Positive Definite Matrix

Chia-Ping Chen

Professor
Department of Computer Science and Engineering
National Sun Yat-sen University

Linear Algebra
Notation

- $x^T Ax$: quadratic form
- $f(x)$: a multi-variate function
- $\nabla f(x)$: the gradient vector of $f(x)$
- $H(x)$: Hessian matrix of a multi-variate function
- σ: a singular value
- Σ: a singular value matrix
- $A = U\Sigma V^T$: the singular value decomposition of A
- A^+: pseudo-inverse of A
Quadratic Function and Quadratic Form
Definition. A function is **quadratic** if it is a sum of the second-order terms.

Let \(f(x_1, \ldots, x_n) \) be quadratic. Then

\[
 f(x_1, \ldots, x_n) = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_i x_j
\]
Let $f(x_1, \ldots, x_n)$ be quadratic. Then $f(x_1, \ldots, x_n) = x^T B x$ where $x = (x_1, \ldots, x_n)^T$ and B is a matrix of coefficients.

We have

$$f(x_1, \ldots, x_n) = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_i x_j$$

$$= x^T B x$$

where

$$b_{ij} = c_{ij}$$
Definition. Let A be a real symmetric matrix. The **quadratic form** of A is $x^T A x$.

Example. The quadratic form of

$$
A = \begin{bmatrix} a & b \\ b & c \end{bmatrix}
$$

is

$$
x^T A x = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} a & b \\ b & c \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = a x_1^2 + 2 b x_1 x_2 + c x_2^2
$$
Definition. Let A be a real symmetric matrix. Then A is **positive definite** if

$$x^T A x > 0 \text{ for any } x \neq 0$$

That is, the quadratic form of A is always positive except for $x = 0$, in which case $x^T A x = 0$.
Let \(A \) be positive definite. Then the eigenvalues of \(A \) are positive.

Proof. Let \(\lambda_0 \) be an eigenvalue of \(A \) and \(s \) be a corresponding eigenvector. Then

\[
As = \lambda_0 s
\]

It follows that

\[
s^T As = \lambda_0 (s^T s)
\]

Hence

\[
\lambda_0 = \frac{s^T As}{s^T s} > 0
\]
Let A be a real symmetric matrix. If every eigenvalue of A is positive, then A is positive definite.

Proof. By the spectral theorem, we have $A = Q\Lambda Q^T$. Consider the quadratic form

$$x^T A x = x^T Q \Lambda Q^T x = y^T \Lambda y = \sum_i \lambda_i y_i^2$$

Hence A is positive definite since $x^T A x > 0$ for $x \neq 0$.
Let A be positive definite. Then every leading principal sub-matrix of A has a positive determinant.

Proof. Let $k < n$ and consider $\mathbf{x}^T = \begin{bmatrix} \mathbf{x}_k^T & 0^T \end{bmatrix}$ with $\mathbf{x}_k \in \mathbb{R}^k$. For any $\mathbf{x}_k \neq 0$

$$\mathbf{x}^T A \mathbf{x} = \begin{bmatrix} \mathbf{x}_k^T & 0^T \end{bmatrix} \begin{bmatrix} A_k & B \\ B^T & C \end{bmatrix} \begin{bmatrix} \mathbf{x}_k^T \\ 0 \end{bmatrix} = \mathbf{x}_k^T A_k \mathbf{x}_k > 0$$

So A_k, the leading principle sub-matrix of A of order $k \times k$, is positive definite. It follows that the eigenvalues of A_k are positive, and

$$|A_k| = \prod_{i=1}^{k} \lambda_i^{(k)} > 0$$
Let A be a real symmetric matrix. If every leading principal sub-matrix of A has a positive determinant, then A has full positive pivots.

Proof. By assumption $|A| > 0$, so A is non-singular. Let $A = LDU$ be the LDU decomposition of A. Explicitly

$$
\begin{bmatrix}
A_k & B \\
B^T & C
\end{bmatrix} =
\begin{bmatrix}
L_k & 0 \\
0 & *
\end{bmatrix}
\begin{bmatrix}
D_k & 0 \\
0 & *
\end{bmatrix}
\begin{bmatrix}
U_k & * \\
0 & *
\end{bmatrix} =
\begin{bmatrix}
L_k D_k U_k & * \\
* & *
\end{bmatrix}
$$

So $A_k = L_k D_k U_k$ and $|A_k| = |D_k| = d_1 \ldots d_k$ where d_i is a pivot. Thus

$$
d_1 = a_{11} > 0, \quad d_k = \frac{|A_k|}{|A_{k-1}|} > 0, \quad k = 2, \ldots, n
$$
Let A be a real symmetric matrix. If A has full positive pivots, then A is positive definite.

Proof. A has full pivots, so A is non-singular. Let $A = LDU$ be the LDU decomposition of A. Since A is symmetric, $A = A^T$ or $LDU = U^TDL^T$, so $U = L^T$. Thus

$$A = LDL^T = LD^{1/2}D^{1/2}L^T = R^TR$$

where $R = D^{1/2}L^T$ is non-singular. It follows that

$$x^TAx = x^TR^TRx = (Rx)^T(Rx) = \|Rx\|^2 > 0 \text{ for } x \neq 0$$

Hence A is positive definite.
Equivalent Statements for PDM

Let \(A \) be a real symmetric matrix. The following statements are equivalent.

1. \(A \) is positive definite.
2. The eigenvalues of \(A \) are positive.
3. The determinants of the leading principal submatrices of \(A \) are positive.
4. The pivots of \(A \) are positive.

What we have shown in the previous slides are

\[1 \iff 2 \]

and

\[1 \implies 3 \implies 4 \implies 1 \]
The quadratic form of \(A \) is

\[x^T A x = 2x_1^2 + 2x_2^2 + 2x_3^2 - 2x_1x_2 - 2x_2x_3 \]

\[= 2 \left(x_1 - \frac{1}{2}x_2 \right)^2 + \frac{3}{2} \left(x_2 - \frac{2}{3}x_3 \right)^2 + \frac{4}{3}x_3^2 \]

The eigenvalues, the determinants, and the pivots are

\[
\text{spectrum}(A) = \{2, 2 \pm \sqrt{2}\}, \quad |A_1| = 2, \quad |A_2| = 3, \quad |A_3| = 4
\]
Ellipsoid

Let A be positive definite. Then the equation $x^T A x = 1$ is an ellipsoid.

Explanation. By the spectral theorem, we have $A = QQ^T$. Note that $Q = \{q_1, \ldots, q_n\}$ is an orthonormal basis, and the representation of x with Q is $y = Q^T x$. Thus $x^T A x = 1$ can be converted to

$$x^T QQ^T x = y^T \Lambda y = \sum_i \lambda_i y_i^2 = 1$$

This is an ellipsoid with the axes of symmetry along q_i's, with the intercepts of

$$y_i = \pm \left(\sqrt{\lambda_i}\right)^{-1}$$
An Ellipse

Figure 6.2: The ellipse $x^T A x = 5u^2 + 8uv + 5v^2 = 1$ and its principal axes.

$Q = \frac{1}{3} \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right)$

$P = \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}} \right)$
Let A be a real symmetric matrix.

- A is **negative definite** if $x^T A x < 0$ for any $x \neq 0$.
- A is **positive semi-definite** if $x^T A x \geq 0$ for any x.
- A is **negative semi-definite** if $x^T A x \leq 0$ for any x.
Approximation and Extremal Points
Definition. Let $f(x_1, \ldots, x_n)$ be a multi-variate function. A **first-order partial derivative** of f is

$$f_{x_i} = \frac{\partial f}{\partial x_i}, \; i = 1, \ldots, n$$

A **second-order partial derivative** of f is

$$f_{x_ix_j} = \frac{\partial f_{x_i}}{\partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}, \; i, j = 1, \ldots, n$$

Note that

$$f_{x_ix_j} = f_{x_jx_i}$$
Definition. The **gradient** of $f(x_1, \ldots, x_n)$ is a vector of functions

$$\nabla f = \begin{bmatrix} f_{x_1} \\ \vdots \\ f_{x_n} \end{bmatrix}$$

The **Hessian** of $f(x_1, \ldots, x_n)$ is a matrix of functions

$$H = \begin{bmatrix} f_{x_1x_1} & \cdots & f_{x_1x_n} \\ \vdots & \ddots & \vdots \\ f_{x_nx_1} & \cdots & f_{x_nx_n} \end{bmatrix}$$
Definition. The first-order approximation to \(f(x) \) near a point \(x_0 \) is

\[
f(x) \approx f(x_0) + \nabla f(x_0)^T (x - x_0)
\]

The second-order approximation to \(f(x) \) near \(x_0 \) is

\[
f(x) \approx f(x_0) + \nabla f(x_0)^T (x - x_0) + \frac{1}{2} (x - x_0)^T H(x_0)(x - x_0)
\]
Definition. A point \(x_0 \) is a **stationary point** of \(f(x) \) if

\[
\nabla f(x_0) = 0
\]

Let \(x_0 \) be a stationary point of \(f(x) \). Then the second-order approximation to \(f(x) \) near \(x_0 \) is

\[
f(x) \approx f(x_0) + \frac{1}{2}(x - x_0)^T H(x_0)(x - x_0)
\]
Example

Find the second-order approximation near \((0, 0)\) to

\[
f(x, y) = 2x^2 + 4xy + y^2
\]

\[
\nabla f = \begin{bmatrix} f_x \\ f_y \end{bmatrix} = \begin{bmatrix} 4x + 4y \\ 4x + 2y \end{bmatrix}, \quad H = \begin{bmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{bmatrix} = \begin{bmatrix} 4 & 4 \\ 4 & 2 \end{bmatrix}
\]

\[
f(0) = 0, \quad \nabla f(0) = 0, \quad H(0) = \begin{bmatrix} 4 & 4 \\ 4 & 2 \end{bmatrix}
\]

\[
f(x) \approx f(0) + \frac{1}{2}(x - 0)^T H(0)(x - 0) = 2x^2 + 4xy + y^2
\]
Example

Find the second-order approximation near \((0, 0)\) to

\[F(x, y) = 7 + 2(x + y)^2 - y \sin y - x^3 \]

\[
\nabla F = \begin{bmatrix} F_x \\ F_y \end{bmatrix} = \begin{bmatrix} 4(x + y) - 3x^2 \\ 4(x + y) - \sin y - y \cos y \end{bmatrix}
\]

\[
H = \begin{bmatrix} F_{xx} & F_{xy} \\ F_{yx} & F_{yy} \end{bmatrix} = \begin{bmatrix} 4 - 6x & 4 \\ 4 & 4 - 2 \cos y + y \sin y \end{bmatrix}
\]

\[F(0) = 7, \quad \nabla F(0) = 0, \quad H(0) = \begin{bmatrix} 4 & 4 \\ 4 & 2 \end{bmatrix} \]

\[F(x) \approx F(0) + \frac{1}{2} (x - 0)^T H(0) (x - 0) = 7 + 2x^2 + 4xy + y^2 \]
Definition.

- A point x_0 is a local minimum of $f(x)$ if $f(x) \geq f(x_0)$ for every x in a small neighborhood of x_0.
- A point x_0 is a local maximum of $f(x)$ if $f(x) \leq f(x_0)$ for every x in a small neighborhood of x_0.
Let x_0 be a stationary point of $f(x)$.

- x_0 is **local minimum** if $H(x_0)$ is positive definite.
- x_0 is **local maximum** if $H(x_0)$ is negative definite.
- x_0 is a **saddle point** if it is neither local maximum nor local minimum.

For example, $(0, 0)$ is a saddle point of $F(x, y)$.
Bowl and Saddle

Figure 6.1: A bowl and a saddle: Definite $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and indefinite $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.
Singular Value Decomposition
Let A be a real matrix. Then both matrices $(A^T A)$ and (AA^T) are real symmetric and positive semi-definite.

$$x^T (A^T A) x = (Ax)^T (Ax) = \|Ax\|^2 \geq 0$$

$$x'^T (AA^T) x' = (A^T x')^T (A^T x') = \|A^T x'\|^2 \geq 0$$

Note. It follows that the eigenvalues of $(A^T A)$ and (AA^T) are real and non-negative.
Definition. Let A be a real matrix. A **singular value** of A is the square root of a positive eigenvalue of $(A^T A)$. A **singular vector** of A is an eigenvector of $(A^T A)$ with a positive eigenvalue.

Let σ be a singular value of A. Then $\sigma > 0$. Furthermore, there exists $\nu \neq 0$ and $u \neq 0$ such that

$$(A^T A) \nu = \sigma^2 \nu$$
Definition. A right singular vector of A with singular value σ is a vector $v \neq 0$ such that

$$\left(A^T A \right) v = \sigma^2 v$$

A left singular vector of A with singular value σ is a vector $u \neq 0$ such that

$$\left(AA^T \right) u = \sigma^2 u$$
Let A be a real matrix of rank r. Then the right singular vectors of A lie in a subspace of dimension r.

Proof. Let A be of order $m \times n$ with rank r. Note

$$
(A^T A) x = 0 \Rightarrow x^T A^T A x = 0 \Rightarrow A x = 0 \Rightarrow (A^T A) x = 0
$$

Thus

$$
\mathcal{N}(A^T A) = \mathcal{N}(A), \quad \dim \mathcal{N}(A) = n - r = \dim \mathcal{N}(A^T A)
$$

Matrix $(A^T A)$ is non-defective, so the algebraic multiplicity of eigenvalue 0 is $(n - r)$. It follows that the total algebraic (and geometric) multiplicities of the other eigenvalues of $(A^T A)$ is

$$
n - (n - r) = r$$
Definition. Let A be a real matrix of order $m \times n$. A singular value decomposition of A is

$$A = U \Sigma V^T$$

where Σ is an $m \times n$ "diagonal" matrix with the singular values of A as the leading diagonal elements, U is an $m \times m$ orthogonal matrix with the eigenvectors of $\left(AA^T \right)$ as columns, and V is an $n \times n$ orthogonal matrix with the eigenvectors of $\left(A^T A \right)$ as columns.
Construction of SVD

Let r be the rank of A and $\sigma_1 \ldots \sigma_r$ be the singular values of A. Let $v_1 \ldots v_r$ be orthonormal eigenvectors of $(A^T A)$ with positive eigenvalues σ_i^2 and $u_1 \ldots u_r$ be $u_i = \frac{Av_i}{\sigma_i}$. Note

$$(AA^T) u_i = \frac{AA^T Av_i}{\sigma_i} = \frac{A\sigma_i^2 v_i}{\sigma_i} = \sigma_i^2 u_i, \quad i = 1, \ldots, r$$

So u_i is an eigenvector of (AA^T) with the same eigenvalue σ_i^2. Let $v_{r+1} \ldots v_n$ be orthonormal eigenvectors of $(A^T A)$ with eigenvalue 0 and $u_{r+1} \ldots u_m$ be eigenvectors of (AA^T) with eigenvalue 0. Construct matrices U and V by

$$U = \begin{bmatrix} u_1 & \ldots & u_m \end{bmatrix}, \quad V = \begin{bmatrix} v_1 & \ldots & v_n \end{bmatrix}$$
We show $U^T AV = \Sigma$ which implies SVD $A = U \Sigma V^T$. For $j = 1 \ldots r$, we have $u_j = \frac{Av_j}{\sigma_j}$, so $Av_j = \sigma_j u_j$ and

$$
(U^T AV)_{ij} = u_i^T Av_j = u_i^T (\sigma_j u_j) = \sigma_j u_i \delta_{ij}, \ i = 1 \ldots m
$$

For $j = r + 1 \ldots n$, we have $(A^T A)v_j = 0$, so $Av_j = 0$ and

$$
(U^T AV)_{ij} = u_i^T Av_j = 0, \ i = 1 \ldots m
$$

Combining the results, we get

$$
U^T AV = \Sigma
$$

Hence

$$
A = U \Sigma V^T
$$
Matrices in an SVD

Let A be a real matrix of order $m \times n$ with SVD $A = U\Sigma V^T$. Then the column vectors of U (resp. V) is an orthonormal basis of \mathbb{R}^m (resp. \mathbb{R}^n).

U must be an eigenvector matrix of AA^T.

$$AA^T = (U\Sigma V^T)(V\Sigma^T U^T) = U\left(\Sigma\Sigma^T\right)U^T$$

Similarly, V must be an eigenvector matrix of $A^T A$.

$$A^T A = (V\Sigma^T U^T)(U\Sigma V^T) = V\left(\Sigma^T\Sigma\right)V^T$$
Let A be a real matrix with SVD $A = U\Sigma V^T$. Then the right (resp. left) singular vectors in V (resp. U) form an orthonormal basis of $C(A^T)$ (resp. $C(A)$).

Let A be of order $m \times n$ and rank r. \{v_{r+1}, \ldots, v_n\} contains eigenvectors of $(A^T A)$ with eigenvalue 0, so it is a basis of $N(A^T A) = N(A)$. Hence \{v_1, \ldots, v_r\} is a basis of the orthogonal complement of $N(A)$, i.e. $C(A^T)$.

Column space. From $AV = U\Sigma$, we have

$$Av_i = \sigma_i u_i, \quad i = 1, \ldots, r$$

Thus u_1, \ldots, u_r are vectors in $C(A)$. Furthermore, since they are linearly independent, they form a basis of $C(A)$.

Chen P

Positive Definite Matrix
Example

Find SVD of

\[A = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \]

The eigenvalues of

\[A^T A = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix} \]

are \(\lambda_1 = 3, \lambda_2 = 1, \lambda_3 = 0 \). Hence the singular values of \(A \) are

\[\sigma_1 = \sqrt{3}, \sigma_2 = 1 \]
Orthonormal eigenvectors of \((A^TA)\) are

\[
\begin{align*}
v_1 &= \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}, \\
v_2 &= \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \\
v_3 &= \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}
\end{align*}
\]

The corresponding left singular vectors of \(A\) are

\[
\begin{align*}
u_1 &= \frac{A v_1}{\sigma_1} = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \\
u_2 &= \frac{A v_2}{\sigma_2} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}
\end{align*}
\]

So

\[
A = U\Sigma V^T = \begin{bmatrix}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
\sqrt{3} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
\frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}}
\end{bmatrix}
\]
Let A be a real matrix of rank r. Then A can be expressed as the sum of r real matrices of rank 1 based on singular values and singular vectors.

By SVD

$$A = U \Sigma V^T = \sigma_1 u_1 v_1^T + \cdots + \sigma_r u_r v_r^T = A_1 + \cdots + A_r$$

Image approximation. For an image of size 1000×1000, a compression rate of 90% is achieved if 50 terms are used.

Data Compression with SVD
Let A be a real matrix with SVD $A = U\Sigma V^T$. Then the minimum-length least-squares solution to $Ax = b$ is $x^+ = V\Sigma^+ U^T b$.

Pseudo-inverse. The minimum-length least-squares solution can be written as $x^+ = A^+ b$ where $A^+ = V\Sigma^+ U^T$. A^+ is called the **pseudo-inverse** of A.

Figure 3.4: The true action $Ax = A(x_{row} + x_{null})$ of any m by n matrix.

Figure 6.3: The pseudoinverse A^+ inverts A where it can on the column space.
Minimum Principles
Non-singular System of Linear Equations

Let A be positive definite. Then x_0 achieves the minimum of

$$P(x) = \frac{1}{2}x^T Ax - x^T b$$

if and only if $Ax_0 = b$.

Note

$$\nabla (x^T Ax) = 2Ax, \quad \nabla (x^T b) = b$$

so

$$\nabla P = Ax - b$$
Figure 6.4: The graph of a positive quadratic $P(x)$ is a parabolic bowl.
Figure 6.5: Minimizing $\frac{1}{2} \|x\|^2$ for all x on the constraint line $2x_1 - x_2 = 5$.

$P = \frac{1}{2}(x_1^2 + x_2^2)$

$P_{C/\text{min}} = \frac{5}{2}$
Over-determined System

Let $\mathcal{L} : Ax = b$ be an over-determined system of linear equations. The sum of squared errors as a function of x is

$$E^2(x) = \| Ax - b \|^2$$

$$= (Ax - b)^T (Ax - b)$$

$$= x^T A^T Ax - 2x^T A^T b + b^T b$$

An x_0 that achieves the minimum of $E^2(x)$ satisfies

$$\nabla E^2(x) \bigg|_{x=x_0} = 0$$

That is

$$A^T Ax_0 = A^T b$$
Let A be a real symmetric matrix of order n with eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$. Then

$$R(x) = \frac{x^T A x}{x^T x} \geq \lambda_1$$

Furthermore, λ_1 is achieved by $s_1 \in \mathbb{E}_{\lambda_1}$.

- $R(x)$ is called the Rayleigh quotient.
- We also have $R(x) \leq \lambda_n$, and λ_n is achieved by $s_n \in \mathbb{E}_{\lambda_n}$.
The Rayleigh quotient is a_{ii} when $x = e_i$. So

$$\lambda_1 \leq a_{ii} \leq \lambda_n$$

which implies

$$\frac{1}{\sqrt{\lambda_n}} \leq \frac{1}{\sqrt{a_{ii}}} \leq \frac{1}{\sqrt{\lambda_1}}$$

Figure 6.6: The farthest $x = x_1/\sqrt{\lambda_1}$ and the closest $x = x_n/\sqrt{\lambda_n}$ both give $x^T Ax = x^T \lambda x = 1$. These are the major axes of the ellipse.
Intermediate Eigenvalues

The minimum of $R(x)$ subject to $x^T s_1 = 0$ is λ_2. For any v, the minimum of $R(x)$ subject to $x^T v = 0$ cannot be above λ_2. That is

$$\lambda_2 \geq \min_{x^T v = 0} R(x)$$

This gives us the maximin principle for λ_2 as follows

$$\lambda_2 = \max_v \left[\min_{x^T v = 0} R(x) \right]$$

More generally, let S_j be a subspace of dimension j, then

$$\lambda_{j+1} = \max_{S_j} \left[\min_{x \perp S_j} R(x) \right] , \quad \lambda_{n-j} = \min_{S_j} \left[\max_{x \perp S_j} R(x) \right]$$