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notation
Ax = b: under-determined system of linear equations
U : echelon matrix
V,S: vector space or subspace
B,B′: basis
T : D→ R: linear transform from domain D to range R
[xB]: column representation of vector x using basis B
[T BB′ ]: matrix representation of T : D→ R using basis B
for D and basis B′ for R
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Under-determined System of Linear Equations
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under-determined system
Consider a system of linear equations with m equations and n
unknowns, and m < n.

It is called an under-determined system
It can be represented by Ax = b

A is of order m× n, x is n× 1, and b is m× 1

Consider {
u + 3v + 3w = 1

2u + 6v + 9w = 5

It is under-determined with m = 2 and n = 3
It can be represented by Ax = b where

A =
[
1 3 3
2 6 9

]
, x =

uv
w

 , b =
[
1
5

]
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from under-determined system to square system
Let Ax = b be an under-determined system of linear equations
with n unknowns and m equations. It can be converted to
square system by moving n−m unknowns to right side.

Consider {
u + 3v + 3w = 1

2u + 6v + 9w = 5
Moving w to the right side, we get{

u + 3v = 1− 3w
2u + 6v = 5− 9w

which can be seen as a square system with 2 unknowns.
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which unknowns to move
Let Ax = b be an under-determined system of linear equations.
We convert it to a square system by moving unknowns.

Moving the right unknowns makes it non-singular
Moving the wrong unknowns makes it singular

Consider {
u + 3v + 3w = 1

2u + 6v + 9w = 5

Moving v to the right side makes it non-singular{
u + 3w = 1− 3v

2u + 9w = 5− 6v
Moving w to the right side makes it singular{

u + 3v = 1− 3w
2u + 6v = 5− 9w
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Theorem (solving an under-determined system)
Let Ax = b be an under-determined system of linear equations.
Exactly one of the following cases is true.

1 No solution
2 Infinite solutions
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3 steps to solve an under-determined system
Let Ax = b be an under-determined system of linear equations.

1 Solve (the homogeneous equation) Ax = 0

H = {xn |Axn = 0}

2 Find (a particular solution) xp such that

Axp = b

3 A general solution is

xg = xp + xn
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Example (solve an under-determined system)

P :


u + 3v + 3w + 2y = 1

2u + 6v + 9w + 7y = 5
−u − 3v + 3w + 4y = 5
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Replace right side by 0 and solve the homogeneous equation.

P b←0−−−→


u + 3v + 3w + 2y = 0

2u + 6v + 9w + 7y = 0
−u − 3v + 3w + 4y = 0

elimination−−−−−−→


u + 3v + 3w + 2y = 0

3w + 3y = 0
6w + 6y = 0

elimination−−−−−−→
{
u + 3v + 3w + 2y = 0

3w + 3y = 0
So

w = −y, u = −3v + y

Variables u and w stays on the left
Variables v and y are moved to the right
Values of u and w are determined by values of v and y
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A solution can be represented by a vector

xn =


u
v
w
y

 =


−3v + y

v
−y
y

 = v


−3
1
0
0

+ y


1
0
−1
1


= vx1 + yx2

It is a linear combination of x1 and x2
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Restore the right side b and find a particular solution xp.

P :


u + 3v + 3w + 2y = 1

2u + 6v + 9w + 7y = 5
−u − 3v + 3w + 4y = 5

Letting v = y = 0, we have
u + 3w = 1

2u + 9w = 5
−u + 3w = 5

so w = 1 and u = −2.
This particular solution can be represented by a vector

xp =


u
v
w
y

 =


−2
0
1
0
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general solution
Let Ax = b be an under-determined system of linear equations.
The sum of a homogeneous solution and a particular solution is
a solution.

Consider xn + xp. It is a solution of Ax = b since

A(xn + xp) = Axn + Axp = b

In the current example

xn + xp = v


−3
1
0
0

+ y


1
0
−1
1

+


−2
0
1
0
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solving the homogeneous equation via matrix
The homogeneous equation was solved by elimination, i.e.
a sequence of elimination steps
Elimination step is equivalent to row operation on the co-
efficient matrix
In particular 1 3 3 2

2 6 9 7
−1 −3 3 4


︸ ︷︷ ︸

A

→

1 3 3 2
0 0 3 3
0 0 6 6

 →
1 3 3 2
0 0 3 3
0 0 0 0


︸ ︷︷ ︸

U
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echelon matrix (row echelon form)
Elimination converts Ax = 0 to Ux = 0 where U is an ech-
elon matrix.

In each non-zero row of U , the first non-zero element is a
pivot
Pivots descend to the right
Using pivots as anchors, we can draw a zigzag line on U
such that the elements below the line are 0
An echelon matrix can be converted to a reduced echelon
matrix (a.k.a. reduced form) where every pivot is 1
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pivot variables and free variables
Suppose elimination converts Ax = 0 to Ux = 0 where U is
an echelon matrix.

Pivot positions correspond to pivot variables
The other variables are free variables

Consider the system
u + 3v + 3w + 2y = 1

2u + 6v + 9w + 7y = 5
−u − 3v + 3w + 4y = 5

u and w are pivot variables
v and y are free variables
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homogeneous/particular/general solutions
Let Ax = b be an under-determined system with m equations
and n unknowns. Suppose elimination converts Ax = 0 to
Ux = 0 where U is an echelon matrix. Let r be the number
of pivots in U .

The number of pivot variables is r
The number of free variables is n− r
We can find n − r homogeneous solutions by setting one
free variable to 1 and the other free variables to 0
If the system is solvable, we can find a particular solution
by setting free variables to 0
The sum of a homogeneous solution and a particular solu-
tion is a general solution
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For P , we have homogeneous solution

xn =


u
v
w
y

 =


−3v + y

v
−y
y

 = v


−3
1
0
0

+ y


1
0
−1
1


and a particular solution

xp =


−2
0
1
0


The general solution is

xg = xp + xn =


−2
0
1
0

+ v


−3
1
0
0

+ y


1
0
−1
1
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{
y + z = 2

2y + 2z = 4 ⇒ xn = c

[
−1
1

]
, xp =

[
1
1

]
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Example (exercise)
1x1 + 2x2 + 3x3 + 5x4 = 0
2x1 + 4x2 + 8x3 + 12x4 = 6
3x1 + 6x2 + 7x3 + 13x4 = −6
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Vector Space
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Definition (vector space)
Let V be a set of vectors. V is a space if

addition and scalar multiplication are defined for V
V is closed under addition and scalar multiplication

The following rules hold for addition and scalar multiplication.
1 ∃0 ∈ V such that ∀x ∈ V we have x + 0 = x

2 ∀x ∈ V, ∃ y ∈ V such that x + y = 0
3 ∀x,y ∈ V, we have x + y = y + x

4 ∀x,y, z ∈ V, we have x + (y + z) = (x + y) + z

5 ∀x ∈ V, we have 1x = x

6 ∀x ∈ V, we have c1(c2x) = (c1c2)x for any c1, c2
7 ∀x ∈ V, we have (c1 + c2)x = c1x + c2x for any c1, c2
8 ∀x,y ∈ V, we have c(x + y) = cx + cy for any c
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Example (vector space)
R1

R2

R3

Rn

M3×2: the set of matrices of order 3× 2
F[a,b]: the set of functions defined over [a, b]
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Definition (vector subspace)
Let S be a set of vectors. S is a subspace if

1 S ⊂ V where V is a space
2 S is a space

Example (vector subspace)
1 {[0, 0, 0]}: subspace of R3

2 z-axis: subspace of R3

3 xy-plane: subspace of R3

4 S6×6 (6× 6 symmetric matrices): subspace of M6×6
5 L5×5 (5× 5 lower-triangular matrices): subspace of M5×5
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Definition (linear combination)
Let V be a space and v1, · · · ,vn be vectors of V. The linear
combination of v1, · · · ,vn is

n∑
i=1

civi = c1v1 + · · ·+ cnvn

where c1, · · · , cn are scalars called combination coefficients.

The linear combination
n∑

i=1
civi is the ending point of a walk in

space V with segments civi’s starting from the origin.
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Definition (span)
Let V be a space and V = {v1, · · · ,vn} be a vector set in V.
The span of V is

span(V) = {v |v = c1v1 + · · ·+ cnvn}

Let B = span(V).
B is a subspace of V
B is the set of points reachable from the origin moving only
in the directions of v1, . . . ,vn

We say ”V spans B” or ”V is a spanning set of B”
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trivial linear combination

Let
n∑

i=1
civi be a linear combination of v1, · · · ,vn.

It is trivial if ci = 0 for all i
It is non-trivial if there exists ci 6= 0

A trivial linear combination is always 0
A non-trivial linear combination may be 0
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Definition (linear independence)
Let V = {v1, · · · ,vn} be a set of vectors.
V is linearly independent if every non-trivial linear com-
bination of v1, · · · ,vn is a non-zero vector
Otherwise, V is linearly dependent
That is, V is linearly dependent if there exists ci 6= 0 such
that

n∑
i=1

civi = 0
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Example (linear dependence)
Convert A to U by row operations

A =

 1 3 3 2
2 6 9 7
−1 −3 3 4

→ · · · →
1 3 3 2
0 0 3 3
0 0 0 0

 = U

{u1:,u2:} is linearly independent
{a1:,a2:} is linearly independent
{u1,u3} is linearly independent
{a1,a3} is linearly independent
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Definition (dependent vector)
Let V = {v1, · · · ,vn} be a set of vectors. If vi is a linear
combination of v1, · · · ,vi−1, it is a dependent vector of V .

By definition, vi is a dependent vector of V if

vi =
i−1∑
j=1

cjvj

0 is a dependent vector since

0 =
i−1∑
j=1

0 vj
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linear dependence and dependent vector
A set of vectors V = {v1, · · · ,vn} is linearly dependent if and
only if there exists a dependent vector in V .

Suppose vi is a dependent vector so vi =
i−1∑
j=1

cjvj. Then

the linear combination vi−
i−1∑
j=1

cjvj is 0 and it is non-trivial

(since ci = 1 6= 0). Hence V is linearly dependent.
Suppose V is linearly dependent so there exists non-trivial
linear combination

n∑
j=1

c′jvj that is 0. Let i be the largest

integer with c′i 6= 0. Then
i∑

j=1
c′jvj = 0⇒ c′ivi = −

i−1∑
j=1

c′jvj ⇒ vi =
i−1∑
j=1

(
−c′j
c′i

)
vj

Hence vi is a dependent vector.
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Theorem
Let V = {v1, · · · ,vn} be a linearly dependent set.

We can move dependent vectors out of V until it is linearly
independent
Moving a dependent vector out of V does not change the
space it spans
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Proof.
Since V is linearly dependent, a dependent vector exists and
we move it out of V . Continue until a dependent vector
cannot be found. The remaining set is linearly independent.
Let vi be a dependent vector so

vi =
i−1∑
j=1

cjvj

Note linear combination of v1, · · · ,vi can be written as
linear combination of v1, · · · ,vi−1. It follows that any
linear combination of v1, · · · ,vn can be written as a linear
combination of v1, · · · ,vi−1,vi+1, · · · ,vn. Hence

span(v1, · · · ,vi−1,vi+1, · · · ,vn) = span(v1, · · · ,vn)
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Definition (basis)
Let S be a space. A set of vectors B is a basis of S if
B is a spanning set of S
B is linearly independent

constructing basis from spanning set
Let V = {v1, · · · ,vn} be a spanning set of S.

If V is linearly independent, V is a basis of S.
If V is linearly dependent, remove dependent vectors until
the remaining set

V ′ = {v′1, · · · ,v′m} ⊂ V

is linearly independent. Then V ′ is a basis of S.
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Example (spanning set vs. basis)
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Lemma (independent set and spanning set)
Let S be a space, V = {v1, · · · ,vk} be a linearly independent
set and U = {u1, · · · ,ul} be a spanning set of S. Then k ≤ l.

Proof by contradiction. Suppose k > l. Since U spans S

vj =
l∑

i=1
aijui, j = 1, . . . , k

Define A = {aij}l×k and consider Ax = 0. Since it is an
under-determined system, ∃ c 6= 0 such that Ac = 0. Then

k∑
j=1

cjvj =
k∑

j=1
cj

l∑
i=1

aijui =
l∑

i=1

 k∑
j=1

aijcj

ui = 0

This contradicts the assumption that V is linearly independent.
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Theorem (size of a basis of a space)
Let S be a space. Every basis of S has the same number of
vectors (a.k.a. cardinality).

Proof. Let U = {u1, · · · ,um} and V = {v1, · · · ,vn} be
bases of S. Since U is a linearly independent set and V is a
spanning set, we have

m ≤ n

Since V is a linearly independent set and U is a spanning set,
we also have

n ≤ m

Hence
m = n
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Definition (dimension)
The dimension of a space is the number of vectors in a basis
of the space. Let S be a space and V = {v1, · · · ,vn} be a
basis of S.

The dimension of S is n
This is denoted by dim S = n

Suppose dim S = n.
A linearly independent set of S has at most n vectors
A spanning set of S has at least n vectors
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Fundamental Subspaces of a Matrix
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Definition (column space and row space)
Let A be a matrix.

The column space of A is the space spanned by the col-
umn vectors of A

The row space is the space spanned by the row vectors

Let A be a matrix of order m× n. We have

C(A) = span(a1, · · · ,an)

C
(
AT

)
= span

(
aT

1:, · · · ,aT
m:

)
Note

C(A) ⊂ Rm, C
(
AT

)
⊂ Rn
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Example (column space)

A =

1 0
5 4
2 4
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Definition (nullspace and left nullspace)
Let A be a matrix.

The nullspace of A is defined by

N(A) =
{

x

∣∣∣∣∣ Ax = 0
}

The left nullspace of A is defined by

N
(
AT

)
=
{

y

∣∣∣∣∣ AT y = 0
}

Let A be a matrix of order m× n. We have
N(A) ⊂ Rn, N(AT ) ⊂ Rm

N
(
AT

)
is called the left nullspace because

y ∈ N
(
AT

)
⇒ AT y = 0 ⇒ yT A = 0
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Example (fundamental subspaces of a matrix)

C(A) =
{

y
∣∣∣∣y = c1

[
1
3

]
+ c2

[
2
6

]}
=
{

y
∣∣∣∣y = c

[
1
3

]}

C
(
AT

)
=
{

x
∣∣∣∣x = c1

[
1 2

]T
+ c2

[
3 6

]T}
=
{

x
∣∣∣∣x = c

[
1 2

]T}
N(A) =

{
x
∣∣∣∣x = c

[
−2
1

]}

N
(
AT

)
=
{

y

∣∣∣∣y = c
[
−3 1

]T}
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Definition (rank)
The rank of A is the number of pivots in the echelon matrix
converted from A.

For example

A =

 1 3 3 2
2 6 9 7
−1 −3 3 4

→
1 3 3 2
0 0 3 3
0 0 6 6

→
1 3 3 2
0 0 3 3
0 0 0 0


rank(A) = 2

Let A be a matrix of order m× n. Then

rank(A) ≤ min(m,n)
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bases of fundamental subspaces
Let A be a matrix of order m × n with rank r. Let U be the
echelon matrix converted from A so A = LU .

The r pivot columns of A constitute a basis of C (A)
The r pivot rows of U constitute a basis of C

(
AT

)
The (n − r) independent solutions of Ax = 0 constitute
a basis of N (A)
The last (m−r) rows in L−1 where U = L−1A constitute
a basis of N

(
AT

)
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Example (bases of fundamental subspaces)
Find the bases of the fundamental subspaces of

A =

 1 3 3 2
2 6 9 7
−1 −3 3 4


The echelon matrix U converted from A is

A =

 1 3 3 2
2 6 9 7
−1 −3 3 4

→ · · · →
1 3 3 2
0 0 3 3
0 0 0 0

 = U

Note U = L−1A where

L−1 =

1 0 0
0 1 0
0 −2 1


1 0 0
0 1 0
1 0 1


 1 0 0
−2 1 0
0 0 1

 =

 1 0 0
−2 1 0
5 −2 1


Chen P Under-determined System & Vector Space



49/70

Row 1 and row 2 are the pivot rows

C
(
AT

)
:
{[

1 3 3 2
]T
,
[
0 0 3 3

]T}
Column 1 and column 3 are the pivot columns

C(A) :


 1

2
−1

 ,
3
9
3




For the left nullspace

N
(
AT

)
:
{[

5 −2 1
]T}

For the nullspace

N(A) :



−3
1
0
0

 ,


1
0
−1
1
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Theorem (fundamental theorem part i)
Let A be a matrix of order m× n and rank r.

The column space C(A) is of dimension r
The row space C(AT ) is of dimension r
The nullspace N(A) is of dimension n− r
The left nullspace N(AT ) is of dimension m− r

Corollary (row space and column space)
The row space and the column space of a matrix always have
the same dimension.
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Theorem (existence and uniqueness of solution)
Let A be of order m× n and rank r. Consider Ax = b.

If b ∈ C(A), b is a linear combination of the column
vectors of A, so a solution exists
If r = m, C(A) = Rm, so solution exists for every b

If r = n, the column vectors are linearly dependent, so
there is at most one solution for every b
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Linear Transformation
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transformation and linear transformation
Let D (domain) and R (range) be vector spaces.

A transformation from D to R maps a vector in D to a
vector in R. This is denoted by

T : D 7→ R

Let T : D 7→ R be a transformation. T is linear if

T (c1x1 + c2x2) = c1T (x1) + c2T (x2)

for any scalars c1, c2 and x1,x2 ∈ D.
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Theorem (matrix and linear transformation)
A linear transformation can be represented by matrix.

[
c 0
0 c

]
,

[
0 −1
1 0

]
,

[
0 1
1 0

]
,

[
1 0
0 0

]
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representation of a vector by a column
Let V be a space of dimension n. Through a basis, a vector of
V can be represented by a column of size n.

Let B = {v1, · · · ,vn} be a basis of V. For any x ∈ V, there
exist x1, · · · , xn (to be shown to be unique) such that

x =
n∑

i=1
xivi

Thus x can be represented by a column of size n

[xB] =


x1
...
xn

 ⇔ x = x1v1 + · · ·+ xnvn
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Theorem (uniqueness of representation)
Given basis, the representation of a vector is unique.

Let V be a space of dimension n and B = {v1, · · · ,vn} be a
basis of V. For any x ∈ V, suppose

x = a1v1 + · · ·+ anvn = b1v1 + · · ·+ bnvn

Then

x− x =
n∑

i=1
aivi −

n∑
i=1

bivi =
n∑

i=1
(ai − bi)vi = 0

Since {v1, · · · ,vn} is linearly independent, the linear combina-
tion ∑n

i=1(ai − bi)vi must be trivial. Hence

ai = bi, ∀i
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characterization of linear transformation
Let T : D 7→ R be a linear transformation. T can be specified
by the transformation by T for the vectors in a basis of D.

Let B = {v1, · · · ,vn} be a basis of D.
Let T (vj) be the transformation by T for vj

For any x ∈ D, we have x = ∑
j
xjvj

By the linearity of T , the transformation by T for x is

T (x) = T

∑
j

xjvj

 =
∑

j

xjT (vj)
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representation of linear transform by matrix
Let T : D 7→ R be linear, B = {v1, · · · ,vn} be a basis of D,
and B′ = {v′1, · · · ,v′m} be a basis of R. Suppose

T (vj) =
m∑

i=1
aijv

′
i, j = 1, · · · , n

Coefficients aij specify the transformation by T for the
basis vectors v1, . . . ,vn

Define matrix
[T BB′ ] = {aij}

The size is m× n, where column j is decided by T (vj)
The matrix [T BB′ ] completely specifies T : D 7→ R through
basis B for D and basis B′ for R.

Chen P Under-determined System & Vector Space



59/70

linear transform as matrix multiplication
Let T : D 7→ R be linear, x ∈ D, and y ∈ R. Let B =
{v1, · · · ,vn} be a basis of D, and B′ = {v′1, · · · ,v′m} be a
basis of R. We have

y = T (x) ⇔ [yB′ ] = [T BB′ ] [xB]

Let x =
n∑

j=1
xjvj and y =

m∑
i=1

yiv
′
i.

T (x) =
n∑

j=1
xjT (vj) =

n∑
j=1

xj

m∑
i=1

aijv
′
i =

m∑
i=1

 n∑
j=1

aijxj

v′i = y

⇒ yi =
∑

j

aijxj, i = 1, · · · ,m

⇒ [yB′ ] = [T BB′ ] [xB]
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Example (differentiation: derivation of matrix)
Let D : P3 7→ P2 be differentiation on polynomials. A basis of
P3 is B = {v1 = 1, v2 = t, v3 = t2, v4 = t3}, and a basis of
P2 is B′ = {v′1 = 1, v′2 = t, v′3 = t2}. We have

v̇1 = 0 = 0v′1 + 0v′2 + 0v′3
v̇2 = 1 = 1v′1 + 0v′2 + 0v′3
v̇3 = 2t = 0v′1 + 2v′2 + 0v′3
v̇4 = 3t2 = 0v′1 + 0v′2 + 3v′3

The coefficients go to the columns of a matrix

[DBB′ ] =

0 1 0 0
0 0 2 0
0 0 0 3
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Example (alternative derivation of matrix)
Suppose x = x1v1 + x2v2 + x3v3 + x4v4, and D(x) = y.

y = ẋ = x1v̇1 + x2v̇2 + x3v̇3 + x4v̇4

= x1(0v′1 + 0v′2 + 0v′3) + x2(1v′1 + 0v′2 + 0v′3)
+ x3(0v′1 + 2v′2 + 0v′3) + x4(0v′1 + 0v′2 + 3v′3)

= y1v
′
1 + y2v

′
2 + y3v

′
3

⇒

y1
y2
y3

 =

0 1 0 0
0 0 2 0
0 0 0 3



x1
x2
x3
x4



⇒ [DBB′ ] =

0 1 0 0
0 0 2 0
0 0 0 3
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Example (rotation and projection)
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Example (rotation: derivation of matrix)
Let R be the counter-clockwise rotation by θ in R2. Let
B = B′ =

{
e1 =

[
1 0

]T
, e2 =

[
0 1

]T}
. Rotation of the

basis vectors leads to

R (e1) = cos θ e1 + sin θ e2

R (e2) = cos
(
π

2 + θ
)

e1 + sin
(
π

2 + θ
)

e2

= − sin θ e1 + cos θ e2

Hence
[RBB′ ] =

[
cos θ − sin θ
sin θ cos θ

]
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Example (alternative derivation of matrix)
Suppose R rotates x = [x1 x2]T to y = [y1 y2]T . Let the
angle between x and the horizontal axis be φ. Then the angle
between y and the horizontal axis is (φ+ θ).

x1 = |x| cosφ, x2 = |x| sinφ, |y| = |x|
y1 = |y| cos(θ + φ) = |x|(cos θ cosφ− sin θ sinφ)

= cos θ x1 − sin θ x2

y2 = |y| sin(θ + φ) = |x|(sin θ cosφ+ cos θ sinφ)
= sin θ x1 + cos θ x2

⇒
[
y1
y2

]
=
[
cos θ − sin θ
sin θ cos θ

] [
x1
x2

]

⇒ [RBB′ ] =
[
cos θ − sin θ
sin θ cos θ

]
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Example (projection: derivation of matrix)
Let P be the projection to line L, which is at angle θ to the
horizontal axis. Projection of the basis vectors leads to

P (e1) = cos θ(cos θ e1 + sin θ e2) = cos2 θ e1 + cos θ sin θ e2

P (e2) = sin θ(cos θ e1 + sin θ e2) = sin θ cos θ e1 + sin2 θ e2

Hence
[P BB′ ] =

[
cos2 θ sin θ cos θ

cos θ sin θ sin2 θ

]
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Example (alternative derivation of matrix)
Suppose P projects x = [x1 x2]T to y = [y1 y2]T . Let the
angle between x and the horizontal axis be φ. Then the angle
between x and y is (θ − φ), and the angle between y and
horizontal axis is θ.

x1 = |x| cosφ, x2 = |x| sinφ, |y| = |x| cos(θ − φ)
y1 = |y| cos θ = |x| cos(θ − φ) cos θ

= |x|(cos θ cosφ+ sin θ sinφ) cos θ
= cos2 θ x1 + sin θ cos θ x2

y2 = |y| sin θ = |x| cos(θ − φ) sin θ
= |x|(cos θ cosφ+ sin θ sinφ) sin θ
= cos θ sin θ x1 + sin2 θ x2

⇒
[
y1
y2

]
=
[

cos2 θ sin θ cos θ
cos θ sin θ sin2 θ

] [
x1
x2

]
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Example (reflection)
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Example (reflection: derivation of matrix)
Let H be the reflection with respect to line L, which is at
angle θ to the horizontal axis. Reflection of the basis vectors
leads to

H (e1) = cos 2θ e1 + sin 2θ e2

H (e2) = cos
(

2θ − π

2

)
e1 + sin

(
2θ − π

2

)
e2

= sin 2θ e1 − cos 2θ e2

Hence
[HBB′ ] =

[
cos 2θ sin 2θ
sin 2θ − cos 2θ

]
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Example (alternative derivation of matrix)
Suppose H reflects x = [x1 x2]T to y = [y1 y2]T . Let the
angle between x and the horizontal axis be φ. Then the angle
between y and horizontal axis is (2θ − φ).

x1 = |x| cosφ, x2 = |x| sinφ, |y| = |x|
y1 = |y| cos(2θ − φ) = |x| cos 2θ cosφ+ |x| sin 2θ sinφ

= cos 2θ x1 + sin 2θ x2

y2 = |y| sin(2θ − φ) = |x| sin 2θ cosφ− |x| cos 2θ sinφ
= sin 2θ x1 − cos 2θ x2

⇒
[
y1
y2

]
=
[
cos 2θ sin 2θ
sin 2θ − cos 2θ

] [
x1
x2

]
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summary of linear transformation
A linear transformation T : D 7→ R from D of dimension n to R
of dimension m is completely represented by a matrix of order
m× n. Such a matrix is constructed as follows.

Find a basis of D and a basis of R
Apply T to a basis vector of D and express the result as a
linear combination of the basis vectors of R
Put the coefficients in a column of a matrix
Repeat until every basis vector of D has been processed
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