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@ Under-determined system of linear equations
@ Vector space

@ The fundamental subspaces of a matrix
@ Linear transformation
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NOTATION

Ax = b: under-determined system of linear equations
U: echelon matrix

V,S: vector space or subspace

B, B’ basis

T : D — R: linear transform from domain D to range R

[xp]: column representation of vector @ using basis B

[T'5']: matrix representation of T : D — R using basis B
for D and basis B’ for R
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Under-determined System of Linear Equations
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UNDER-DETERMINED SYSTEM

Consider a system of linear equations with m equations and n
unknowns, and m < n.

@ It is called an under-determined system
@ It can be represented by Ax = b

@ Aisoforderm xn, xisnx1,and bism x 1

Consider
u + v + 3w =
2u + 6v + 9w =

Ut =

@ It is under-determined with m =2 and n =3
@ It can be represented by Ax = b where

u
133 1
Azlz 6 91”: v ’b:M
w
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FROM UNDER-DETERMINED SYSTEM TO SQUARE SYSTEM
Let Ax = b be an under-determined system of linear equations
with n unknowns and m equations. It can be converted to
square system by moving n — m unknowns to right side.

Consider
u + v + 3w =1
2u + 6v + 9w = 5

Moving w to the right side, we get

u + 3v = 1-3w
2u + 6v = 5—9%w

which can be seen as a square system with 2 unknowns.
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WHICH UNKNOWNS TO MOVE
Let Ax = b be an under-determined system of linear equations.

We convert it to a square system by moving unknowns.
@ Moving the right unknowns makes it non-singular
@ Moving the wrong unknowns makes it singular

Consider

u + v + 3w =1
2u + 6v + 9w = b

e Moving v to the right side makes it non-singular

u + 3w = 1-—3v
2 + 9w = 5 —6v

e Moving w to the right side makes it singular

u + v = 1-—3w
2u + 6v = 5—9%w

CHEN P UNDER-DETERMINED SYSTEM & VECTOR SPACE




THEOREM (SOLVING AN UNDER-DETERMINED SYSTEM )

Let Ax = b be an under-determined system of linear equations.
Exactly one of the following cases is true.

@ No solution
@ /Infinite solutions
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3 STEPS TO SOLVE AN UNDER-DETERMINED SYSTEM
Let Ax = b be an under-determined system of linear equations.

@ Solve (the homogeneous equation) Az =0
H = {«, | Az, = 0}
@ Find (a particular solution) x, such that

Ax, =b

P

@ A general solution is

T, =T, + T,
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u + v + 3w + 2y =1
P 2u + 6v + 9w + Ty = 5
—u — 3v + 3w + 4y = 5

o = £ £ DA¢ q9/70
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Replace right side by 0 and solve the homogeneous equation.

u + v 4+ 3w + 2y = 0
p L0 2u + 6v + 9w + Ty =
—u — 3v + 3w + 4y = 0

e}

o u + 3v + 3w + 2y = 0
elimination 3w 4 3y 0
6w + 6y = 0

elimination u + 3v 4+ 3w + 2y =0
3w + 3y = 0

So
w=-yY, u=-—-30+y

e Variables u and w stays on the left
e Variables v and y are moved to the right
@ Values of v and w are determined by values of v and ¥y
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@ A solution can be represented by a vector

U —3v+vy -3 1
o — v| v 0 1 n 0
" lw| —y a 0 Y121
Y Y 0 1

= VT + YT

@ It is a linear combination of x; and x,
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Restore the right side b and find a particular solution x,,.

u + v 4+ 3w + 2y =1
P: 2u + 6v + 9w + Ty
—u — 3v + 3w + 4y = 5

I
ot

@ Letting v =y =0, we have

u + 3w =1
2u + 9w
—u + 3w = 5

sow=1and u=—2.
@ This particular solution can be represented by a vector
U -2
vl O
T = lw| = |1
Y 0
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GENERAL SOLUTION

Let Ax = b be an under-determined system of linear equations.
The sum of a homogeneous solution and a particular solution is
a solution.

Consider x,, + x,. It is a solution of Ax = b since
Az, +x,) = Ax, + Az, =b

In the current example

-3 1 —2
TR IO I R B
n Ty 0 ~1 1

0 1 0

CHEN P UNDER-DETERMINED SYSTEM & VECTOR SPACE



SOLVING THE HOMOGENEOUS EQUATION VIA MATRIX

@ The homogeneous equation was solved by elimination, i.e.
a sequence of elimination steps

e Elimination step is equivalent to row operation on the co-
efficient matrix

@ In particular

1 3 3 2 1 3 3 2 1 3 3 2
2 6 97 —= (003 3 — |00 33
-1 -3 3 4 00 6 6 0000
—_———
A U
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ECHELON MATRIX (ROW ECHELON FORM)
Elimination converts Ax = 0 to Ux = 0 where U is an ech-
elon matrix.
@ In each non-zero row of U, the first non-zero element is a
pivot
@ Pivots descend to the right
@ Using pivots as anchors, we can draw a zigzag line on U
such that the elements below the line are 0

@ An echelon matrix can be converted to a reduced echelon
matrix (a.k.a. reduced form) where every pivot is 1
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Figure 2.3: The entries of a 5 by 8 echelon matrix U and its reduced form R.
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PIVOT VARIABLES AND FREE VARIABLES

Suppose elimination converts Ax = 0 to Ux = 0 where U is
an echelon matrix.

@ Pivot positions correspond to pivot variables

@ The other variables are free variables

Consider the system

u + 3v + 3w + 2y =1
2u + 6v + 9w + Ty
—u — 3v 4+ 3w + 4y = 5

I
ot

@ u and w are pivot variables

@ v and y are free variables
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HOMOGENEOUS /PARTICULAR/GENERAL SOLUTIONS

Let Ax = b be an under-determined system with m equations
and n unknowns. Suppose elimination converts Ax = 0 to
Ux = 0 where U is an echelon matrix. Let r be the number
of pivots in U.

@ The number of pivot variables is r

@ The number of free variables is n — r

@ We can find n — r homogeneous solutions by setting one

free variable to 1 and the other free variables to 0

o If the system is solvable, we can find a particular solution
by setting free variables to 0
@ The sum of a homogeneous solution and a particular solu-

tion is a general solution
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For P, we have homogeneous solution

U —3v+vy -3 1
U ) v . 1 n 0
" w| —y N 0 Y11
Y Y 0 1
and a particular solution
—2
0
T, = |
0
The general solution is
—2 -3 1
0 1 0
Tg=TptaTn=| TV Ty
0 0 1
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line of all solutions = = x4

] = shortest particular solution 1,
nullspace Az, =0

[3] = MATLAB’s particular solution A\b
Y

Figure 2.2: The parallel lines of solutions to Ax, =0 and [} }] Y]
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lzy +

21‘2 aF 3%3 == 5%4 = 0
2$1 aF 4$2 aF 8$3 - 12$4 = 6
3£L'1 aF 6152 aF 7583 4F 131,'4 = —6
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Vector Space
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DEFINITION (VECTOR SPACE)

Let V be a set of vectors. V is a space if

e addition and scalar multiplication are defined for V

e V is closed under addition and scalar multiplication

The following rules hold for addition and scalar multiplication.

30 € Vsuch that Ve € V we have £ +0 =«
VeeV, dJyeVsuchthatz+y=0
Ve,ycV,we havex+y=y+=x
Ve,y,zeV,wehavex + (y+2)=(x+y)+ 2
Ve €V, we have lx =x

Va €V, we have ¢i(cox) = (c1c0)x for any cq, co

Va €V, we have (¢; + co)x = 1 + cox for any ¢y, ¢y

Va,y €V, we have c¢(x + y) = cx + cy for any ¢
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Rl
RZ
R3
R™

M9: the set of matrices of order 3 x 2

Fla4: the set of functions defined over [a, b]

=] = = = £ DA
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DEFINITION (VECTOR SUBSPACE)

Let S be a set of vectors. S is a subspace if
Q@ S C V where V is a space
@ S is a space

@ {[0,0,0]}: subspace of R?
@ z-axis: subspace of R?

@ zy-plane: subspace of R?

Q Sexe (6 x 6 symmetric matrices): subspace of Mgy

@ Ls.5 (5 x 5 lower-triangular matrices): subspace of M, 5

[m] [ =
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DEFINITION (LINEAR COMBINATION)

Let V be a space and vy, - ,v, be vectors of V. The linear
combination of v, --- v, is

n
Y v = cvr+ -+ Cay
i=1

where ¢y, - - - , ¢, are scalars called combination coefficients.

n

The linear combination " c;v; is the ending point of a walk in
i=1

space V with segments c;v;’s starting from the origin.
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DEFINITION (SPAN)

Let V be a space and V = {vy, -+ ,v,} be a vector set in V.
The span of V is

span(V) ={v|v=cv1+ -+ c,v,}

Let B = span(V).
@ B is a subspace of V

@ B is the set of points reachable from the origin moving only
in the directions of vq,...,v,

o We say "V spans B" or ")V is a spanning set of B"
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TRIVIAL LINEAR COMBINATION

n

Let > c;v; be a linear combination of vy, -- ,v,.

i=1
e It is trivial if ¢; = 0 for all ¢

@ It is non-trivial if there exists ¢; # 0

@ A trivial linear combination is always O

@ A non-trivial linear combination may be 0
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DEFINITION (LINEAR INDEPENDENCE)
Let V = {vy,--- ,v,} be a set of vectors.

e V is linearly independent if every non-trivial linear com-
bination of vy, --- , v, is a non-zero vector

@ Otherwise, V is linearly dependent
e That is, V is linearly dependent if there exists ¢; # 0 such

that
n
Z C,U; = 0
=1

CHEN P UNDER-DETERMINED SYSTEM & VECTOR SPACE



Convert A to U by row operations
1 3 3 2
A=]|2

1 3 3 2
6 9 7 —---—10 0 3 3| =U
-1 -3 3 4 0 0 0 O
o {uy.,uy.} is linearly independent
o {a;., ay} is linearly independent

o {uy,us} is linearly independent

o {ai,as} is linearly independent

=] = = E =
CHEN P UNDER-DETERMINED SYSTEM & VECTOR SPACE

DA

31/70



DEFINITION (DEPENDENT VECTOR)

Let V = {vy, -+ ,v,} be a set of vectors. If v, is a linear
combination of vy,--- ,v,;_1, it is a dependent vector of V.

e By definition, v; is a dependent vector of V if
i—1
v; = Z Cj’Uj
j=1
@ 0 is a dependent vector since

i—1
0= Z 0 ’Uj
j=1
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LINEAR DEPENDENCE AND DEPENDENT VECTOR

A set of vectors V = {wvy, -+ ,v,} is linearly dependent if and
only if there exists a dependent vector in V.

i
@ Suppose v; is a dependent vector so v; = Z c;v;. Then

the linear combination v; — Z c;v; is 0 and it is non-trivial

(since ¢; =1 # 0). Hence V is linearly dependent.
@ Suppose V is Iinearly dependent so there exists non-trivial

linear combination Z cjv; that is 0. Let i be the largest
7=1
integer with ¢; # 0. Then

i i—1 i~/
!y — loy, — _ ! ay. - J 4
chvj—0:>ci'vl— ZC]-UJ:>’UZ—Z< ; )'vj

=1 =1 =1
Hence wv; is a dependent vector.
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THEOREM
Let V ={vy, - ,v,} be a linearly dependent set.

e We can move dependent vectors out of V until it is linearly
independent

e Moving a dependent vector out of V does not change the
space it spans

v
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PROOF.

@ Since Vs linearly dependent, a dependent vector exists and
we move it out of V. Continue until a dependent vector
cannot be found. The remaining set is linearly independent.

@ Let v; be a dependent vector so

i—1
v =) cjv;
J=1

Note linear combination of vy, -+ ,v; can be written as
linear combination of vy, --- ,v;, ;. It follows that any
linear combination of v, - - , v, can be written as a linear
combination of vy, ,v;_1,v;41,-- ,v,. Hence
span(vla e ,’Ui_l, vi+17 e 7/Un) - SPan(Ula e ,’Un)
]

o
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DEFINITION (BASIS)
Let S be a space. A set of vectors B is a basis of S if
@ 3 is a spanning set of S

@ B is linearly independent

CONSTRUCTING BASIS FROM SPANNING SET
Let V = {vy, - ,v,} be a spanning set of S.
e If V is linearly independent, V is a basis of S.

e If Vis linearly dependent, remove dependent vectors until
the remaining set

V={v), -, v }CV

is linearly independent. Then V' is a basis of S.
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U3

U2

U1

Figure 2.4: A spanning set vq, v2, v3. Bases vy, v2 and v, v3 and v, v3.
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LEMMA (INDEPENDENT SET AND SPANNING SET)

Let S be a space, V = {vy,--- , v} be a linearly independent
set andU = {uy,--- ,u;} be a spanning set of S. Then k <.

Proof by contradiction. Suppose k£ > [. Since U spans S

!
V; :Zazjui, j: 1,...,]{7
i=1
Define A = {a;;}ixx and consider Az = 0. Since it is an
under-determined system, 3¢ # 0 such that Ac = 0. Then
k k 1 1 [k
docivi =26 ayui = (> ajc;|u;=0
j=1 =1  i=1 i=1 \j=1

This contradicts the assumption that V is linearly independent.
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THEOREM (SIZE OF A BASIS OF A SPACE)

Let S be a space. Every basis of S has the same number of
vectors (a.k.a. cardinality).

Proof. Let Y = {uy, - ,u,} and V = {vy,--- ,v,} be
bases of S. Since U is a linearly independent set and V is a
spanning set, we have

m<n

Since V is a linearly independent set and U is a spanning set,

we also have

Hence
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DEFINITION (DIMENSION)

The dimension of a space is the number of vectors in a basis
of the space. Let S be a space and V = {vy,---,v,} be a
basis of S.

@ The dimension of S is n
@ This is denoted by dimS =n

Suppose dimS = n.
@ A linearly independent set of S has at most n vectors

@ A spanning set of S has at least n vectors
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Fundamental Subspaces of a Matrix
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DEFINITION (COLUMN SPACE AND ROW SPACE)
Let A be a matrix.

@ The column space of A is the space spanned by the col-
umn vectors of A

@ The row space is the space spanned by the row vectors

v

Let A be a matrix of order m x n. We have
C(A) =span(ay,--- ,a,)

C (AT) = span (alT:, e ,aﬁz)
Note
C(A) cR™, C (AT) CR"
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perpendicular
to plane

9
column space

Figure 2.1: The column space C(A), a plane in three-dimensional space.
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DEFINITION (NULLSPACE AND LEFT NULLSPACE)
Let A be a matrix.
@ The nullspace of A is defined by

N(A) = {:c

Asz}

@ The left nullspace of A is defined by

N(AT) = {y ’ ATy = 0}

Let A be a matrix of order m x n. We have
N(A) c R", N(AT) c R™
N (AT) is called the left nullspace because
yeN(A") = ATy=0 = y'A=0

CHEN P UNDER-DETERMINED SYSTEM & VECTOR SPACE



column space
)
multiples of (1,3)
row space C(AY) | nullspace IN{A)
multiples of (1,2)

multiples of (2, —1)

nullspace N(AT)
1 2 multiples of (3, -1)
|36
Figure 2.5: The four fundamental subspaces (lines) [or the singular matrix A.

y==a0a

(fo=a o) - o]
(C(AT):{.’B z=cl 2] o3 G]T}:{w‘m:c[l 2]T}
{ c[—3 I}T}

[}
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The rank of A is the number of pivots in the echelon matrix

DEFINITION (RANK)
converted from A. J

@ For example

1 3 3 2 1 3 3 2 1 3 3 2

A=1|2 6 9 70 —=10 0 3 3|—= |0 0 3 3

-1 -3 3 4 0 06 6 0000
rank(A) =2

@ Let A be a matrix of order m X n. Then

rank(A) < min(m,n)
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BASES OF FUNDAMENTAL SUBSPACES

Let A be a matrix of order m x n with rank r. Let U be the
echelon matrix converted from A so A = LU.

@ The r pivot columns of A constitute a basis of C (A)
@ The r pivot rows of U constitute a basis of C (AT)

@ The (n — r) independent solutions of Az = 0 constitute
a basis of N(A)

@ Thelast (m—r) rowsin L™" where U = L' A constitute
a basis of N (AT)
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Find the bases of the fundamental subspaces of

1 3 3 2
A=12 6 97
-1 -3 3 4

The echelon matrix U converted from A is

1 3 3 2 1 33 2
A=12 6 9 7l —---=10 0 3 3|=U
-1 -3 3 4 0000

Note U = L' A where
1 0 0]t oo0][1 00O 1 0 0
L'=10 1 0//0 1 0/|-210/=|-2 1 0
0 —2 1|1 0 1/]0 0 1 5 —2 1

= = = T ©Dac 4y

8/70
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Row 1 and row 2 are the pivot rows
C(A"): {[1 332, [0o0s3 3}T}

Column 1 and column 3 are the pivot columns

For the left nullspace

N(A”): {[5 2 1]T}

For the nullspace

-3 1
1 0
S(OVERE I I I
0 1
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THEOREM (FUNDAMENTAL THEOREM PART 1)
Let A be a matrix of order m X n and rank r.

@ The column space C(A) is of dimension r

@ The row space C(A™) is of dimension r
e The nullspace N(A) is of dimension n — r
o

The left nullspace N(A™) is of dimension m — r

COROLLARY (ROW SPACE AND COLUMN SPACE)

The row space and the column space of a matrix always have
the same dimension.
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THEOREM (EXISTENCE AND UNIQUENESS OF SOLUTION)
Let A be of order m X n and rank r. Consider Ax = b.

e If b € C(A), b is a linear combination of the column
vectors of A, so a solution exists

e Ifr=m, C(A) =R"™, so solution exists for every b

e If r = n, the column vectors are linearly dependent, so
there is at most one solution for every b

v
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Linear Transformation
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TRANSFORMATION AND LINEAR TRANSFORMATION
Let D (domain) and R (range) be vector spaces.

@ A transformation from D to R maps a vector in D to a
vector in R. This is denoted by

T:D— R
@ Let T': D — R be a transformation. T is linear if
T(clazl + ngg) = ClT(ZIIl) + CQT(ZL'Q)

for any scalars ¢y, ¢y and @y, x € D.
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THEOREM (MATRIX AND LINEAR TRANSFORMATION)
A linear transformation can be represented by matrix.

(cx,cy) 4 A=~
S G EIAN
/,’ ! N
1
/, 1 \\
’ 1 AY
(z.y) ' \
i (z.9) 1
————— >
stretching 90° rotation reflection (45° mirror) projection on axis

Figure 2.9: Transformations of the plane by four matrices.

IR I i
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REPRESENTATION OF A VECTOR BY A COLUMN

Let V be a space of dimension n. Through a basis, a vector of
V can be represented by a column of size n.

Let B = {vy,--- ,v,} be a basis of V. For any € V, there
exist x1,-+- , 2, (to be shown to be unique) such that

n
£r = Z T;U;
=1

Thus x can be represented by a column of size n

x1
xpl=|:| © x=x101+ -+ 2,0,

Tn
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THEOREM (UNIQUENESS OF REPRESENTATION) }

Given basis, the representation of a vector is unique.

Let V be a space of dimension n and B = {vy, -+ ,v,} be a
basis of V. For any « € V, suppose

r=av,+ -+ a,v, =bv+ -+ byv,

Then
n n
a:—a::Zaivl vaz_z a; —b;))v; =0
i=1 i=1
Since {vy, - - vn} is linearly independent, the linear combina-
tion 31, (a; — b;)v; must be trivial. Hence

a; = bi, Vi
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CHARACTERIZATION OF LINEAR TRANSFORMATION

Let T : D — R be a linear transformation. T can be specified
by the transformation by T for the vectors in a basis of ID.

Let B = {vy, - ,v,} be a basis of D.
o Let T'(v;) be the transformation by T' for v;

e Forany x € D, we have x = ) z,v;
J

@ By the linearity of T, the transformation by T for x is

T(x)=T (Z xj’vj) = Z%‘T(Uj)
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REPRESENTATION OF LINEAR TRANSFORM BY MATRIX

Let T : D — R be linear, B = {vy,--- ,v,} be a basis of D,
and B = {v,--- ,v/ } be a basis of R. Suppose

T(v;) = Zaijv;, j=1,---,n
=1l

o Coefficients a;; specify the transformation by T for the
basis vectors vq,...,v,

@ Define matrix
[Tss] = {ai}
The size is m x n, where column j is decided by T'(v;)

The matrix [Tgs] completely specifies T' : D — R through
basis BB for D and basis B’ for R.
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LINEAR TRANSFORM AS MATRIX MULTIPLICATION

Let T : D +— R be linear, x € D, and y € R. Let B =
{vi1,--+,v,} be a basis of D, and B’ = {v),--- ,v],} be a
basis of R. We have

y=T(x) & [yp]=[Tsps][zs]

n m
Let x = ) zjv; and y = X y;v..
j=1 i=1

T(x) =) z;T(v;) = x; ) ajv;=) (Z az’j%‘) v, =y
j=1 =1 =1 i=1 \j=1

= yl-:Zaijxj, izl,---,m
J

= [yp] = [Tss][Ts]
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Let D : P3 — P, be differentiation on polynomials. A basis of
Pyis B={v, =1, vo =t, v3=1% vy =13}, and a basis of
Pyis B' = {v] =1, vl =t, v =1t*}. We have

01 = 0 = 0v] + Ovy + Ov}
0y = 1 = 1v) + Ovy + Ovj
03 = 2t = 0v] + 20}, + Ovy
vy = 3t* = 00 + 00}, + 30}

The coefficients go to the columns of a matrix

01 00
[Dgz]=10 0 2 0
000 3

=] = = = E QR
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Suppose & = 1V + TaV2 + T3V3 + T4v4, and D(x) = y.

Y =T =21V + TaUs + T3V3 + T4Vy
= z1(0v] + 0vg + 0v}) + 29(1v] + 00, + Ov})
+ 23(0v] + 20, + 0v5) + 24(0v] + Ov;, + 3vy)
= Y10} + Y0 + Y30}

" '0100'51

= |yz2|=[0 0 2 0] |'®

3

ys] 1000 3"
0 1 0 0]
:>[DBB’]20020
000 3

[m] [ =
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P c
[2] (9]

celme,
[5] N cels
, . 2 e 1 " (5]
6 CcS 2

Figure 2.10: Rotation through 6 (left). Projection onto the 8-line (right).
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Hence

Let R be the counter-clockwise rotation by # in R?. Let
B =8B = {el = [1 O}T,eg = [O I}T}. Rotation of the
basis vectors leads to
R (e;) =cosfe; +sinfe,

R (e3) = cos <g + 9) e; + sin <z + 9> e

sin 6 e; + cos 6 es

cos 0
Rew] = |

CHEN P

—sin 6
cos 0

=

-
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Suppose R rotates = [11 7o]T to y = [y; yo]T. Let the
angle between x and the horizontal axis be ¢. Then the angle
between y and the horizontal axis is (¢ + 0).

1 = |x|cos @, xo = |x|sing, |y| = |x|

y1 = |yl cos(6 + ¢) = |x|(cos O cos ¢ — sin b sin ¢)
= cosfx; —sinf zy

Yo = |y|sin(d + ¢) = |x|(sin O cos ¢ + cos f sin @)
=sinf x1 + cos xs

N Y| _ CF)S 0 —sinf| |x;
Yo sinf cosf | |za
_ [cos # —sin 9]

sind cos@
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Let P be the projection to line L, which is at angle 6 to the
horizontal axis. Projection of the basis vectors leads to

P (e;) = cosfO(cosfe; +sinfey) = cos*fe; + cosfsinb e,

P (e;) =sinf(cosfe; +sinfey) = sinfcosf e; +sin® 6 ey
Hence

P = cos’f  sinfcosd
BEY ™ |cosOsinf  sin?6

=] = = E E 9OHACG
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Suppose P projects © = [x; 7o]T to y = [y1 y2]?. Let the
angle between x and the horizontal axis be ¢. Then the angle

between x and y is (0 — ¢), and the angle between y and
horizontal axis is 6.

21 = |x[cos @, w2 = |x[sing, |y| = |x|cos(d — )
y1 = |y| cos§ = |x| cos(6 — ¢) cos

= |z|(cos O cos ¢ + sin fsin ¢) cos §

= cos? 01 + sin 6 cos 0 5
y2 = |y|sinf = |x| cos(0 — ¢)sin 0

= |z|(cos f cos ¢ + sin @ sin ¢) sin 0

= cosfsinfx; + sin? 0

O (7Y cos’  sinfcosf| |z,
y2|  [cosfsin®  sin?6 | |z,
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Figure 2.11: Reflection through the 6-line: the geometry and the matrix.
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Let H be the reflection with respect to line L, which is at
angle 6 to the horizontal axis. Reflection of the basis vectors
leads to

H (e;) = cos20e; +sin20 e,y

H (ey) = cos (20 — g) e; + sin <
Hence

=sin20 e; — cos 20 ey

T
20 — §> €9
cos20 sin 26
[Hsp] = lsin 20 — cos 20]
[m] [ =
CHEN P
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Suppose H reflects = [z; m3)T to y = [y1 y2]7. Let the
angle between x and the horizontal axis be ¢. Then the angle
between y and horizontal axis is (20 — ¢).

1 = || cos 6, 2 = [w]sin 6, |y] = ||

y1 = |y| cos(20 — @) = |@| cos 26 cos ¢ + || sin 20 sin ¢
= cos 20 x1 + sin 20 x4

Y2 = |y|sin(20 — ¢) = |x| sin 20 cos ¢ — |x| cos 20 sin ¢

= sin 20 z; — cos 260 x5

N yi|  |cos20 sin20 | |x;
ya|  [sin20 —cos20| [z

=] = = = 9DA® 49/70
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SUMMARY OF LINEAR TRANSFORMATION

A linear transformation T' : D — R from D of dimension n to R
of dimension m is completely represented by a matrix of order
m X n. Such a matrix is constructed as follows.

@ Find a basis of D and a basis of R

@ Apply T to a basis vector of D and express the result as a
linear combination of the basis vectors of R

@ Put the coefficients in a column of a matrix
@ Repeat until every basis vector of ID has been processed
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