Vector Space

Chia-Ping Chen

Professor
Department of Computer Science and Engineering
National Sun Yat-sen University

Linear Algebra

Outline

- Under-determined system of linear equations
- Vector space
- The fundamental subspaces of a matrix
- Linear transformation

NOTATION

- $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$: under-determined system of linear equations
- \boldsymbol{U} : echelon matrix
- \mathbb{V}, \mathbb{S} : vector space or subspace
- $\mathcal{B}, \mathcal{B}^{\prime}$: basis
- $\boldsymbol{T}: \mathbb{D} \rightarrow \mathbb{R}$: linear transform from domain \mathbb{D} to range \mathbb{R}
- $\left[\boldsymbol{x}_{\mathcal{B}}\right]$: column representation of vector \boldsymbol{x} using basis \mathcal{B}
- $\left[\boldsymbol{T}_{\mathcal{B} \mathcal{B}^{\prime}}\right]:$ matrix representation of $\boldsymbol{T}: \mathbb{D} \rightarrow \mathbb{R}$ using basis \mathcal{B} for \mathbb{D} and basis \mathcal{B}^{\prime} for \mathbb{R}

Under-determined System of Linear Equations

UNDER-DETERMINED SYSTEM

Consider a system of linear equations with m equations and n unknowns, and $m<n$.

- It is called an under-determined system
- It can be represented by $\boldsymbol{A x}=\boldsymbol{b}$
- \boldsymbol{A} is of order $m \times n, \boldsymbol{x}$ is $n \times 1$, and \boldsymbol{b} is $m \times 1$

Consider

$$
\left\{\begin{array}{r}
u+3 v+3 w=1 \\
2 u+6 v+9 w=5
\end{array}\right.
$$

- It is under-determined with $m=2$ and $n=3$
- It can be represented by $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ where

$$
\boldsymbol{A}=\left[\begin{array}{lll}
1 & 3 & 3 \\
2 & 6 & 9
\end{array}\right], \boldsymbol{x}=\left[\begin{array}{c}
u \\
v \\
w
\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{l}
1 \\
5
\end{array}\right]
$$

FROM UNDER-DETERMINED SYSTEM TO SQUARE SYSTEM

Let $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ be an under-determined system of linear equations with n unknowns and m equations. It can be converted to square system by moving $n-m$ unknowns to right side.

Consider

$$
\left\{\begin{array}{r}
u+3 v+3 w=1 \\
2 u+6 v+9 w=5
\end{array}\right.
$$

Moving w to the right side, we get

$$
\left\{\begin{aligned}
u+3 v & =1-3 w \\
2 u+6 v & =5-9 w
\end{aligned}\right.
$$

which can be seen as a square system with 2 unknowns.

WHICH UNKNOWNS TO MOVE

Let $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ be an under-determined system of linear equations.
We convert it to a square system by moving unknowns.

- Moving the right unknowns makes it non-singular
- Moving the wrong unknowns makes it singular

Consider

$$
\left\{\begin{array}{r}
u+3 v+3 w=1 \\
2 u+6 v+9 w=5
\end{array}\right.
$$

- Moving v to the right side makes it non-singular

$$
\left\{\begin{aligned}
u+3 w & =1-3 v \\
2 u+9 w & =5-6 v
\end{aligned}\right.
$$

- Moving w to the right side makes it singular

$$
\left\{\begin{aligned}
u+3 v & =1-3 w \\
2 u+6 v & =5-9 w
\end{aligned}\right.
$$

TheOrem (SOLVING AN UNDER-DETERMINED SYSTEM)
Let $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ be an under-determined system of linear equations. Exactly one of the following cases is true.
(1) No solution
(2) Infinite solutions

3 STEPS TO SOLVE AN UNDER-DETERMINED SYSTEM
Let $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ be an under-determined system of linear equations.
(1) Solve (the homogeneous equation) $\boldsymbol{A x}=\mathbf{0}$

$$
\mathbb{H}=\left\{\boldsymbol{x}_{n} \mid \boldsymbol{A} \boldsymbol{x}_{n}=\mathbf{0}\right\}
$$

(2) Find (a particular solution) \boldsymbol{x}_{p} such that

$$
\boldsymbol{A} \boldsymbol{x}_{p}=\boldsymbol{b}
$$

(3) A general solution is

$$
\boldsymbol{x}_{g}=\boldsymbol{x}_{p}+\boldsymbol{x}_{n}
$$

EXAMPLE (SOLVE AN UNDER-DETERMINED SYSTEM)

$$
\mathcal{P}:\left\{\begin{array}{r}
u+3 v+3 w+2 y=1 \\
2 u+6 v+9 w+7 y=5 \\
-u-3 v+3 w+4 y=5
\end{array}\right.
$$

Replace right side by $\mathbf{0}$ and solve the homogeneous equation.

$$
\begin{aligned}
& \mathcal{P} \xrightarrow{\boldsymbol{b} \leftarrow \mathbf{0}}\{ \left\{\begin{array}{r}
u+3 v+3 w+2 y=0 \\
2 u+6 v+9 w+7 y=0 \\
-u-3 v+3 w+4 y=0
\end{array}\right. \\
& \xrightarrow{\text { elimination }}\left\{\begin{array}{r}
u+3 v+3 w+2 y=0 \\
u+3 w+3 y=0 \\
6 w+6 y=0
\end{array}\right. \\
& \xrightarrow{\text { elimination }}\left\{\begin{array}{r}
u w+3 y=0
\end{array}\right.
\end{aligned}
$$

So

$$
w=-y, \quad u=-3 v+y
$$

- Variables u and w stays on the left
- Variables v and y are moved to the right
- Values of u and w are determined by values of v and y
- A solution can be represented by a vector

$$
\begin{aligned}
\boldsymbol{x}_{n}=\left[\begin{array}{c}
u \\
v \\
w \\
y
\end{array}\right]=\left[\begin{array}{c}
-3 v+y \\
v \\
-y \\
y
\end{array}\right] & =v\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right]+y\left[\begin{array}{c}
1 \\
0 \\
-1 \\
1
\end{array}\right] \\
& =v \boldsymbol{x}_{1}+y \boldsymbol{x}_{2}
\end{aligned}
$$

- It is a linear combination of \boldsymbol{x}_{1} and \boldsymbol{x}_{2}

Restore the right side \boldsymbol{b} and find a particular solution \boldsymbol{x}_{p}.

$$
\mathcal{P}:\left\{\begin{array}{r}
u+3 v+3 w+2 y=1 \\
2 u+6 v+9 w+7 y=5 \\
-u-3 v+3 w+4 y=5
\end{array}\right.
$$

- Letting $v=y=0$, we have

$$
\left\{\begin{array}{r}
u+3 w=1 \\
2 u+9 w=5 \\
-u+3 w=5
\end{array}\right.
$$

so $w=1$ and $u=-2$.

- This particular solution can be represented by a vector

$$
\boldsymbol{x}_{p}=\left[\begin{array}{c}
u \\
v \\
w \\
y
\end{array}\right]=\left[\begin{array}{c}
-2 \\
0 \\
1 \\
0
\end{array}\right]
$$

GENERAL SOLUTION

Let $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ be an under-determined system of linear equations. The sum of a homogeneous solution and a particular solution is a solution.

Consider $\boldsymbol{x}_{n}+\boldsymbol{x}_{p}$. It is a solution of $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ since

$$
\boldsymbol{A}\left(\boldsymbol{x}_{n}+\boldsymbol{x}_{p}\right)=\boldsymbol{A} \boldsymbol{x}_{n}+\boldsymbol{A} \boldsymbol{x}_{p}=\boldsymbol{b}
$$

In the current example

$$
\boldsymbol{x}_{n}+\boldsymbol{x}_{p}=v\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right]+y\left[\begin{array}{c}
1 \\
0 \\
-1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-2 \\
0 \\
1 \\
0
\end{array}\right]
$$

SOLVING THE HOMOGENEOUS EQUATION VIA MATRIX

- The homogeneous equation was solved by elimination, i.e. a sequence of elimination steps
- Elimination step is equivalent to row operation on the coefficient matrix
- In particular

ECHELON MATRIX (ROW ECHELON FORM)

Elimination converts $\boldsymbol{A} \boldsymbol{x}=\mathbf{0}$ to $\boldsymbol{U} \boldsymbol{x}=\mathbf{0}$ where \boldsymbol{U} is an echelon matrix.

- In each non-zero row of \boldsymbol{U}, the first non-zero element is a pivot
- Pivots descend to the right
- Using pivots as anchors, we can draw a zigzag line on \boldsymbol{U} such that the elements below the line are 0
- An echelon matrix can be converted to a reduced echelon matrix (a.k.a. reduced form) where every pivot is 1

$$
U=\left[\begin{array}{llllllll}
\bullet & * & * & * & * & * & * & * \\
\hdashline 0 & \bullet & * & * & * & * & * & * \\
0 & 0 & 0 & \bullet & * & * & * & * \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \bullet \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \quad R=\left[\begin{array}{cccccccc}
\mathbf{1} & \mathbf{0} & * & \mathbf{0} & * & * & * & \mathbf{0} \\
\hdashline 0 & \mathbf{1} & * & \mathbf{0} & * & * & * & \mathbf{0} \\
0 & 0 & 0 & \mathbf{1} & * & * & * & \mathbf{0} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \mathbf{1} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Figure 2.3: The entries of a 5 by 8 echelon matrix U and its reduced form R.

PIVOT VARIABLES AND FREE VARIABLES

Suppose elimination converts $\boldsymbol{A x}=\mathbf{0}$ to $\boldsymbol{U} \boldsymbol{x}=\mathbf{0}$ where \boldsymbol{U} is an echelon matrix.

- Pivot positions correspond to pivot variables
- The other variables are free variables

Consider the system

$$
\left\{\begin{array}{r}
u+3 v+3 w+2 y=1 \\
2 u+6 v+9 w+7 y=5 \\
-u-3 v+3 w+4 y=5
\end{array}\right.
$$

- u and w are pivot variables
- v and y are free variables

HOMOGENEOUS/PARTICULAR/GENERAL SOLUTIONS

Let $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ be an under-determined system with m equations and n unknowns. Suppose elimination converts $\boldsymbol{A x}=\mathbf{0}$ to $\boldsymbol{U} \boldsymbol{x}=\mathbf{0}$ where \boldsymbol{U} is an echelon matrix. Let r be the number of pivots in \boldsymbol{U}.

- The number of pivot variables is r
- The number of free variables is $n-r$
- We can find $n-r$ homogeneous solutions by setting one free variable to 1 and the other free variables to 0
- If the system is solvable, we can find a particular solution by setting free variables to 0
- The sum of a homogeneous solution and a particular solution is a general solution

For \mathcal{P}, we have homogeneous solution

$$
\boldsymbol{x}_{n}=\left[\begin{array}{c}
u \\
v \\
w \\
y
\end{array}\right]=\left[\begin{array}{c}
-3 v+y \\
v \\
-y \\
y
\end{array}\right]=v\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right]+y\left[\begin{array}{c}
1 \\
0 \\
-1 \\
1
\end{array}\right]
$$

and a particular solution

$$
\boldsymbol{x}_{p}=\left[\begin{array}{c}
-2 \\
0 \\
1 \\
0
\end{array}\right]
$$

The general solution is

$$
\boldsymbol{x}_{g}=\boldsymbol{x}_{p}+\boldsymbol{x}_{n}=\left[\begin{array}{c}
-2 \\
0 \\
1 \\
0
\end{array}\right]+v\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right]+y\left[\begin{array}{c}
1 \\
0 \\
-1 \\
1
\end{array}\right]
$$

$$
\left\{\begin{array}{r}
y+z=2 \\
2 y+2 z=4
\end{array} \Rightarrow \boldsymbol{x}_{n}=c\left[\begin{array}{c}
-1 \\
1
\end{array}\right], \boldsymbol{x}_{p}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right.
$$

Figure 2.2: The parallel lines of solutions to $A x_{n}=0$ and $\left[\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right]\left[\begin{array}{c}y \\ z\end{array}\right]=\left[\begin{array}{l}2 \\ 4\end{array}\right]$.

EXAMPLE (EXERCISE)

$$
\left\{\begin{array}{l}
1 x_{1}+2 x_{2}+3 x_{3}+5 x_{4}=0 \\
2 x_{1}+4 x_{2}+8 x_{3}+12 x_{4}=6 \\
3 x_{1}+6 x_{2}+7 x_{3}+13 x_{4}=-6
\end{array}\right.
$$

Vector Space

DEFINITION (VECTOR SPACE)

Let \mathbb{V} be a set of vectors. \mathbb{V} is a space if

- addition and scalar multiplication are defined for \mathbb{V}
- \mathbb{V} is closed under addition and scalar multiplication

The following rules hold for addition and scalar multiplication.
(1) $\exists \mathbf{0} \in \mathbb{V}$ such that $\forall \boldsymbol{x} \in \mathbb{V}$ we have $\boldsymbol{x}+\mathbf{0}=\boldsymbol{x}$
(2) $\forall \boldsymbol{x} \in \mathbb{V}, \exists \boldsymbol{y} \in \mathbb{V}$ such that $\boldsymbol{x}+\boldsymbol{y}=\mathbf{0}$
(3) $\forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{V}$, we have $\boldsymbol{x}+\boldsymbol{y}=\boldsymbol{y}+\boldsymbol{x}$
(1) $\forall \boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \mathbb{V}$, we have $\boldsymbol{x}+(\boldsymbol{y}+\boldsymbol{z})=(\boldsymbol{x}+\boldsymbol{y})+\boldsymbol{z}$
(5) $\forall \boldsymbol{x} \in \mathbb{V}$, we have $1 \boldsymbol{x}=\boldsymbol{x}$
(1) $\forall \boldsymbol{x} \in \mathbb{V}$, we have $c_{1}\left(c_{2} \boldsymbol{x}\right)=\left(c_{1} c_{2}\right) \boldsymbol{x}$ for any c_{1}, c_{2}
(1) $\forall \boldsymbol{x} \in \mathbb{V}$, we have $\left(c_{1}+c_{2}\right) \boldsymbol{x}=c_{1} \boldsymbol{x}+c_{2} \boldsymbol{x}$ for any c_{1}, c_{2}
(8) $\forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{V}$, we have $c(\boldsymbol{x}+\boldsymbol{y})=c \boldsymbol{x}+c \boldsymbol{y}$ for any c

EXAMPLE (VECTOR SPACE)

- \mathbb{R}^{1}
- \mathbb{R}^{2}
- \mathbb{R}^{3}
- \mathbb{R}^{n}
- $\mathbb{M}_{3 \times 2}$: the set of matrices of order 3×2
- $\mathbb{F}_{[a, b]}$: the set of functions defined over $[a, b]$

DEFINITION (VECTOR SUBSPACE)

Let \mathbb{S} be a set of vectors. \mathbb{S} is a subspace if
(1) $\mathbb{S} \subset \mathbb{V}$ where \mathbb{V} is a space
(0) \mathbb{S} is a space

Example (VEctor subspace)
(1) $\{[0,0,0]\}$: subspace of \mathbb{R}^{3}
(c) z-axis: subspace of \mathbb{R}^{3}

- $x y$-plane: subspace of \mathbb{R}^{3}
- $\mathbb{S}_{6 \times 6}\left(6 \times 6\right.$ symmetric matrices): subspace of $\mathbb{M}_{6 \times 6}$
- $\mathbb{L}_{5 \times 5}$ (5×5 lower-triangular matrices): subspace of $\mathbb{M}_{5 \times 5}$

DEFINITION (LINEAR COMBINATION)

Let \mathbb{V} be a space and $\boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{n}$ be vectors of \mathbb{V}. The linear combination of $\boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{n}$ is

$$
\sum_{i=1}^{n} c_{i} \boldsymbol{v}_{i}=c_{1} \boldsymbol{v}_{1}+\cdots+c_{n} \boldsymbol{v}_{n}
$$

where c_{1}, \cdots, c_{n} are scalars called combination coefficients.
The linear combination $\sum_{i=1}^{n} c_{i} \boldsymbol{v}_{i}$ is the ending point of a walk in space \mathbb{V} with segments $c_{i} \boldsymbol{v}_{i}$'s starting from the origin.

DEFINITION (SPAN)

Let \mathbb{V} be a space and $\mathcal{V}=\left\{\boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{n}\right\}$ be a vector set in \mathbb{V}. The span of \mathcal{V} is

$$
\boldsymbol{\operatorname { s p a n }}(\mathcal{V})=\left\{\boldsymbol{v} \mid \boldsymbol{v}=c_{1} \boldsymbol{v}_{1}+\cdots+c_{n} \boldsymbol{v}_{n}\right\}
$$

Let $\mathbb{B}=\mathbf{\operatorname { s p a n }}(\mathcal{V})$.

- \mathbb{B} is a subspace of \mathbb{V}
- \mathbb{B} is the set of points reachable from the origin moving only in the directions of $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}$
- We say " \mathcal{V} spans \mathbb{B} " or " \mathcal{V} is a spanning set of \mathbb{B} "

TRIVIAL LINEAR COMBINATION

Let $\sum_{i=1}^{n} c_{i} \boldsymbol{v}_{i}$ be a linear combination of $\boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{n}$.

- It is trivial if $c_{i}=0$ for all i
- It is non-trivial if there exists $c_{i} \neq 0$
- A trivial linear combination is always $\mathbf{0}$
- A non-trivial linear combination may be 0

DEFINITION (LINEAR INDEPENDENCE)

Let $\mathcal{V}=\left\{\boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{n}\right\}$ be a set of vectors.

- \mathcal{V} is linearly independent if every non-trivial linear combination of $\boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{n}$ is a non-zero vector
- Otherwise, \mathcal{V} is linearly dependent
- That is, \mathcal{V} is linearly dependent if there exists $c_{i} \neq 0$ such that

$$
\sum_{i=1}^{n} c_{i} \boldsymbol{v}_{i}=\mathbf{0}
$$

EXAMPLE (LINEAR DEPENDENCE)

Convert \boldsymbol{A} to \boldsymbol{U} by row operations

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
1 & 3 & 3 & 2 \\
2 & 6 & 9 & 7 \\
-1 & -3 & 3 & 4
\end{array}\right] \rightarrow \cdots \rightarrow\left[\begin{array}{cccc}
1 & 3 & 3 & 2 \\
0 & 0 & 3 & 3 \\
0 & 0 & 0 & 0
\end{array}\right]=\boldsymbol{U}
$$

- $\left\{\boldsymbol{u}_{1:}, \boldsymbol{u}_{2:}\right\}$ is linearly independent
- $\left\{\boldsymbol{a}_{1:}, \boldsymbol{a}_{2:}\right\}$ is linearly independent
- $\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{3}\right\}$ is linearly independent
- $\left\{\boldsymbol{a}_{1}, \boldsymbol{a}_{3}\right\}$ is linearly independent

DEFINITION (DEPENDENT VECTOR)

Let $\mathcal{V}=\left\{\boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{n}\right\}$ be a set of vectors. If \boldsymbol{v}_{i} is a linear combination of $\boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{i-1}$, it is a dependent vector of \mathcal{V}.

- By definition, \boldsymbol{v}_{i} is a dependent vector of \mathcal{V} if

$$
\boldsymbol{v}_{i}=\sum_{j=1}^{i-1} c_{j} \boldsymbol{v}_{j}
$$

- $\mathbf{0}$ is a dependent vector since

$$
\mathbf{0}=\sum_{j=1}^{i-1} 0 \boldsymbol{v}_{j}
$$

LINEAR DEPENDENCE AND DEPENDENT VECTOR

A set of vectors $\mathcal{V}=\left\{\boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{n}\right\}$ is linearly dependent if and only if there exists a dependent vector in \mathcal{V}.

- Suppose \boldsymbol{v}_{i} is a dependent vector so $\boldsymbol{v}_{i}=\sum_{j=1}^{i-1} c_{j} \boldsymbol{v}_{j}$. Then the linear combination $\boldsymbol{v}_{i}-\sum_{j=1}^{i-1} c_{j} \boldsymbol{v}_{j}$ is $\mathbf{0}$ and it is non-trivial (since $c_{i}=1 \neq 0$). Hence \mathcal{V} is linearly dependent.
- Suppose \mathcal{V} is linearly dependent so there exists non-trivial linear combination $\sum_{j=1}^{n} c_{j}^{\prime} \boldsymbol{v}_{j}$ that is $\mathbf{0}$. Let i be the largest integer with $c_{i}^{\prime} \neq 0$. Then

$$
\sum_{j=1}^{i} c_{j}^{\prime} \boldsymbol{v}_{j}=\mathbf{0} \Rightarrow c_{i}^{\prime} \boldsymbol{v}_{i}=-\sum_{j=1}^{i-1} c_{j}^{\prime} \boldsymbol{v}_{j} \Rightarrow \boldsymbol{v}_{i}=\sum_{j=1}^{i-1}\left(\frac{-c_{j}^{\prime}}{c_{i}^{\prime}}\right) \boldsymbol{v}_{j}
$$

Hence \boldsymbol{v}_{i} is a dependent vector.

Theorem

Let $\mathcal{V}=\left\{\boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{n}\right\}$ be a linearly dependent set.

- We can move dependent vectors out of \mathcal{V} until it is linearly independent
- Moving a dependent vector out of \mathcal{V} does not change the space it spans

Proof.

- Since \mathcal{V} is linearly dependent, a dependent vector exists and we move it out of \mathcal{V}. Continue until a dependent vector cannot be found. The remaining set is linearly independent.
- Let \boldsymbol{v}_{i} be a dependent vector so

$$
\boldsymbol{v}_{i}=\sum_{j=1}^{i-1} c_{j} \boldsymbol{v}_{j}
$$

Note linear combination of $\boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{i}$ can be written as linear combination of $\boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{i-1}$. It follows that any linear combination of $\boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{n}$ can be written as a linear combination of $\boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{i-1}, \boldsymbol{v}_{i+1}, \cdots, \boldsymbol{v}_{n}$. Hence

$$
\boldsymbol{\operatorname { s p a n }}\left(\boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{i-1}, \boldsymbol{v}_{i+1}, \cdots, \boldsymbol{v}_{n}\right)=\boldsymbol{\operatorname { s p a n }}\left(\boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{n}\right)
$$

DEFINITION (BASIS)

Let \mathbb{S} be a space. A set of vectors \mathcal{B} is a basis of \mathbb{S} if

- \mathcal{B} is a spanning set of \mathbb{S}
- \mathcal{B} is linearly independent

CONSTRUCTING BASIS FROM SPANNING SET

Let $\mathcal{V}=\left\{\boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{n}\right\}$ be a spanning set of \mathbb{S}.

- If \mathcal{V} is linearly independent, \mathcal{V} is a basis of \mathbb{S}.
- If \mathcal{V} is linearly dependent, remove dependent vectors until the remaining set

$$
\mathcal{V}^{\prime}=\left\{\boldsymbol{v}_{1}^{\prime}, \cdots, \boldsymbol{v}_{m}^{\prime}\right\} \subset \mathcal{V}
$$

is linearly independent. Then \mathcal{V}^{\prime} is a basis of \mathbb{S}.

ExAmPLE (SPANNING SET VS. BASIS)

Figure 2.4: A spanning set v_{1}, v_{2}, v_{3}. Bases v_{1}, v_{2} and v_{1}, v_{3} and v_{2}, v_{3}.

LEMMA (INDEPENDENT SET AND SPANNING SET)

Let \mathbb{S} be a space, $\mathcal{V}=\left\{\boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{k}\right\}$ be a linearly independent set and $\mathcal{U}=\left\{\boldsymbol{u}_{1}, \cdots, \boldsymbol{u}_{l}\right\}$ be a spanning set of \mathbb{S}. Then $k \leq l$.

Proof by contradiction. Suppose $k>l$. Since \mathcal{U} spans \mathbb{S}

$$
\boldsymbol{v}_{j}=\sum_{i=1}^{l} a_{i j} \boldsymbol{u}_{i}, j=1, \ldots, k
$$

Define $\boldsymbol{A}=\left\{a_{i j}\right\}_{l \times k}$ and consider $\boldsymbol{A} \boldsymbol{x}=\mathbf{0}$. Since it is an under-determined system, $\exists \boldsymbol{c} \neq \mathbf{0}$ such that $\boldsymbol{A} \boldsymbol{c}=\mathbf{0}$. Then

$$
\sum_{j=1}^{k} c_{j} \boldsymbol{v}_{j}=\sum_{j=1}^{k} c_{j} \sum_{i=1}^{l} a_{i j} \boldsymbol{u}_{i}=\sum_{i=1}^{l}\left(\sum_{j=1}^{k} a_{i j} c_{j}\right) \boldsymbol{u}_{i}=\mathbf{0}
$$

This contradicts the assumption that \mathcal{V} is linearly independent.

Theorem (SIZE OF A BASIS OF A SPACE)

Let \mathbb{S} be a space. Every basis of \mathbb{S} has the same number of vectors (a.k.a. cardinality).

Proof. Let $\mathcal{U}=\left\{\boldsymbol{u}_{1}, \cdots, \boldsymbol{u}_{m}\right\}$ and $\mathcal{V}=\left\{\boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{n}\right\}$ be bases of \mathbb{S}. Since \mathcal{U} is a linearly independent set and \mathcal{V} is a spanning set, we have

$$
m \leq n
$$

Since \mathcal{V} is a linearly independent set and \mathcal{U} is a spanning set, we also have

$$
n \leq m
$$

Hence

$$
m=n
$$

DEFINITION (DIMENSION)

The dimension of a space is the number of vectors in a basis of the space. Let \mathbb{S} be a space and $\mathcal{V}=\left\{\boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{n}\right\}$ be a basis of \mathbb{S}.

- The dimension of \mathbb{S} is n
- This is denoted by $\operatorname{dim} \mathbb{S}=n$

Suppose $\operatorname{dim} \mathbb{S}=n$.

- A linearly independent set of \mathbb{S} has at most n vectors
- A spanning set of \mathbb{S} has at least n vectors

Fundamental Subspaces of a Matrix

DEFINITION (COLUMN SPACE AND ROW SPACE)

Let \boldsymbol{A} be a matrix.

- The column space of \boldsymbol{A} is the space spanned by the column vectors of \boldsymbol{A}
- The row space is the space spanned by the row vectors

Let \boldsymbol{A} be a matrix of order $m \times n$. We have

$$
\begin{aligned}
\mathbb{C}(\boldsymbol{A}) & =\boldsymbol{\operatorname { s p a n }}\left(\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{n}\right) \\
\mathbb{C}\left(\boldsymbol{A}^{T}\right) & =\operatorname{span}\left(\boldsymbol{a}_{1:}^{T}, \cdots, \boldsymbol{a}_{m:}^{T}\right)
\end{aligned}
$$

Note

$$
\mathbb{C}(\boldsymbol{A}) \subset \mathbb{R}^{m}, \mathbb{C}\left(\boldsymbol{A}^{T}\right) \subset \mathbb{R}^{n}
$$

Example (COLUMN SPACE)

$$
\boldsymbol{A}=\left[\begin{array}{ll}
1 & 0 \\
5 & 4 \\
2 & 4
\end{array}\right]
$$

Figure 2.1: The column space $C(A)$, a plane in three-dimensional space.

DEFINITION (NULLSPACE AND LEFT NULLSPACE)

Let \boldsymbol{A} be a matrix.

- The nullspace of \boldsymbol{A} is defined by

$$
\mathbb{N}(\boldsymbol{A})=\{\boldsymbol{x} \mid \boldsymbol{A} \boldsymbol{x}=\mathbf{0}\}
$$

- The left nullspace of \boldsymbol{A} is defined by

$$
\mathbb{N}\left(\boldsymbol{A}^{T}\right)=\left\{\boldsymbol{y} \mid \boldsymbol{A}^{T} \boldsymbol{y}=\mathbf{0}\right\}
$$

Let \boldsymbol{A} be a matrix of order $m \times n$. We have

$$
\mathbb{N}(\boldsymbol{A}) \subset \mathbb{R}^{n}, \mathbb{N}\left(\boldsymbol{A}^{T}\right) \subset \mathbb{R}^{m}
$$

$\mathbb{N}\left(\boldsymbol{A}^{T}\right)$ is called the left nullspace because

$$
\boldsymbol{y} \in \mathbb{N}\left(\boldsymbol{A}^{T}\right) \Rightarrow \boldsymbol{A}^{T} \boldsymbol{y}=\mathbf{0} \Rightarrow \boldsymbol{y}^{T} \boldsymbol{A}=\mathbf{0}
$$

EXAMPLE (FUNDAMENTAL SUBSPACES OF A MATRIX)

Figure 2.5: The four fundamental subspaces (lines) for the singular matrix A.

$$
\begin{aligned}
\mathbb{C}(\boldsymbol{A}) & =\left\{\boldsymbol{y} \left\lvert\, \boldsymbol{y}=c_{1}\left[\begin{array}{l}
1 \\
3
\end{array}\right]+c_{2}\left[\begin{array}{l}
2 \\
6
\end{array}\right]\right.\right\}=\left\{\boldsymbol{y} \left\lvert\, \boldsymbol{y}=c\left[\begin{array}{l}
1 \\
3
\end{array}\right]\right.\right\} \\
\mathbb{C}\left(\boldsymbol{A}^{T}\right) & =\left\{\boldsymbol{x} \left\lvert\, \boldsymbol{x}=c_{1}\left[\begin{array}{ll}
1 & 2
\end{array}\right]^{T}+c_{2}\left[\begin{array}{ll}
3 & 6
\end{array}\right]^{T}\right.\right\}=\left\{\boldsymbol{x} \left\lvert\, \boldsymbol{x}=c\left[\begin{array}{ll}
1 & 2
\end{array}\right]^{T}\right.\right\} \\
\mathbb{N}(\boldsymbol{A}) & =\left\{\boldsymbol{x} \left\lvert\, \boldsymbol{x}=c\left[\begin{array}{c}
-2 \\
1
\end{array}\right]\right.\right\} \\
\mathbb{N}\left(\boldsymbol{A}^{T}\right) & =\left\{\boldsymbol{y} \left\lvert\, \boldsymbol{y}=c\left[\begin{array}{ll}
-3 & 1
\end{array}\right]^{T}\right.\right\}
\end{aligned}
$$

DEFINITION (RANK)

The rank of \boldsymbol{A} is the number of pivots in the echelon matrix converted from \boldsymbol{A}.

- For example

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
1 & 3 & 3 & 2 \\
2 & 6 & 9 & 7 \\
-1 & -3 & 3 & 4
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & 3 & 3 & 2 \\
0 & 0 & 3 & 3 \\
0 & 0 & 6 & 6
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & 3 & 3 & 2 \\
0 & 0 & 3 & 3 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

$\boldsymbol{\operatorname { r a n k }}(\boldsymbol{A})=2$

- Let \boldsymbol{A} be a matrix of order $m \times n$. Then

$$
\boldsymbol{\operatorname { r a n k }}(\boldsymbol{A}) \leq \min (m, n)
$$

BASES OF FUNDAMENTAL SUBSPACES

Let \boldsymbol{A} be a matrix of order $m \times n$ with rank r. Let \boldsymbol{U} be the echelon matrix converted from \boldsymbol{A} so $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}$.

- The r pivot columns of \boldsymbol{A} constitute a basis of $\mathbb{C}(\boldsymbol{A})$
- The r pivot rows of \boldsymbol{U} constitute a basis of $\mathbb{C}\left(\boldsymbol{A}^{T}\right)$
- The $(n-r)$ independent solutions of $\boldsymbol{A} \boldsymbol{x}=\mathbf{0}$ constitute a basis of $\mathbb{N}(\boldsymbol{A})$
- The last $(m-r)$ rows in \boldsymbol{L}^{-1} where $\boldsymbol{U}=\boldsymbol{L}^{-1} \boldsymbol{A}$ constitute a basis of $\mathbb{N}\left(\boldsymbol{A}^{T}\right)$

EXAMPLE (BASES OF FUNDAMENTAL SUBSPACES)

Find the bases of the fundamental subspaces of

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
1 & 3 & 3 & 2 \\
2 & 6 & 9 & 7 \\
-1 & -3 & 3 & 4
\end{array}\right]
$$

The echelon matrix \boldsymbol{U} converted from \boldsymbol{A} is

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
1 & 3 & 3 & 2 \\
2 & 6 & 9 & 7 \\
-1 & -3 & 3 & 4
\end{array}\right] \rightarrow \cdots \rightarrow\left[\begin{array}{llll}
1 & 3 & 3 & 2 \\
0 & 0 & 3 & 3 \\
0 & 0 & 0 & 0
\end{array}\right]=\boldsymbol{U}
$$

Note $\boldsymbol{U}=\boldsymbol{L}^{-1} \boldsymbol{A}$ where

$$
\boldsymbol{L}^{-1}=\left[\begin{array}{lcc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -2 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
5 & -2 & 1
\end{array}\right]
$$

- Row 1 and row 2 are the pivot rows

$$
\mathbb{C}\left(\boldsymbol{A}^{T}\right):\left\{\left[\begin{array}{llll}
1 & 3 & 3 & 2
\end{array}\right]^{T},\left[\begin{array}{llll}
0 & 0 & 3 & 3
\end{array}\right]^{T}\right\}
$$

- Column 1 and column 3 are the pivot columns

$$
\mathbb{C}(\boldsymbol{A}):\left\{\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right],\left[\begin{array}{l}
3 \\
9 \\
3
\end{array}\right]\right\}
$$

- For the left nullspace

$$
\mathbb{N}\left(\boldsymbol{A}^{T}\right):\left\{\left[\begin{array}{lll}
5 & -2 & 1
\end{array}\right]^{T}\right\}
$$

- For the nullspace

$$
\mathbb{N}(\boldsymbol{A}):\left\{\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
0 \\
-1 \\
1
\end{array}\right]\right\}
$$

THEOREM (FUNDAMENTAL THEOREM PART I)

Let \boldsymbol{A} be a matrix of order $m \times n$ and rank r.

- The column space $\mathbb{C}(\boldsymbol{A})$ is of dimension r
- The row space $\mathbb{C}\left(\boldsymbol{A}^{T}\right)$ is of dimension r
- The nullspace $\mathbb{N}(\boldsymbol{A})$ is of dimension $n-r$
- The left nullspace $\mathbb{N}\left(\boldsymbol{A}^{T}\right)$ is of dimension $m-r$

Corollary (ROW space and Column space)

The row space and the column space of a matrix always have the same dimension.

Theorem (EXISTENCE AND UNIQUENESS OF SOLUTION)

Let \boldsymbol{A} be of order $m \times n$ and rank r. Consider $\boldsymbol{A x}=\boldsymbol{b}$.

- If $\boldsymbol{b} \in \mathbb{C}(\boldsymbol{A}), \boldsymbol{b}$ is a linear combination of the column vectors of \boldsymbol{A}, so a solution exists
- If $r=m, \mathbb{C}(\boldsymbol{A})=\mathbb{R}^{m}$, so solution exists for every \boldsymbol{b}
- If $r=n$, the column vectors are linearly dependent, so there is at most one solution for every b

Linear Transformation

TRANSFORMATION AND LINEAR TRANSFORMATION

Let \mathbb{D} (domain) and \mathbb{R} (range) be vector spaces.

- A transformation from \mathbb{D} to \mathbb{R} maps a vector in \mathbb{D} to a vector in \mathbb{R}. This is denoted by

$$
\boldsymbol{T}: \mathbb{D} \mapsto \mathbb{R}
$$

- Let $\boldsymbol{T}: \mathbb{D} \mapsto \mathbb{R}$ be a transformation. \boldsymbol{T} is linear if

$$
\boldsymbol{T}\left(c_{1} \boldsymbol{x}_{1}+c_{2} \boldsymbol{x}_{2}\right)=c_{1} \boldsymbol{T}\left(\boldsymbol{x}_{1}\right)+c_{2} \boldsymbol{T}\left(\boldsymbol{x}_{2}\right)
$$

for any scalars c_{1}, c_{2} and $\boldsymbol{x}_{1}, \boldsymbol{x}_{2} \in \mathbb{D}$.

ThEOREM (MATRIX AND LINEAR TRANSFORMATION)

A linear transformation can be represented by matrix.

Figure 2.9: Transformations of the plane by four matrices.

$$
\left[\begin{array}{ll}
c & 0 \\
0 & c
\end{array}\right],\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

REPRESENTATION OF A VECTOR BY A COLUMN

Let \mathbb{V} be a space of dimension n. Through a basis, a vector of \mathbb{V} can be represented by a column of size n.

Let $\mathcal{B}=\left\{\boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{n}\right\}$ be a basis of \mathbb{V}. For any $\boldsymbol{x} \in \mathbb{V}$, there exist x_{1}, \cdots, x_{n} (to be shown to be unique) such that

$$
\boldsymbol{x}=\sum_{i=1}^{n} x_{i} \boldsymbol{v}_{i}
$$

Thus \boldsymbol{x} can be represented by a column of size n

$$
\left[\boldsymbol{x}_{\mathcal{B}}\right]=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] \Leftrightarrow \boldsymbol{x}=x_{1} \boldsymbol{v}_{1}+\cdots+x_{n} \boldsymbol{v}_{n}
$$

THEOREM (UNIQUENESS OF REPRESENTATION)

Given basis, the representation of a vector is unique.
Let \mathbb{V} be a space of dimension n and $\mathcal{B}=\left\{\boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{n}\right\}$ be a basis of \mathbb{V}. For any $\boldsymbol{x} \in \mathbb{V}$, suppose

$$
\boldsymbol{x}=a_{1} \boldsymbol{v}_{1}+\cdots+a_{n} \boldsymbol{v}_{n}=b_{1} \boldsymbol{v}_{1}+\cdots+b_{n} \boldsymbol{v}_{n}
$$

Then

$$
\boldsymbol{x}-\boldsymbol{x}=\sum_{i=1}^{n} a_{i} \boldsymbol{v}_{i}-\sum_{i=1}^{n} b_{i} \boldsymbol{v}_{i}=\sum_{i=1}^{n}\left(a_{i}-b_{i}\right) \boldsymbol{v}_{i}=\mathbf{0}
$$

Since $\left\{\boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{n}\right\}$ is linearly independent, the linear combination $\sum_{i=1}^{n}\left(a_{i}-b_{i}\right) \boldsymbol{v}_{i}$ must be trivial. Hence

$$
a_{i}=b_{i}, \quad \forall i
$$

CHARACTERIZATION OF LINEAR TRANSFORMATION

Let $\boldsymbol{T}: \mathbb{D} \mapsto \mathbb{R}$ be a linear transformation. \boldsymbol{T} can be specified by the transformation by \boldsymbol{T} for the vectors in a basis of \mathbb{D}.

Let $\mathcal{B}=\left\{\boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{n}\right\}$ be a basis of \mathbb{D}.

- Let $\boldsymbol{T}\left(\boldsymbol{v}_{j}\right)$ be the transformation by \boldsymbol{T} for \boldsymbol{v}_{j}
- For any $\boldsymbol{x} \in \mathbb{D}$, we have $\boldsymbol{x}=\sum_{j} x_{j} \boldsymbol{v}_{j}$
- By the linearity of \boldsymbol{T}, the transformation by \boldsymbol{T} for \boldsymbol{x} is

$$
\boldsymbol{T}(\boldsymbol{x})=\boldsymbol{T}\left(\sum_{j} x_{j} \boldsymbol{v}_{j}\right)=\sum_{j} x_{j} \boldsymbol{T}\left(\boldsymbol{v}_{j}\right)
$$

REPRESENTATION OF LINEAR TRANSFORM BY MATRIX

Let $\boldsymbol{T}: \mathbb{D} \mapsto \mathbb{R}$ be linear, $\mathcal{B}=\left\{\boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{n}\right\}$ be a basis of \mathbb{D}, and $\mathcal{B}^{\prime}=\left\{\boldsymbol{v}_{1}^{\prime}, \cdots, \boldsymbol{v}_{m}^{\prime}\right\}$ be a basis of \mathbb{R}. Suppose

$$
\boldsymbol{T}\left(\boldsymbol{v}_{j}\right)=\sum_{i=1}^{m} a_{i j} \boldsymbol{v}_{i}^{\prime}, \quad j=1, \cdots, n
$$

- Coefficients $a_{i j}$ specify the transformation by \boldsymbol{T} for the basis vectors $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}$
- Define matrix

$$
\left[\boldsymbol{T}_{\mathcal{B B}^{\prime}}\right]=\left\{a_{i j}\right\}
$$

The size is $m \times n$, where column j is decided by $\boldsymbol{T}\left(\boldsymbol{v}_{j}\right)$
The matrix $\left[\boldsymbol{T}_{\mathcal{B} B^{\prime}}\right]$ completely specifies $\boldsymbol{T}: \mathbb{D} \mapsto \mathbb{R}$ through basis \mathcal{B} for \mathbb{D} and basis \mathcal{B}^{\prime} for \mathbb{R}.

LINEAR TRANSFORM AS MATRIX MULTIPLICATION

Let $\boldsymbol{T}: \mathbb{D} \mapsto \mathbb{R}$ be linear, $\boldsymbol{x} \in \mathbb{D}$, and $\boldsymbol{y} \in \mathbb{R}$. Let $\mathcal{B}=$ $\left\{\boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{n}\right\}$ be a basis of \mathbb{D}, and $\mathcal{B}^{\prime}=\left\{\boldsymbol{v}_{1}^{\prime}, \cdots, \boldsymbol{v}_{m}^{\prime}\right\}$ be a basis of \mathbb{R}. We have

$$
\boldsymbol{y}=\boldsymbol{T}(\boldsymbol{x}) \Leftrightarrow\left[\boldsymbol{y}_{\mathcal{B}^{\prime}}\right]=\left[\boldsymbol{T}_{\mathcal{B B}^{\prime}}\right]\left[\boldsymbol{x}_{\mathcal{B}}\right]
$$

Let $\boldsymbol{x}=\sum_{j=1}^{n} x_{j} \boldsymbol{v}_{j}$ and $\boldsymbol{y}=\sum_{i=1}^{m} y_{i} \boldsymbol{v}_{i}^{\prime}$.

$$
\begin{aligned}
\boldsymbol{T}(\boldsymbol{x}) & =\sum_{j=1}^{n} x_{j} \boldsymbol{T}\left(\boldsymbol{v}_{j}\right)=\sum_{j=1}^{n} x_{j} \sum_{i=1}^{m} a_{i j} \boldsymbol{v}_{i}^{\prime}=\sum_{i=1}^{m}\left(\sum_{j=1}^{n} a_{i j} x_{j}\right) \boldsymbol{v}_{i}^{\prime}=\boldsymbol{y} \\
& \Rightarrow y_{i}=\sum_{j} a_{i j} x_{j}, i=1, \cdots, m \\
& \Rightarrow\left[\boldsymbol{y}_{\mathcal{B}^{\prime}}\right]=\left[\boldsymbol{T}_{\mathcal{B B}^{\prime}}\right]\left[\boldsymbol{x}_{\mathcal{B}}\right]
\end{aligned}
$$

EXAMPLE (DIFFERENTIATION: DERIVATION OF MATRIX)

Let $\boldsymbol{D}: \mathcal{P}_{3} \mapsto \mathcal{P}_{2}$ be differentiation on polynomials. A basis of \mathcal{P}_{3} is $\mathcal{B}=\left\{\boldsymbol{v}_{1}=1, \boldsymbol{v}_{2}=t, \boldsymbol{v}_{3}=t^{2}, \boldsymbol{v}_{4}=t^{3}\right\}$, and a basis of \mathcal{P}_{2} is $\mathcal{B}^{\prime}=\left\{\boldsymbol{v}_{1}^{\prime}=1, \boldsymbol{v}_{2}^{\prime}=t, \boldsymbol{v}_{3}^{\prime}=t^{2}\right\}$. We have

$$
\begin{aligned}
& \boldsymbol{v}_{1}=0=0 \boldsymbol{v}_{1}^{\prime}+0 \boldsymbol{v}_{2}^{\prime}+0 \boldsymbol{v}_{3}^{\prime} \\
& \dot{\boldsymbol{v}}_{2}=1=1 \boldsymbol{v}_{1}^{\prime}+0 \boldsymbol{v}_{2}^{\prime}+0 \boldsymbol{v}_{3}^{\prime} \\
& \dot{\boldsymbol{v}}_{3}=2 t=0 \boldsymbol{v}_{1}^{\prime}+2 \boldsymbol{v}_{2}^{\prime}+0 \boldsymbol{v}_{3}^{\prime} \\
& \boldsymbol{v}_{4}=3 t^{2}=0 \boldsymbol{v}_{1}^{\prime}+0 \boldsymbol{v}_{2}^{\prime}+3 \boldsymbol{v}_{3}^{\prime}
\end{aligned}
$$

The coefficients go to the columns of a matrix

$$
\left[\boldsymbol{D}_{\mathcal{B B}^{\prime}}\right]=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3
\end{array}\right]
$$

EXAMPLE (ALTERNATIVE DERIVATION OF MATRIX)
Suppose $\boldsymbol{x}=x_{1} \boldsymbol{v}_{1}+x_{2} \boldsymbol{v}_{2}+x_{3} \boldsymbol{v}_{3}+x_{4} \boldsymbol{v}_{4}$, and $\boldsymbol{D}(\boldsymbol{x})=\boldsymbol{y}$.

$$
\begin{aligned}
\boldsymbol{y}=\dot{\boldsymbol{x}}= & x_{1} \dot{\boldsymbol{v}}_{1}+x_{2} \dot{\boldsymbol{v}}_{2}+x_{3} \dot{\boldsymbol{v}}_{3}+x_{4} \dot{\boldsymbol{v}}_{4} \\
= & x_{1}\left(0 \boldsymbol{v}_{1}^{\prime}+0 \boldsymbol{v}_{2}^{\prime}+0 \boldsymbol{v}_{3}^{\prime}\right)+x_{2}\left(1 \boldsymbol{v}_{1}^{\prime}+0 \boldsymbol{v}_{2}^{\prime}+0 \boldsymbol{v}_{3}^{\prime}\right) \\
& +x_{3}\left(0 \boldsymbol{v}_{1}^{\prime}+2 \boldsymbol{v}_{2}^{\prime}+0 \boldsymbol{v}_{3}^{\prime}\right)+x_{4}\left(0 \boldsymbol{v}_{1}^{\prime}+0 \boldsymbol{v}_{2}^{\prime}+3 \boldsymbol{v}_{3}^{\prime}\right) \\
= & y_{1} \boldsymbol{v}_{1}^{\prime}+y_{2} \boldsymbol{v}_{2}^{\prime}+y_{3} \boldsymbol{v}_{3}^{\prime} \\
\Rightarrow\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]= & {\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] } \\
\Rightarrow \quad\left[\boldsymbol{D}_{\mathcal{B B}^{\prime}}\right]= & {\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3
\end{array}\right] }
\end{aligned}
$$

EXAMPLE (ROTATION AND PROJECTION)

$$
\begin{aligned}
& R=\left[\begin{array}{cc}
c & -s \\
s & c
\end{array}\right] \\
& P=\left[\begin{array}{ll}
c^{2} & c s \\
c s & s^{2}
\end{array}\right]
\end{aligned}
$$

Figure 2.10: Rotation through θ (left). Projection onto the θ-line (right).

EXAMPLE (ROTATION: DERIVATION OF MATRIX)

Let \boldsymbol{R} be the counter-clockwise rotation by θ in \mathbb{R}^{2}. Let $\mathcal{B}=\mathcal{B}^{\prime}=\left\{\boldsymbol{e}_{1}=\left[\begin{array}{ll}1 & 0\end{array}\right]^{T}, \boldsymbol{e}_{2}=\left[\begin{array}{ll}0 & 1\end{array}\right]^{T}\right\}$. Rotation of the basis vectors leads to

$$
\begin{aligned}
\boldsymbol{R}\left(\boldsymbol{e}_{1}\right) & =\cos \theta \boldsymbol{e}_{1}+\sin \theta \boldsymbol{e}_{2} \\
\boldsymbol{R}\left(\boldsymbol{e}_{2}\right) & =\cos \left(\frac{\pi}{2}+\theta\right) \boldsymbol{e}_{1}+\sin \left(\frac{\pi}{2}+\theta\right) \boldsymbol{e}_{2} \\
& =-\sin \theta \boldsymbol{e}_{1}+\cos \theta \boldsymbol{e}_{2}
\end{aligned}
$$

Hence

$$
\left[\boldsymbol{R}_{\mathcal{B B}^{\prime}}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

EXAMPLE (ALTERNATIVE DERIVATION OF MATRIX)

Suppose \boldsymbol{R} rotates $\boldsymbol{x}=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]^{T}$ to $\boldsymbol{y}=\left[\begin{array}{ll}y_{1} & y_{2}\end{array}\right]^{T}$. Let the angle between \boldsymbol{x} and the horizontal axis be ϕ. Then the angle between \boldsymbol{y} and the horizontal axis is $(\phi+\theta)$.

$$
\begin{aligned}
x_{1} & =|\boldsymbol{x}| \cos \phi, x_{2}=|\boldsymbol{x}| \sin \phi,|\boldsymbol{y}|=|\boldsymbol{x}| \\
y_{1} & =|\boldsymbol{y}| \cos (\theta+\phi)=|\boldsymbol{x}|(\cos \theta \cos \phi-\sin \theta \sin \phi) \\
& =\cos \theta x_{1}-\sin \theta x_{2} \\
y_{2} & =|\boldsymbol{y}| \sin (\theta+\phi)=|\boldsymbol{x}|(\sin \theta \cos \phi+\cos \theta \sin \phi) \\
& =\sin \theta x_{1}+\cos \theta x_{2} \\
\Rightarrow\left[\begin{array}{cc}
y_{1} \\
y_{2}
\end{array}\right] & =\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
\Rightarrow\left[\boldsymbol{R}_{\mathcal{B B}^{\prime}}\right] & =\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
\end{aligned}
$$

EXAMPLE (PROJECTION: DERIVATION OF MATRIX)

Let \boldsymbol{P} be the projection to line L, which is at angle θ to the horizontal axis. Projection of the basis vectors leads to

$$
\begin{aligned}
& \boldsymbol{P}\left(\boldsymbol{e}_{1}\right)=\cos \theta\left(\cos \theta \boldsymbol{e}_{1}+\sin \theta \boldsymbol{e}_{2}\right)=\cos ^{2} \theta \boldsymbol{e}_{1}+\cos \theta \sin \theta \boldsymbol{e}_{2} \\
& \boldsymbol{P}\left(\boldsymbol{e}_{2}\right)=\sin \theta\left(\cos \theta \boldsymbol{e}_{1}+\sin \theta \boldsymbol{e}_{2}\right)=\sin \theta \cos \theta \boldsymbol{e}_{1}+\sin ^{2} \theta \boldsymbol{e}_{2}
\end{aligned}
$$

Hence

$$
\left[\boldsymbol{P}_{\mathcal{B B}^{\prime}}\right]=\left[\begin{array}{cc}
\cos ^{2} \theta & \sin \theta \cos \theta \\
\cos \theta \sin \theta & \sin ^{2} \theta
\end{array}\right]
$$

Example (alternative derivation of matrix)

Suppose \boldsymbol{P} projects $\boldsymbol{x}=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]^{T}$ to $\boldsymbol{y}=\left[\begin{array}{ll}y_{1} & y_{2}\end{array}\right]^{T}$. Let the angle between \boldsymbol{x} and the horizontal axis be ϕ. Then the angle between \boldsymbol{x} and \boldsymbol{y} is $(\theta-\phi)$, and the angle between \boldsymbol{y} and horizontal axis is θ.

$$
\begin{aligned}
x_{1} & =|\boldsymbol{x}| \cos \phi, x_{2}=|\boldsymbol{x}| \sin \phi,|\boldsymbol{y}|=|\boldsymbol{x}| \cos (\theta-\phi) \\
y_{1} & =|\boldsymbol{y}| \cos \theta=|\boldsymbol{x}| \cos (\theta-\phi) \cos \theta \\
& =|\boldsymbol{x}|(\cos \theta \cos \phi+\sin \theta \sin \phi) \cos \theta \\
& =\cos ^{2} \theta x_{1}+\sin \theta \cos \theta x_{2} \\
y_{2} & =|\boldsymbol{y}| \sin \theta=|\boldsymbol{x}| \cos (\theta-\phi) \sin \theta \\
& =|\boldsymbol{x}|(\cos \theta \cos \phi+\sin \theta \sin \phi) \sin \theta \\
& =\cos \theta \sin \theta x_{1}+\sin ^{2} \theta x_{2} \\
\Rightarrow\left[\begin{array}{cc}
y_{1} \\
y_{2}
\end{array}\right] & =\left[\begin{array}{cc}
\cos ^{2} \theta & \sin \theta \cos \theta \\
\cos \theta \sin \theta & \sin ^{2} \theta
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
\end{aligned}
$$

EXAMPLE (REFLECTION)

Figure 2.11: Reflection through the θ-line: the geometry and the matrix.

EXAMPLE (REFLECTION: DERIVATION OF MATRIX)

Let \boldsymbol{H} be the reflection with respect to line L, which is at angle θ to the horizontal axis. Reflection of the basis vectors leads to

$$
\begin{aligned}
\boldsymbol{H}\left(\boldsymbol{e}_{1}\right) & =\cos 2 \theta \boldsymbol{e}_{1}+\sin 2 \theta \boldsymbol{e}_{2} \\
\boldsymbol{H}\left(\boldsymbol{e}_{2}\right) & =\cos \left(2 \theta-\frac{\pi}{2}\right) \boldsymbol{e}_{1}+\sin \left(2 \theta-\frac{\pi}{2}\right) \boldsymbol{e}_{2} \\
& =\sin 2 \theta \boldsymbol{e}_{1}-\cos 2 \theta \boldsymbol{e}_{2}
\end{aligned}
$$

Hence

$$
\left[\boldsymbol{H}_{\mathcal{B B}^{\prime}}\right]=\left[\begin{array}{cc}
\cos 2 \theta & \sin 2 \theta \\
\sin 2 \theta & -\cos 2 \theta
\end{array}\right]
$$

Example (ALTERNATIVE DERIVATION OF MATRIX)

Suppose \boldsymbol{H} reflects $\boldsymbol{x}=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]^{T}$ to $\boldsymbol{y}=\left[\begin{array}{ll}y_{1} & y_{2}\end{array}\right]^{T}$. Let the angle between \boldsymbol{x} and the horizontal axis be ϕ. Then the angle between \boldsymbol{y} and horizontal axis is $(2 \theta-\phi)$.

$$
\begin{aligned}
x_{1} & =|\boldsymbol{x}| \cos \phi, x_{2}=|\boldsymbol{x}| \sin \phi,|\boldsymbol{y}|=|\boldsymbol{x}| \\
y_{1} & =|\boldsymbol{y}| \cos (2 \theta-\phi)=|\boldsymbol{x}| \cos 2 \theta \cos \phi+|\boldsymbol{x}| \sin 2 \theta \sin \phi \\
& =\cos 2 \theta x_{1}+\sin 2 \theta x_{2} \\
y_{2} & =|\boldsymbol{y}| \sin (2 \theta-\phi)=|\boldsymbol{x}| \sin 2 \theta \cos \phi-|\boldsymbol{x}| \cos 2 \theta \sin \phi \\
& =\sin 2 \theta x_{1}-\cos 2 \theta x_{2} \\
\Rightarrow\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right] & =\left[\begin{array}{cc}
\cos 2 \theta & \sin 2 \theta \\
\sin 2 \theta & -\cos 2 \theta
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
\end{aligned}
$$

SUMMARY OF LINEAR TRANSFORMATION

A linear transformation $\boldsymbol{T}: \mathbb{D} \mapsto \mathbb{R}$ from \mathbb{D} of dimension n to \mathbb{R} of dimension m is completely represented by a matrix of order $m \times n$. Such a matrix is constructed as follows.

- Find a basis of \mathbb{D} and a basis of \mathbb{R}
- Apply \boldsymbol{T} to a basis vector of \mathbb{D} and express the result as a linear combination of the basis vectors of \mathbb{R}
- Put the coefficients in a column of a matrix
- Repeat until every basis vector of \mathbb{D} has been processed

