\boldsymbol{x} \neq \mathbf{0}$

$$
\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{x}^{T} \boldsymbol{R}^{T} \boldsymbol{R} \boldsymbol{x}=(\boldsymbol{R} \boldsymbol{x})^{T}(\boldsymbol{R} \boldsymbol{x})=\|\boldsymbol{R} \boldsymbol{x}\|^{2}>0
$$

Hence \boldsymbol{A} is positive definite.

TheOrem (CONDITIONS FOR POSITIVE DEFINITE)

The following conditions are equivalent.
(1) \boldsymbol{A} is positive definite
(2) The eigenvalues of \boldsymbol{A} are positive
(3) The determinants of the leading principal sub-matrices of A are positive
(1) The pivots of \boldsymbol{A} are positive

The previous slides show

$$
\text { (1) } \Leftrightarrow \text { (2) }
$$

and

$$
\text { (1) } \Rightarrow \text { (3) } \Rightarrow \text { (4) } \Rightarrow \text { (1) }
$$

EXAMPLE (POSITIVE DEFINITE MATRIX)

$$
\boldsymbol{A}=\left[\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right]
$$

Quadratic form

$$
\begin{aligned}
\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x} & =2 x_{1}^{2}+2 x_{2}^{2}+2 x_{3}^{2}-2 x_{1} x_{2}-2 x_{2} x_{3} \\
& =2\left(x_{1}-\frac{1}{2} x_{2}\right)^{2}+\frac{3}{2}\left(x_{2}-\frac{2}{3} x_{3}\right)^{2}+\frac{4}{3} x_{3}^{2}
\end{aligned}
$$

Eigenvalues, determinants, pivots $\operatorname{spectrum}(\boldsymbol{A})=\{2,2 \pm \sqrt{2}\},\left|\boldsymbol{A}_{1}\right|=2,\left|\boldsymbol{A}_{2}\right|=3,\left|\boldsymbol{A}_{3}\right|=4$

$$
\boldsymbol{A}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-\frac{1}{2} & 1 & 0 \\
0 & -\frac{2}{3} & 1
\end{array}\right]\left[\begin{array}{lll}
2 & & \\
& \frac{3}{2} & \\
& & \frac{4}{3}
\end{array}\right]\left[\begin{array}{ccc}
1 & -\frac{1}{2} & 0 \\
0 & 1 & -\frac{2}{3} \\
0 & 0 & 1
\end{array}\right]
$$

ELLIPSOID

Let \boldsymbol{A} be positive definite. $\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}=1$ defines an ellipsoid.

- With a spectral decomposition $\boldsymbol{A}=\boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^{T}$

$$
\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{x}^{T} \boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^{T} \boldsymbol{x}=\boldsymbol{y}^{T} \boldsymbol{\Lambda} \boldsymbol{y}=\sum_{i} \lambda_{i} y_{i}^{2}
$$

where $\boldsymbol{Q}=\left[\begin{array}{lll}\boldsymbol{q}_{1} & \ldots & \boldsymbol{q}_{n}\end{array}\right]$ and $\boldsymbol{y}=\boldsymbol{Q}^{T} \boldsymbol{x}$

- $\left\{\boldsymbol{q}_{1}, \ldots \boldsymbol{q}_{n}\right\}$ is an orthonormal eigenbasis
- $y_{i} \boldsymbol{q}_{i}$ is the projection of \boldsymbol{x} on \boldsymbol{q}_{i}
- With axes $\boldsymbol{q}_{1}, \ldots \boldsymbol{q}_{n}$, the coordinates are y_{1}, \ldots, y_{n}
- $\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}=1 \Rightarrow \sum_{i} \lambda_{i} y_{i}^{2}=1$ is an ellipsoid
- The intercepts are

$$
l_{i}= \pm\left(\sqrt{\lambda_{i}}\right)^{-1}
$$

EXAMPLE (QUADRATIC FORM AND ELLIPSE)

Figure 6.2: The ellipse $x^{\mathrm{T}} A x=5 u^{2}+8 u v+5 v^{2}=1$ and its principal axes.

DEFINITION (NEGATIVE DEFINITE AND SEMIDEFINITE)
Let \boldsymbol{A} be a real symmetric matrix.

- \boldsymbol{A} is negative definite if $\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}<0$ for $\boldsymbol{x} \neq \mathbf{0}$
- \boldsymbol{A} is positive semidefinite if $\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x} \geq 0$ for any \boldsymbol{x}
- \boldsymbol{A} is negative semidefinite if $\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x} \leq 0$ for any \boldsymbol{x}

Approximation

DEFINITION (PARTIAL DERIVATIVES)

Let $f\left(x_{1}, \ldots, x_{n}\right)$ be a multi-variate function.

- First-order partial derivatives

$$
f_{x_{i}}=\frac{\partial f}{\partial x_{i}}, i=1, \ldots, n
$$

- Second-order partial derivatives

$$
f_{x_{i} x_{j}}=\frac{\partial f_{x_{i}}}{\partial x_{j}}=\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}, i, j=1, \ldots, n
$$

Note that

$$
f_{x_{i} x_{j}}=f_{x_{j} x_{i}}
$$

Definition (Gradient and Hessian)

Let $f\left(x_{1}, \ldots, x_{n}\right)$ be a function.

- Gradient vector

$$
\boldsymbol{\nabla} f=\left[\begin{array}{c}
f_{x_{1}} \\
\vdots \\
f_{x_{n}}
\end{array}\right]
$$

- Hessian matrix

$$
\boldsymbol{H}=\left[\begin{array}{ccc}
f_{x_{1} x_{1}} & \cdots & f_{x_{1} x_{n}} \\
\vdots & \ddots & \vdots \\
f_{x_{n} x_{1}} & \cdots & f_{x_{n} x_{n}}
\end{array}\right]
$$

FUNCTION APPROXIMATION

Let $f(\boldsymbol{x})$ be a function.

- First-order approximation near \boldsymbol{x}_{0}

$$
f(\boldsymbol{x}) \approx f\left(\boldsymbol{x}_{0}\right)+\boldsymbol{\nabla} f\left(\boldsymbol{x}_{0}\right)^{T}\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)
$$

- Second-order approximation near \boldsymbol{x}_{0}

$$
\begin{aligned}
f(\boldsymbol{x}) \approx f\left(\boldsymbol{x}_{0}\right) & +\boldsymbol{\nabla} f\left(\boldsymbol{x}_{0}\right)^{T}\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right) \\
& +\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)^{T} \boldsymbol{H}\left(\boldsymbol{x}_{0}\right)\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)
\end{aligned}
$$

Definition (stationary points)

Let $f(\boldsymbol{x})$ be a function. \boldsymbol{x}_{0} is a stationary point of $f(\boldsymbol{x})$ if

$$
\boldsymbol{\nabla} f\left(\boldsymbol{x}_{0}\right)=\mathbf{0}
$$

Let \boldsymbol{x}_{0} be a stationary point of $f(\boldsymbol{x})$. Near \boldsymbol{x}_{0}, we have

$$
f(\boldsymbol{x}) \approx f\left(\boldsymbol{x}_{0}\right)+\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)^{T} \boldsymbol{H}\left(\boldsymbol{x}_{0}\right)\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)
$$

EXAMPLE (FUNCTION APPROXIMATION)

Approximate

$$
f(x, y)=2 x^{2}+4 x y+y^{2}
$$

near $(0,0)$.

$$
\begin{gathered}
\boldsymbol{\nabla} f=\left[\begin{array}{l}
f_{x} \\
f_{y}
\end{array}\right]=\left[\begin{array}{l}
4 x+4 y \\
4 x+2 y
\end{array}\right], \boldsymbol{H}=\left[\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right]=\left[\begin{array}{ll}
4 & 4 \\
4 & 2
\end{array}\right] \\
f(\mathbf{0})=0, \quad \boldsymbol{\nabla} f(\mathbf{0})=\mathbf{0}, \quad \boldsymbol{H}(\mathbf{0})=\left[\begin{array}{ll}
4 & 4 \\
4 & 2
\end{array}\right]
\end{gathered}
$$

$$
f(\boldsymbol{x}) \approx f(\mathbf{0})+\frac{1}{2}(\boldsymbol{x}-\mathbf{0})^{T} \boldsymbol{H}(\mathbf{0})(\boldsymbol{x}-\mathbf{0})=2 x^{2}+4 x y+y^{2}
$$

EXAMPLE (FUNCTION APPROXIMATION)

Approximate

$$
F(x, y)=7+2(x+y)^{2}-y \sin y-x^{3}
$$

near $(0,0)$.

$$
\begin{gathered}
\boldsymbol{\nabla} F=\left[\begin{array}{l}
F_{x} \\
F_{y}
\end{array}\right]=\left[\begin{array}{c}
4(x+y)-3 x^{2} \\
4(x+y)-\sin y-y \cos y
\end{array}\right] \\
\boldsymbol{H}=\left[\begin{array}{ll}
F_{x x} & F_{x y} \\
F_{y x} & F_{y y}
\end{array}\right]=\left[\begin{array}{cc}
4-6 x & 4 \\
4 & 4-2 \cos y+y \sin y
\end{array}\right] \\
F(\mathbf{0})=7, \quad \boldsymbol{\nabla} F(\mathbf{0})=\mathbf{0}, \quad \boldsymbol{H}(\mathbf{0})=\left[\begin{array}{ll}
4 & 4 \\
4 & 2
\end{array}\right] \\
F(\boldsymbol{x}) \approx F(\mathbf{0})+\frac{1}{2}(\boldsymbol{x}-\mathbf{0})^{T} \boldsymbol{H}(\mathbf{0})(\boldsymbol{x}-\mathbf{0})=7+2 x^{2}+4 x y+y^{2}
\end{gathered}
$$

DEFINITION (LOCAL MINIMUM AND LOCAL MAXIMUM)

Let $f(\boldsymbol{x})$ be a function.

- \boldsymbol{x}_{0} is a local minimum if in a neighborhood of \boldsymbol{x}_{0}

$$
f(\boldsymbol{x}) \geq f\left(\boldsymbol{x}_{0}\right)
$$

- \boldsymbol{x}_{0} is a local maximum if in a neighborhood of \boldsymbol{x}_{0}

$$
f(\boldsymbol{x}) \leq f\left(\boldsymbol{x}_{0}\right)
$$

OPTIMALITY OF A STATIONARY POINT

Let $f(\boldsymbol{x})$ be a function. Let \boldsymbol{x}_{0} be a stationary point and \boldsymbol{H} be the Hessian matrix at \boldsymbol{x}_{0}.

- \boldsymbol{x}_{0} is a local minimum if \boldsymbol{H} is positive semidefinite
- \boldsymbol{x}_{0} is a local maximum if \boldsymbol{H} is negative semidefinite
- \boldsymbol{x}_{0} is a saddle point if it is neither a local maximum nor a local minimum

For example, $(0,0)$ is a saddle point of $F(x, y)$.

bowl or saddle

Figure 6.1: A bowl and a saddle: Definite $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and indefinite $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.

Singular Value Decomposition

BASIC IDEA

Let \boldsymbol{A} be a real matrix.

- Real symmetric $\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)$ and $\left(\boldsymbol{A} \boldsymbol{A}^{T}\right)$
- Decompose \boldsymbol{A} with the eigenvalues and eigenvectors of $\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)$ and $\left(\boldsymbol{A} \boldsymbol{A}^{T}\right)$
- An extension of eigen-decomposition

$$
\begin{aligned}
& \left(\boldsymbol{A}^{T} \boldsymbol{A}\right)^{T}=\boldsymbol{A}^{T}\left(\boldsymbol{A}^{T}\right)^{T}=\left(\boldsymbol{A}^{T} \boldsymbol{A}\right) \\
& \left(\boldsymbol{A} \boldsymbol{A}^{T}\right)^{T}=\left(\boldsymbol{A}^{T}\right)^{T} \boldsymbol{A}^{T}=\left(\boldsymbol{A} \boldsymbol{A}^{T}\right)
\end{aligned}
$$

$\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)$ And $\left(\boldsymbol{A} \boldsymbol{A}^{T}\right)$

Let \boldsymbol{A} be a real matrix.

- Positive semi-definite $\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)$ and $\left(\boldsymbol{A} \boldsymbol{A}^{T}\right)$
- Non-negative eigenvalues
- Real and orthonormal eigenvectors

$$
\begin{gathered}
\boldsymbol{x}^{T}\left(\boldsymbol{A}^{T} \boldsymbol{A}\right) \boldsymbol{x}=(\boldsymbol{A} \boldsymbol{x})^{T}(\boldsymbol{A} \boldsymbol{x})=\|\boldsymbol{A} \boldsymbol{x}\|^{2} \geq 0 \\
\boldsymbol{y}^{T}\left(\boldsymbol{A} \boldsymbol{A}^{T}\right) \boldsymbol{y}=\left(\boldsymbol{A}^{T} \boldsymbol{y}\right)^{T}\left(\boldsymbol{A}^{T} \boldsymbol{y}\right)=\left\|\boldsymbol{A}^{T} \boldsymbol{y}\right\|^{2} \geq 0
\end{gathered}
$$

DEFINITION (SINGULAR VALUE AND SINGULAR VECTOR)

Let \boldsymbol{A} be a real matrix. Square roots of the positive eigenvalues of $\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)$ are the singular values of \boldsymbol{A}.

Let σ be a singular value of \boldsymbol{A}.

- σ^{2} is an eigenvalue of $\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)$
- $\exists \boldsymbol{v} \neq 0$

$$
\left(\boldsymbol{A}^{T} \boldsymbol{A}\right) \boldsymbol{v}=\sigma^{2} \boldsymbol{v}
$$

- σ^{2} is also an eigenvalue of $\left(\boldsymbol{A} \boldsymbol{A}^{T}\right)$
- $\exists \boldsymbol{u} \neq 0$

$$
\left(\boldsymbol{A} \boldsymbol{A}^{T}\right) \boldsymbol{u}=\sigma^{2} \boldsymbol{u}
$$

- \boldsymbol{u} is left singular vector and \boldsymbol{v} is right singular vector

DEFINITION (SINGULAR SPACE)

Let \boldsymbol{A} be a real matrix and σ be a singular value of \boldsymbol{A}.

- Right singular space

$$
\mathbb{R}_{\sigma}(\boldsymbol{A})=\left\{\boldsymbol{v} \mid\left(\boldsymbol{A}^{T} \boldsymbol{A}\right) \boldsymbol{v}=\sigma^{2} \boldsymbol{v}\right\}
$$

- Left singular space

$$
\mathbb{L}_{\sigma}(\boldsymbol{A})=\left\{\boldsymbol{u} \mid\left(\boldsymbol{A} \boldsymbol{A}^{T}\right) \boldsymbol{u}=\sigma^{2} \boldsymbol{u}\right\}
$$

LEMMA (LINEARLY INDEPENDENT SINGULAR VECTORS*)

Let \boldsymbol{A} be a real matrix of rank r. There exists a linearly independent set containing r right singular vectors of \boldsymbol{A}.

Proof.

Suppose $\mathbb{N}(\boldsymbol{A})$ is of dimension $n-r . \mathbb{N}\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)=\mathbb{N}(\boldsymbol{A})$ since $\left(\boldsymbol{A}^{T} \boldsymbol{A}\right) \boldsymbol{x}=\mathbf{0} \Rightarrow \boldsymbol{x}^{T} \boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{x}=0 \Rightarrow \boldsymbol{A} \boldsymbol{x}=\mathbf{0} \Rightarrow\left(\boldsymbol{A}^{T} \boldsymbol{A}\right) \boldsymbol{x}=\mathbf{0}$

So eigenvalue 0 of $\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)$ has multiplicity $(n-r)$, and the non-zero eigenvalues of $\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)$ have total multiplicity

$$
n-(n-r)=r
$$

Thus, there are r linearly independent right singular vectors.

Theorem (Singular value decomposition)

Let \boldsymbol{A} be a real matrix of order $m \times n$.

$$
\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}
$$

- $\boldsymbol{\Sigma}$ is an $m \times n$ "diagonal" matrix with the singular values of \boldsymbol{A} as the leading diagonal elements
- \boldsymbol{U} is an $m \times m$ orthogonal matrix with the eigenvectors of ($\boldsymbol{A} \boldsymbol{A}^{T}$) as columns
- \boldsymbol{V} is an $n \times n$ orthogonal matrix with the eigenvectors of ($\boldsymbol{A}^{T} \boldsymbol{A}$) as columns

MATRIX CONSTRUCTION

- Find singular values $\sigma_{1} \ldots \sigma_{r}$
- Find orthonormal right singular vectors $\boldsymbol{v}_{1} \ldots \boldsymbol{v}_{r}$
- Find orthonormal left singular vectors $\boldsymbol{u}_{i}=\frac{\boldsymbol{A} \boldsymbol{v}_{i}}{\sigma_{i}}$
- Find orthonormal $\boldsymbol{v}_{r+1} \ldots \boldsymbol{v}_{n}$ in $\mathbb{E}_{0}\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)$
- Find orthonormal $\boldsymbol{u}_{r+1} \ldots \boldsymbol{u}_{m}$ in $\mathbb{E}_{0}\left(\boldsymbol{A} \boldsymbol{A}^{T}\right)$

$$
\begin{gathered}
\boldsymbol{\Sigma}=\left[\begin{array}{cccc}
\sigma_{1} & \ldots & 0 & \\
\vdots & \ddots & \vdots & \mathbf{0} \\
0 & \ldots & \sigma_{r} & \\
& \mathbf{0} & & \mathbf{0}
\end{array}\right] \\
\boldsymbol{U}=\left[\begin{array}{lll}
\boldsymbol{u}_{1} & \ldots & \boldsymbol{u}_{m}
\end{array}\right], \boldsymbol{V}=\left[\begin{array}{lll}
\boldsymbol{v}_{1} & \ldots & \boldsymbol{v}_{n}
\end{array}\right]
\end{gathered}
$$

PROOF OF SINGULAR VALUE DECOMPOSITION.
For $j=1, \ldots, r$ and $i=1, \ldots, m$

$$
\begin{gathered}
\left(\boldsymbol{A} \boldsymbol{A}^{T}\right) \boldsymbol{u}_{j}=\frac{\boldsymbol{A} \boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{v}_{j}}{\sigma_{j}}=\frac{\boldsymbol{A} \sigma_{j}^{2} \boldsymbol{v}_{j}}{\sigma_{j}}=\sigma_{j}^{2} \boldsymbol{u}_{j} \\
\boldsymbol{u}_{i}^{T} \boldsymbol{u}_{j}=\left(\frac{\boldsymbol{A} \boldsymbol{v}_{i}}{\sigma_{i}}\right)^{T}\left(\frac{\boldsymbol{A} \boldsymbol{v}_{j}}{\sigma_{j}}\right)=\frac{\boldsymbol{v}_{i}^{T} \boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{v}_{j}}{\sigma_{i} \sigma_{j}}=\delta_{i j} \\
\left(\boldsymbol{U}^{T} \boldsymbol{A} \boldsymbol{V}\right)_{i j}=\boldsymbol{u}_{i}^{T} \boldsymbol{A} \boldsymbol{v}_{j}=\boldsymbol{u}_{i}^{T}\left(\sigma_{j} \boldsymbol{u}_{j}\right)=\sigma_{j} \delta_{i j}
\end{gathered}
$$

For $j=r+1, \ldots, n$ and $i=1, \ldots, m$

$$
\left(\boldsymbol{U}^{T} \boldsymbol{A} \boldsymbol{V}\right)_{i j}=\boldsymbol{u}_{i}^{T} \boldsymbol{A} \boldsymbol{v}_{j}=\boldsymbol{u}_{i}^{T} \mathbf{0}=0
$$

Thus

$$
\boldsymbol{U}^{T} \boldsymbol{A} \boldsymbol{V}=\boldsymbol{\Sigma} \Rightarrow \boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}
$$

MATRICES IN SINGULAR VALUE DECOMPOSITION

Suppose \boldsymbol{A} has SVD $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}$.

- \boldsymbol{U} is eigenvector matrix of $\left(\boldsymbol{A} \boldsymbol{A}^{T}\right)$

$$
\boldsymbol{A} \boldsymbol{A}^{T}=\left(\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}\right)\left(\boldsymbol{V} \boldsymbol{\Sigma}^{T} \boldsymbol{U}^{T}\right)=\boldsymbol{U} \overbrace{\left(\boldsymbol{\Sigma} \boldsymbol{\Sigma}^{T}\right)}^{\text {diagonal }} \boldsymbol{U}^{T}
$$

- \boldsymbol{V} is eigenvector matrix of $\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)$

$$
\boldsymbol{A}^{T} \boldsymbol{A}=\left(\boldsymbol{V} \boldsymbol{\Sigma}^{T} \boldsymbol{U}^{T}\right)\left(\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}\right)=\boldsymbol{V} \overbrace{\left(\boldsymbol{\Sigma}^{T} \boldsymbol{\Sigma}\right)}^{\text {diagonal }} \boldsymbol{V}^{T}
$$

SINGULAR VECTORS AND FUNDAMENTAL SUBSPACES*

Suppose \boldsymbol{A} has SVD $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}$.

- The right singular vectors of \boldsymbol{A} in \boldsymbol{V} form an orthonormal basis of $\mathbb{C}\left(\boldsymbol{A}^{T}\right)$
- The left singular vectors of \boldsymbol{A} in \boldsymbol{U} form an orthonormal basis of $\mathbb{C}(\boldsymbol{A})$

Suppose \boldsymbol{A} has order $m \times n$ and rank r.

- $\boldsymbol{v}_{r+1}, \ldots, \boldsymbol{v}_{n}$ are eigenvectors of $\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)$ with eigenvalue 0

$$
\left(\boldsymbol{A}^{T} \boldsymbol{A}\right) \boldsymbol{v}_{j}=0 \boldsymbol{v}_{j}=\mathbf{0}
$$

so they form a basis of $\mathbb{N}\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)=\mathbb{N}(\boldsymbol{A})$. It follows that $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{r}$ form a basis of the orthogonal complement of $\mathbb{N}(\boldsymbol{A})$, i.e. $\mathbb{C}\left(\boldsymbol{A}^{T}\right)$.

- The first r columns of $\boldsymbol{A} \boldsymbol{V}=\boldsymbol{U} \boldsymbol{\Sigma}$ means

$$
\boldsymbol{A} \boldsymbol{v}_{i}=\sigma_{i} \boldsymbol{u}_{i}
$$

Thus $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{r}$ are vectors in $\mathbb{C}(\boldsymbol{A})$. Since they are linearly independent, they form a basis of $\mathbb{C}(\boldsymbol{A})$.

EXAMPLE (SINGULAR VALUE DECOMPOSITION)

$$
\boldsymbol{A}=\left[\begin{array}{ccc}
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]
$$

- Singular values

$$
\boldsymbol{A}^{T} \boldsymbol{A}=\left[\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right]
$$

The eigenvalues are $\lambda_{1}=3, \lambda_{2}=1, \lambda_{3}=0$. The singular values are

$$
\sigma_{1}=\sqrt{3}, \sigma_{2}=1
$$

- Right singular vectors (and orthonormal eigenvectors)

$$
\boldsymbol{v}_{1}=\frac{1}{\sqrt{6}}\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right], \boldsymbol{v}_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right], \boldsymbol{v}_{3}=\frac{1}{\sqrt{3}}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- Left singular vectors (and orthonormal eigenvectors)

$$
\boldsymbol{u}_{1}=\frac{\boldsymbol{A} \boldsymbol{v}_{1}}{\sigma_{1}}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
-1 \\
1
\end{array}\right], \boldsymbol{u}_{2}=\frac{\boldsymbol{A} \boldsymbol{v}_{2}}{\sigma_{2}}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

- SVD

$$
\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}=\left[\begin{array}{cc}
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{ccc}
\sqrt{3} & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\
-\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}}
\end{array}\right]
$$

SVD FOR APPROXIMATION

Suppose \boldsymbol{A} has rank r and SVD $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}$.

$$
\begin{aligned}
\boldsymbol{A} & =\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T} \\
& =\sigma_{1} \boldsymbol{u}_{1} \boldsymbol{v}_{1}^{T}+\cdots+\sigma_{r} \boldsymbol{u}_{r} \boldsymbol{v}_{r}^{T} \\
& =\boldsymbol{A}_{1}+\cdots+\boldsymbol{A}_{r}
\end{aligned}
$$

- \boldsymbol{A} is the sum of r matrices of rank 1
- An image of size 1000×1000 can be compressed with a rate of 90% when 50 terms are used

Data Compression with SVD

Theorem (PSEudo-Inverse* And SVD)
Suppose \boldsymbol{A} has SVD $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}$.

- The pseudo inverse of \boldsymbol{A} is

$$
\boldsymbol{A}^{+}=\boldsymbol{V} \boldsymbol{\Sigma}^{+} \boldsymbol{U}^{T}
$$

- For any \boldsymbol{b}, the minimum-length least-squares solution to $\boldsymbol{A x}=\boldsymbol{b}$ is

$$
\boldsymbol{x}^{+}=\boldsymbol{A}^{+} \boldsymbol{b}
$$

Figure 3.4: The true action $A x=A\left(x_{\text {row }}+x_{\text {null }}\right)$ of any m by n matrix.

Figure 6.3: The pseudoinverse A^{+}inverts A where it can on the column space.

Minimum Principles*

MINIMUM PRINCIPLE FOR SQUARE SYSTEM

Let \boldsymbol{A} be positive definite. Consider $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$.

- The system is non-singular
- It can be solved by minimum principle: \boldsymbol{x}_{0} is a solution of $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ if and only if it minimizes

$$
P(\boldsymbol{x})=\frac{1}{2} \boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}-\boldsymbol{x}^{T} \boldsymbol{b}
$$

Note

$$
\boldsymbol{\nabla}\left(\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}\right)=2 \boldsymbol{A} \boldsymbol{x}, \quad \nabla\left(\boldsymbol{x}^{T} \boldsymbol{b}\right)=\boldsymbol{b}
$$

so

$$
\nabla P(\boldsymbol{x})=\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}
$$

Figure 6.4: The graph of a positive quadratic $P(x)$ is a parabolic bowl.

MINIMUM PRINCIPLE FOR OVER-DETERMINED SYSTEM

Let $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ be an over-determined system of linear equations. Such a system can be solved by minimum principle.

Specifically, the sum of squared errors as a function of \boldsymbol{x} is

$$
\begin{aligned}
E(\boldsymbol{x}) & =\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|^{2} \\
& =(\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b})^{T}(\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}) \\
& =\boldsymbol{x}^{T} \boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{x}-2 \boldsymbol{x}^{T} \boldsymbol{A}^{T} \boldsymbol{b}+\boldsymbol{b}^{T} \boldsymbol{b}
\end{aligned}
$$

An \boldsymbol{x}_{0} that achieves the minimum of $E(\boldsymbol{x})$ satisfies

$$
\left.\nabla E(\boldsymbol{x})\right|_{\boldsymbol{x}=x_{0}}=\mathbf{0}
$$

That is

$$
\boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{x}_{0}=\boldsymbol{A}^{T} \boldsymbol{b}
$$

DEFINITION (RAYLEIGH QUOTIENT)

Let \boldsymbol{A} be a symmetric matrix. The Rayleigh quotient of \boldsymbol{A} is

$$
R(\boldsymbol{x})=\frac{\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}}{\boldsymbol{x}^{T} \boldsymbol{x}}
$$

- Let $\mathcal{Q}=\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{n}$ be an orthonormal eigenbasis of \boldsymbol{A}, corresponding to eigenvalues $\lambda_{1} \leq \cdots \leq \lambda_{n}$
- For any $\boldsymbol{x}=\sum_{i} x_{i} \boldsymbol{q}_{i}$, we have

$$
\begin{aligned}
R(\boldsymbol{x}) & =\frac{\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}}{\boldsymbol{x}^{T} \boldsymbol{x}}=\frac{\left(\sum_{i} x_{i} \boldsymbol{q}_{i}\right)^{T} \boldsymbol{A}\left(\sum_{i} x_{i} \boldsymbol{q}_{i}\right)}{\left(\sum_{i} x_{i} \boldsymbol{q}_{i}\right)^{T}\left(\sum_{i} x_{i} \boldsymbol{q}_{i}\right)} \\
& =\frac{\sum_{i} \lambda_{i} x_{i}^{2}}{\sum_{i} x_{i}^{2}}
\end{aligned}
$$

Theorem (Extremum of Rayleigh quotient)

Let \boldsymbol{A} be a symmetric matrix and $\mathcal{Q}=\left\{\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{n}\right\}$ be orthonormal eigenbasis of \boldsymbol{A}, corresponding to eigenvalues

$$
\lambda_{1} \leq \cdots \leq \lambda_{n}
$$

- The global minimum of the Rayleigh quotient of \boldsymbol{A} is λ_{1}
- The global maximum of the Rayleigh quotient of \boldsymbol{A} is λ_{n}
- The minimum λ_{1} is attained by \boldsymbol{q}_{1} (i.e. $\left[\boldsymbol{x}_{\mathcal{Q}}\right]=\left\{\delta_{i, 1}\right\}$)

$$
\lambda_{1}=\min _{\boldsymbol{x}} R(\boldsymbol{x})
$$

- The maximum λ_{n} is attained by \boldsymbol{q}_{n} (i.e. $\left[\boldsymbol{x}_{\mathcal{Q}}\right]=\left\{\delta_{i, n}\right\}$)

$$
\lambda_{n}=\max _{\boldsymbol{x}} R(\boldsymbol{x})
$$

DIAGONAL ELEMENTS AND EIGENVALUES

Let \boldsymbol{A} be a symmetric matrix.

- For a unit vector along coordinate axis, $R\left(\boldsymbol{e}_{i}\right)=a_{i i}$
- Thus $a_{i i}$ is bounded by eigenvalues

$$
\lambda_{1} \leq a_{i i} \leq \lambda_{n}
$$

- In the cases of all positive eigenvalues for \boldsymbol{A}, we have

$$
\frac{1}{\sqrt{\lambda_{n}}} \leq \frac{1}{\sqrt{a_{i i}}} \leq \frac{1}{\sqrt{\lambda_{1}}}
$$

- The intercept of ellipsoid $\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}=1$ along a coordinate axis is bounded

Figure 6.6: The farthest $x=x_{1} / \sqrt{\lambda_{1}}$ and the closet $x=x_{n} / \sqrt{\lambda_{n}}$ both give $x^{\mathrm{T}} A x=x^{\mathrm{T}} \lambda x=1$. These are the major axes of the ellipse.

Theorem (SADDle points of Rayleigh quotient)

Let \boldsymbol{A} be a symmetric matrix and $\mathcal{Q}=\left\{\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{n}\right\}$ be orthonormal eigenbasis of \boldsymbol{A}, corresponding to eigenvalues

$$
\lambda_{1} \leq \cdots \leq \lambda_{n}
$$

The eigenvectors $\boldsymbol{q}_{2}, \ldots, \boldsymbol{q}_{n-1}$ are saddle points of $R(\boldsymbol{x})$.
Consider \boldsymbol{q}_{2} for example.

- If we move from \boldsymbol{q}_{2} along $\boldsymbol{q}_{1}, R(\boldsymbol{x})$ decreases
- If we move from \boldsymbol{q}_{2} along $\boldsymbol{q}_{2}, R(\boldsymbol{x})$ does not change
- If we move from \boldsymbol{q}_{2} along $\boldsymbol{q}_{3}, R(\boldsymbol{x})$ increases

Theorem (Rayleigh quotient in a hyperplane)

Let \boldsymbol{A} be a symmetric matrix with orthonormal eigenvectors $\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{n}$ and eigenvalues $\lambda_{1} \leq \cdots \leq \lambda_{n}$.

$$
\lambda_{2}=\max _{\boldsymbol{v}}\left[\min _{\boldsymbol{x} \in \boldsymbol{v}^{\perp}} R(\boldsymbol{x})\right]
$$

Let \boldsymbol{v} be a vector and consider $R(\boldsymbol{x})$ in the subspace \boldsymbol{v}^{\perp}.

- For $\boldsymbol{v}=\boldsymbol{q}_{1}$

$$
\lambda_{2}=\min _{x \in \boldsymbol{q}_{1}^{\perp}} R(\boldsymbol{x})
$$

- Given $\boldsymbol{v}, R(\boldsymbol{x})$ can be smaller as \boldsymbol{x} can have component along \boldsymbol{q}_{1}

$$
\lambda_{2} \geq \min _{\boldsymbol{x} \in \boldsymbol{v}^{\perp}} R(\boldsymbol{x})
$$

Thus

$$
\lambda_{2}=\max _{\boldsymbol{v}}\left[\min _{\boldsymbol{x} \in \boldsymbol{v}^{\perp}} R(\boldsymbol{x})\right]
$$

Corollary (Rayleigh quotient in a subspace)

- For the maximum in a hyperplane, we have

$$
\begin{gathered}
\lambda_{n-1} \leq \max _{\boldsymbol{x} \in \boldsymbol{v}^{\perp}} R(\boldsymbol{x}) \\
\lambda_{n-1}=\min _{\boldsymbol{v}}\left[\max _{\boldsymbol{x} \in \boldsymbol{v}^{\perp}} R(\boldsymbol{x})\right]
\end{gathered}
$$

- Let \mathcal{V} be a subspace of dimension j. We have

$$
\begin{aligned}
& \lambda_{j+1}=\max _{\mathcal{V}}\left[\min _{x \in \mathcal{V}^{\perp}} R(\boldsymbol{x})\right] \\
& \lambda_{n-j}=\min _{\mathcal{V}}\left[\max _{\boldsymbol{x} \in \mathcal{V}^{\perp}} R(\boldsymbol{x})\right]
\end{aligned}
$$

Theorem (INTERTWINING OF EIGENVALUES)

Let \boldsymbol{A} be a real symmetric matrix and \boldsymbol{B} be $(n-1) \times(n-1)$ matrix formed by stripping the last row and column of \boldsymbol{A}.
$\lambda_{1}(\boldsymbol{A}) \leq \lambda_{1}(\boldsymbol{B}) \leq \lambda_{2}(\boldsymbol{A}) \leq \lambda_{2}(\boldsymbol{B}) \leq \cdots \leq \lambda_{n-1}(\boldsymbol{B}) \leq \lambda_{n}(\boldsymbol{A})$

ExAMPLE (INTERTWINING OF EIGENVALUES)

$$
\begin{gathered}
\boldsymbol{A}=\left[\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right], \boldsymbol{B}=\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right] \\
\lambda_{1}(\boldsymbol{A})=2-\sqrt{2}, \lambda_{2}(\boldsymbol{A})=2, \lambda_{3}(\boldsymbol{A})=2+\sqrt{2} \\
\lambda_{1}(\boldsymbol{B})=1, \lambda_{2}(\boldsymbol{B})=3
\end{gathered}
$$

