VECTOR SPACE

Chia-Ping Chen

Professor Department of Computer Science and Engineering National Sun Yat-sen University

Linear Algebra

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 三臣……

∽ へ € 1/70

- Under-determined system of linear equations
- Vector space
- The fundamental subspaces of a matrix
- Linear transformation

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 - のへで

NOTATION

- Ax = b: under-determined system of linear equations
- U: echelon matrix
- \mathbb{V}, \mathbb{S} : vector space or subspace
- $\mathcal{B}, \mathcal{B}'$: basis
- $T:\mathbb{D}
 ightarrow\mathbb{R}$: linear transform from domain \mathbb{D} to range \mathbb{R}
- $[x_{\mathcal{B}}]$: column representation of vector x using basis \mathcal{B}
- $[T_{\mathcal{BB}'}]$: matrix representation of $T:\mathbb{D}\to\mathbb{R}$ using basis \mathcal{B} for \mathbb{D} and basis \mathcal{B}' for \mathbb{R}

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の < @

Under-determined System of Linear Equations

CHEN P UNDER-DETERMINED SYSTEM & VECTOR SPACE

<□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ↓ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ }

UNDER-DETERMINED SYSTEM

Consider a system of linear equations with m equations and n unknowns, and $m < n. \label{eq:mass_eq}$

- It is called an under-determined system
- It can be represented by $oldsymbol{A} oldsymbol{x} = oldsymbol{b}$
- ${m A}$ is of order m imes n, ${m x}$ is n imes 1, and ${m b}$ is m imes 1

Consider

$$\begin{cases} u + 3v + 3w = 1 \\ 2u + 6v + 9w = 5 \end{cases}$$

- $\bullet~{\rm It}~{\rm is}~{\rm under}{\rm -determined}$ with $m=2~{\rm and}~n=3$
- ullet It can be represented by Ax=b where

$$\boldsymbol{A} = \begin{bmatrix} 1 & 3 & 3 \\ 2 & 6 & 9 \end{bmatrix}, \ \boldsymbol{x} = \begin{bmatrix} u \\ v \\ w \end{bmatrix}, \ \boldsymbol{b} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$$

FROM UNDER-DETERMINED SYSTEM TO SQUARE SYSTEM Let Ax = b be an under-determined system of linear equations with n unknowns and m equations. It can be converted to square system by moving n - m unknowns to right side.

Consider

$$\begin{cases} u + 3v + 3w = 1 \\ 2u + 6v + 9w = 5 \end{cases}$$

Moving w to the right side, we get

$$\begin{cases} u + 3v = 1 - 3w \\ 2u + 6v = 5 - 9w \end{cases}$$

which can be seen as a square system with 2 unknowns.

イロト イヨト イヨト

WHICH UNKNOWNS TO MOVE

Let Ax = b be an under-determined system of linear equations. We convert it to a square system by moving unknowns.

- Moving the right unknowns makes it non-singular
- Moving the wrong unknowns makes it singular

Consider

$$\begin{cases} u + 3v + 3w = 1 \\ 2u + 6v + 9w = 5 \end{cases}$$

 $\bullet\,$ Moving v to the right side makes it non-singular

$$\begin{cases} u + 3w = 1 - 3v \\ 2u + 9w = 5 - 6v \end{cases}$$

 \bullet Moving w to the right side makes it singular

$$\begin{cases} u + 3v = 1 - 3w \\ 2u + 6v = 5 - 9w \end{cases}$$

THEOREM (SOLVING AN UNDER-DETERMINED SYSTEM)

Let Ax = b be an under-determined system of linear equations. Exactly one of the following cases is true.

- No solution
- Infinite solutions

▲□▶ ▲□▶ ★ 三▶ ★ 三▶ - 三 - のへで

3 STEPS TO SOLVE AN UNDER-DETERMINED SYSTEM

Let Ax = b be an under-determined system of linear equations.

• Solve (the homogeneous equation) Ax = 0

$$\mathbb{H} = \{ \boldsymbol{x}_n \, | \, \boldsymbol{A} \boldsymbol{x}_n = \boldsymbol{0} \}$$

2 Find (a **particular solution**) x_p such that

$$oldsymbol{A}oldsymbol{x}_p = oldsymbol{b}$$

A general solution is

$$oldsymbol{x}_g = oldsymbol{x}_p + oldsymbol{x}_n$$

EXAMPLE (SOLVE AN UNDER-DETERMINED SYSTEM)

$$\mathcal{P}: \begin{cases} u + 3v + 3w + 2y = 1\\ 2u + 6v + 9w + 7y = 5\\ -u - 3v + 3w + 4y = 5 \end{cases}$$

Chen P Under-determined System & Vector Space

<ロ > < 母 > < 臣 > < 臣 > 三 の < で 10/70

Replace right side by 0 and solve the homogeneous equation.

$$\mathcal{P} \xrightarrow{b \leftarrow 0} \begin{cases} u + 3v + 3w + 2y = 0\\ 2u + 6v + 9w + 7y = 0\\ -u - 3v + 3w + 4y = 0 \end{cases}$$

$$\xrightarrow{\text{elimination}} \begin{cases} u + 3v + 3w + 2y = 0\\ 3w + 3y = 0\\ 6w + 6y = 0 \end{cases}$$

$$\xrightarrow{\text{elimination}} \begin{cases} u + 3v + 3w + 2y = 0\\ 3w + 3y = 0 \end{cases}$$

So

$$w = -y, \quad u = -3v + y$$

- Variables u and w stays on the left
- Variables v and y are moved to the right
- Values of u and w are determined by values of v and y

• A solution can be represented by a vector

$$\boldsymbol{x}_{n} = \begin{bmatrix} u \\ v \\ w \\ y \end{bmatrix} = \begin{bmatrix} -3v + y \\ v \\ -y \\ y \end{bmatrix} = v \begin{bmatrix} -3 \\ 1 \\ 0 \\ 0 \end{bmatrix} + y \begin{bmatrix} 1 \\ 0 \\ -1 \\ 1 \end{bmatrix}$$
$$= v\boldsymbol{x}_{1} + y\boldsymbol{x}_{2}$$

• It is a linear combination of $oldsymbol{x}_1$ and $oldsymbol{x}_2$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Restore the right side \boldsymbol{b} and find a particular solution \boldsymbol{x}_p .

$$\mathcal{P}: \begin{cases} u + 3v + 3w + 2y = 1\\ 2u + 6v + 9w + 7y = 5\\ -u - 3v + 3w + 4y = 5 \end{cases}$$

• Letting v = y = 0, we have

$$\begin{cases} u + 3w = 1\\ 2u + 9w = 5\\ -u + 3w = 5 \end{cases}$$

so w = 1 and u = -2.

• This particular solution can be represented by a vector

$$\boldsymbol{x}_{p} = \begin{bmatrix} u \\ v \\ w \\ y \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

GENERAL SOLUTION

Let Ax = b be an under-determined system of linear equations. The sum of a homogeneous solution and a particular solution is a solution.

Consider $x_n + x_p$. It is a solution of Ax = b since

$$oldsymbol{A}(oldsymbol{x}_n+oldsymbol{x}_p)=oldsymbol{A}oldsymbol{x}_n+oldsymbol{A}oldsymbol{x}_p=oldsymbol{b}$$

In the current example

$$\boldsymbol{x}_n + \boldsymbol{x}_p = v \begin{bmatrix} -3\\1\\0\\0 \end{bmatrix} + y \begin{bmatrix} 1\\0\\-1\\1 \end{bmatrix} + \begin{bmatrix} -2\\0\\1\\0 \end{bmatrix}$$

SOLVING THE HOMOGENEOUS EQUATION VIA MATRIX

- The homogeneous equation was solved by elimination, i.e. a sequence of elimination steps
- Elimination step is equivalent to row operation on the coefficient matrix
- In particular

$$\underbrace{\begin{bmatrix} 1 & 3 & 3 & 2 \\ 2 & 6 & 9 & 7 \\ -1 & -3 & 3 & 4 \end{bmatrix}}_{A} \rightarrow \begin{bmatrix} 1 & 3 & 3 & 2 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 6 & 6 \end{bmatrix} \rightarrow \underbrace{\begin{bmatrix} 1 & 3 & 3 & 2 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}}_{U}$$

・ロト <
日 > <
三 > <
三 > 、
三 * の へ
の 15/70

ECHELON MATRIX (ROW ECHELON FORM)

Elimination converts Ax = 0 to Ux = 0 where U is an echelon matrix.

- In each non-zero row of U, the first non-zero element is a pivot
- Pivots descend to the right
- Using pivots as anchors, we can draw a zigzag line on ${\bm U}$ such that the elements below the line are 0
- An echelon matrix can be converted to a **reduced echelon matrix** (a.k.a. reduced form) where every pivot is 1

< □ ▶ < □ ▶ < □ ▶ < □ ▶ = □ = □

16/70

Figure 2.3: The entries of a 5 by 8 echelon matrix U and its reduced form R.

<ロト < 部 < 注 > < 注 > 注 の < 0 17/70

PIVOT VARIABLES AND FREE VARIABLES

Suppose elimination converts Ax = 0 to Ux = 0 where U is an echelon matrix.

- Pivot positions correspond to **pivot variables**
- The other variables are free variables

Consider the system

$$\begin{cases} u + 3v + 3w + 2y = 1\\ 2u + 6v + 9w + 7y = 5\\ -u - 3v + 3w + 4y = 5 \end{cases}$$

- u and w are pivot variables
- v and y are free variables

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

HOMOGENEOUS/PARTICULAR/GENERAL SOLUTIONS

Let Ax = b be an under-determined system with m equations and n unknowns. Suppose elimination converts Ax = 0 to Ux = 0 where U is an echelon matrix. Let r be the number of pivots in U.

- The number of pivot variables is r
- The number of free variables is n-r
- We can find n r homogeneous solutions by setting one free variable to 1 and the other free variables to 0
- If the system is solvable, we can find a particular solution by setting free variables to 0
- The sum of a homogeneous solution and a particular solution is a general solution

For \mathcal{P} , we have homogeneous solution

$$\boldsymbol{x}_{n} = \begin{bmatrix} u \\ v \\ w \\ y \end{bmatrix} = \begin{bmatrix} -3v + y \\ v \\ -y \\ y \end{bmatrix} = v \begin{bmatrix} -3 \\ 1 \\ 0 \\ 0 \end{bmatrix} + y \begin{bmatrix} 1 \\ 0 \\ -1 \\ 1 \end{bmatrix}$$

and a particular solution

$$oldsymbol{x}_p = egin{bmatrix} -2 \ 0 \ 1 \ 0 \end{bmatrix}$$

The general solution is

$$\boldsymbol{x}_{g} = \boldsymbol{x}_{p} + \boldsymbol{x}_{n} = \begin{bmatrix} -2\\0\\1\\0\end{bmatrix} + v \begin{bmatrix} -3\\1\\0\\0\end{bmatrix} + y \begin{bmatrix} 1\\0\\-1\\1\\1\end{bmatrix}$$

Chen P

UNDER-DETERMINED SYSTEM & VECTOR SPACE

Figure 2.2: The parallel lines of solutions to $Ax_n = 0$ and $\begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$.

EXAMPLE (EXERCISE)

$$\begin{cases} 1x_1 + 2x_2 + 3x_3 + 5x_4 = 0\\ 2x_1 + 4x_2 + 8x_3 + 12x_4 = 6\\ 3x_1 + 6x_2 + 7x_3 + 13x_4 = -6 \end{cases}$$

Chen P Under-determined System & Vector Space

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Vector Space

・ロ ・ ・ ● ・ ・ = ・ ・ = う へ ? 23/70

DEFINITION (VECTOR SPACE)

Let \mathbb{V} be a set of vectors. \mathbb{V} is a **space** if

- \bullet addition and scalar multiplication are defined for $\mathbb V$
- $\bullet~\mathbb{V}$ is closed under addition and scalar multiplication

The following rules hold for addition and scalar multiplication.

$$lacksymbol{0}\ \exists\,m{0}\in\mathbb{V}$$
 such that $orall\,m{x}\in\mathbb{V}$ we have $m{x}+m{0}=m{x}$

②
$$orall oldsymbol{x} \in \mathbb{V}$$
, $\exists \; oldsymbol{y} \in \mathbb{V}$ such that $oldsymbol{x} + oldsymbol{y} = oldsymbol{0}$

$$ullet$$
 $orall oldsymbol{x},oldsymbol{y}\in\mathbb{V}$, we have $oldsymbol{x}+oldsymbol{y}=oldsymbol{y}+oldsymbol{x}$

$$lacksymbol{0}\ orall oldsymbol{x},oldsymbol{y},oldsymbol{z}\in\mathbb{V}$$
, we have $oldsymbol{x}+(oldsymbol{y}+oldsymbol{z})=(oldsymbol{x}+oldsymbol{y})+oldsymbol{z}$

$$ullet$$
 $orall oldsymbol{x} \in \mathbb{V}$, we have $1oldsymbol{x} = oldsymbol{x}$

$$ullet$$
 $\forall\,m{x}\in\mathbb{V}$, we have $c_1(c_2m{x})=(c_1c_2)m{x}$ for any c_1,c_2

- $\forall x \in \mathbb{V}$, we have $(c_1 + c_2)x = c_1x + c_2x$ for any c_1, c_2
- § $\forall {m x}, {m y} \in \mathbb{V}$, we have $c({m x}+{m y})=c{m x}+c{m y}$ for any c

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の < で 24/70

EXAMPLE (VECTOR SPACE)

- \mathbb{R}^1
- \mathbb{R}^2
- \mathbb{R}^3
- \mathbb{R}^n
- $\mathbb{M}_{3\times 2}$: the set of matrices of order 3×2
- $\mathbb{F}_{[a,b]}$: the set of functions defined over [a,b]

DEFINITION (VECTOR SUBSPACE)

Let ${\mathbb S}$ be a set of vectors. ${\mathbb S}$ is a subspace if

- $\begin{tabular}{ll} \begin{tabular}{ll} \begin{tabular}{ll} \begin{tabular}{ll} \end{tabular} \\ \en$
- ${f 0}$ ${\Bbb S}$ is a space

EXAMPLE (VECTOR SUBSPACE)

- $\{[0,0,0]\}$: subspace of \mathbb{R}^3
- **2** *z*-axis: subspace of \mathbb{R}^3
- (a) xy-plane: subspace of \mathbb{R}^3
- $\mathbb{S}_{6\times 6}$ (6 × 6 symmetric matrices): subspace of $\mathbb{M}_{6\times 6}$
- $\mathbb{L}_{5 \times 5}$ (5 × 5 lower-triangular matrices): subspace of $\mathbb{M}_{5 \times 5}$

▲ロト ▲撮 ト ▲ 臣 ト ▲ 臣 ト の Q () -

26/70

DEFINITION (LINEAR COMBINATION)

Let \mathbb{V} be a space and v_1, \dots, v_n be vectors of \mathbb{V} . The linear combination of v_1, \dots, v_n is

$$\sum_{i=1}^n c_i \boldsymbol{v}_i = c_1 \boldsymbol{v}_1 + \dots + c_n \boldsymbol{v}_n$$

where c_1, \dots, c_n are scalars called **combination coefficients**.

The linear combination $\sum_{i=1}^{n} c_i v_i$ is the ending point of a walk in space \mathbb{V} with segments $c_i v_i$'s starting from the origin.

DEFINITION (SPAN)

Let \mathbb{V} be a space and $\mathcal{V} = \{v_1, \cdots, v_n\}$ be a vector set in \mathbb{V} . The **span** of \mathcal{V} is

$$\operatorname{span}(\mathcal{V}) = \{ \boldsymbol{v} \mid \boldsymbol{v} = c_1 \boldsymbol{v}_1 + \dots + c_n \boldsymbol{v}_n \}$$

Let $\mathbb{B} = \operatorname{span}(\mathcal{V})$.

- $\bullet \ \mathbb{B}$ is a subspace of $\mathbb V$
- \mathbb{B} is the set of points reachable from the origin moving only in the directions of v_1, \ldots, v_n
- We say " \mathcal{V} spans \mathbb{B} " or " \mathcal{V} is a **spanning set** of \mathbb{B} "

28/70

TRIVIAL LINEAR COMBINATION

- Let $\sum_{i=1}^{n} c_i \boldsymbol{v}_i$ be a linear combination of $\boldsymbol{v}_1, \cdots, \boldsymbol{v}_n$.
 - It is **trivial** if $c_i = 0$ for all i
 - It is **non-trivial** if there exists $c_i \neq 0$
 - A trivial linear combination is always 0
 - A non-trivial linear combination may be 0

<□ > < @ > < E > < E > E の < 29/70</p>

DEFINITION (LINEAR INDEPENDENCE)

Let $\mathcal{V} = \{ \boldsymbol{v}_1, \cdots, \boldsymbol{v}_n \}$ be a set of vectors.

- \mathcal{V} is **linearly independent** if every non-trivial linear combination of v_1, \cdots, v_n is a non-zero vector
- Otherwise, \mathcal{V} is linearly dependent
- That is, \mathcal{V} is linearly dependent if there exists $c_i \neq 0$ such that

$$\sum_{i=1}^n c_i \boldsymbol{v}_i = \boldsymbol{0}$$

▲ロト ▲掃 ト ▲ 臣 ト ▲ 臣 ト ○ ① ○ ○ ○

30/70

EXAMPLE (LINEAR DEPENDENCE)

Convert A to U by row operations

$$\boldsymbol{A} = \begin{bmatrix} 1 & 3 & 3 & 2 \\ 2 & 6 & 9 & 7 \\ -1 & -3 & 3 & 4 \end{bmatrix} \to \dots \to \begin{bmatrix} 1 & 3 & 3 & 2 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \boldsymbol{U}$$

- $\{u_{1:}, u_{2:}\}$ is linearly independent
- $\{a_{1:}, a_{2:}\}$ is linearly independent
- $\{ \boldsymbol{u}_1, \boldsymbol{u}_3 \}$ is linearly independent
- $\{a_1, a_3\}$ is linearly independent

イロト イロト イヨト イヨト 二日

SQC

DEFINITION (DEPENDENT VECTOR)

Let $\mathcal{V} = \{v_1, \cdots, v_n\}$ be a set of vectors. If v_i is a linear combination of v_1, \cdots, v_{i-1} , it is a **dependent vector** of \mathcal{V} .

• By definition, $oldsymbol{v}_i$ is a dependent vector of $\mathcal V$ if

$$oldsymbol{v}_i = \sum_{j=1}^{i-1} c_j oldsymbol{v}_j$$

• 0 is a dependent vector since

$$\mathbf{0} = \sum_{j=1}^{i-1} 0 \, \boldsymbol{v}_j$$

LINEAR DEPENDENCE AND DEPENDENT VECTOR

A set of vectors $\mathcal{V} = \{v_1, \cdots, v_n\}$ is linearly dependent if and only if there exists a dependent vector in \mathcal{V} .

• Suppose v_i is a dependent vector so $v_i = \sum_{j=1}^{i-1} c_j v_j$. Then

the linear combination $v_i - \sum_{j=1}^{i-1} c_j v_j$ is 0 and it is non-trivial (since $c_i = 1 \neq 0$). Hence \mathcal{V} is linearly dependent.

• Suppose \mathcal{V} is linearly dependent so there exists non-trivial linear combination $\sum_{j=1}^{n} c'_{j} v_{j}$ that is 0. Let *i* be the largest integer with $c'_{i} \neq 0$. Then

$$\sum_{j=1}^{i} c'_{j} \boldsymbol{v}_{j} = \boldsymbol{0} \Rightarrow c'_{i} \boldsymbol{v}_{i} = -\sum_{j=1}^{i-1} c'_{j} \boldsymbol{v}_{j} \Rightarrow \boldsymbol{v}_{i} = \sum_{j=1}^{i-1} \left(\frac{-c'_{j}}{c'_{i}}\right) \boldsymbol{v}_{j}$$

Hence v_i is a dependent vector.

・ロト <
同 ト <
言 ト <
言 ト 、
言 の へ の 33/70
</p>

THEOREM

Let $\mathcal{V} = \{ \boldsymbol{v}_1, \cdots, \boldsymbol{v}_n \}$ be a linearly dependent set.

- We can move dependent vectors out of $\mathcal V$ until it is linearly independent
- Moving a dependent vector out of V does not change the space it spans

・ロト <
日 > <
三 > <
三 > 、
三 * のへの 34/70

Proof.

- Since V is linearly dependent, a dependent vector exists and we move it out of V. Continue until a dependent vector cannot be found. The remaining set is linearly independent.
- Let \boldsymbol{v}_i be a dependent vector so

$$oldsymbol{v}_i = \sum_{j=1}^{i-1} c_j oldsymbol{v}_j$$

Note linear combination of v_1, \dots, v_i can be written as linear combination of v_1, \dots, v_{i-1} . It follows that any linear combination of v_1, \dots, v_n can be written as a linear combination of $v_1, \dots, v_{i-1}, v_{i+1}, \dots, v_n$. Hence

$$\mathsf{span}(oldsymbol{v}_1,\cdots,oldsymbol{v}_{i-1},oldsymbol{v}_{i+1},\cdots,oldsymbol{v}_n)=\mathsf{span}(oldsymbol{v}_1,\cdots,oldsymbol{v}_n)$$

DEFINITION (BASIS)

Let $\mathbb S$ be a space. A set of vectors $\mathcal B$ is a basis of $\mathbb S$ if

- \mathcal{B} is a spanning set of \mathbb{S}
- B is linearly independent

CONSTRUCTING BASIS FROM SPANNING SET

Let $\mathcal{V} = \{ \boldsymbol{v}_1, \cdots, \boldsymbol{v}_n \}$ be a spanning set of \mathbb{S} .

- If ${\mathcal V}$ is linearly independent, ${\mathcal V}$ is a basis of ${\mathbb S}.$
- If $\ensuremath{\mathcal{V}}$ is linearly dependent, remove dependent vectors until the remaining set

$$\mathcal{V}' = \{ oldsymbol{v}_1', \cdots, oldsymbol{v}_m' \} \subset \mathcal{V}$$

is linearly independent. Then \mathcal{V}' is a basis of \mathbb{S} .

イロト イボト イヨト イヨト 二日

DQC

36/70

CHEN P UNDER-DETERMINED SYSTEM & VECTOR SPACE

< □ ▶ < @ ▶ < 差 ▶ < 差 ▶ 差 ∽ Q Q 37/70

LEMMA (INDEPENDENT SET AND SPANNING SET)

Let \mathbb{S} be a space, $\mathcal{V} = \{v_1, \dots, v_k\}$ be a linearly independent set and $\mathcal{U} = \{u_1, \dots, u_l\}$ be a spanning set of \mathbb{S} . Then $k \leq l$.

Proof by contradiction. Suppose k > l. Since \mathcal{U} spans \mathbb{S}

$$\boldsymbol{v}_j = \sum_{i=1}^l a_{ij} \boldsymbol{u}_i, \ j = 1, \dots, k$$

Define $A = \{a_{ij}\}_{l \times k}$ and consider Ax = 0. Since it is an under-determined system, $\exists c \neq 0$ such that Ac = 0. Then

$$\sum_{j=1}^{k} c_j \boldsymbol{v}_j = \sum_{j=1}^{k} c_j \sum_{i=1}^{l} a_{ij} \boldsymbol{u}_i = \sum_{i=1}^{l} \left(\sum_{j=1}^{k} a_{ij} c_j \right) \boldsymbol{u}_i = \boldsymbol{0}$$

This contradicts the assumption that \mathcal{V} is linearly independent.

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ 0 0 0 38/70

THEOREM (SIZE OF A BASIS OF A SPACE)

Let S be a space. Every basis of S has the same number of vectors (a.k.a. cardinality).

Proof. Let $\mathcal{U} = \{u_1, \cdots, u_m\}$ and $\mathcal{V} = \{v_1, \cdots, v_n\}$ be bases of S. Since \mathcal{U} is a linearly independent set and \mathcal{V} is a spanning set, we have

$$m \leq n$$

Since ${\mathcal V}$ is a linearly independent set and ${\mathcal U}$ is a spanning set, we also have

$$n \leq m$$

Hence

$$m = n$$

DEFINITION (DIMENSION)

The **dimension** of a space is the number of vectors in a basis of the space. Let S be a space and $\mathcal{V} = \{v_1, \dots, v_n\}$ be a basis of S.

- The dimension of ${\mathbb S}$ is n
- $\bullet\,$ This is denoted by $\dim \mathbb{S}=n$

Suppose dim $\mathbb{S} = n$.

- A linearly independent set of \mathbb{S} has at most n vectors
- A spanning set of \mathbb{S} has at least n vectors

4 ロ ト 4 母 ト 4 茎 ト 4 茎 ト 茎 の 4 0 / 70

Fundamental Subspaces of a Matrix

< □ > < 母 > < 喜 > < 喜 > 言 の Q @ 41/70

DEFINITION (COLUMN SPACE AND ROW SPACE)

Let A be a matrix.

- The **column space** of *A* is the space spanned by the column vectors of *A*
- The row space is the space spanned by the row vectors

Let A be a matrix of order $m \times n$. We have

$$\mathbb{C}(\boldsymbol{A}) = \mathsf{span}(\boldsymbol{a}_1,\cdots,\boldsymbol{a}_n)$$

$$\mathbb{C}\left(oldsymbol{A}^{T}
ight)= extsf{span}\left(oldsymbol{a}_{1:}^{T},\cdots,oldsymbol{a}_{m:}^{T}
ight)$$

Note

$$\mathbb{C}(oldsymbol{A})\subset\mathbb{R}^m,\ \mathbb{C}\left(oldsymbol{A}^T
ight)\subset\mathbb{R}^m$$

4 ロ ト 4 母 ト 4 差 ト 差 の 4 CP 42/70

EXAMPLE (COLUMN SPACE)

$$\boldsymbol{A} = \begin{bmatrix} 1 & 0 \\ 5 & 4 \\ 2 & 4 \end{bmatrix}$$

CHEN P UNDER-DETERMINED SYSTEM & VECTOR SPACE

DEFINITION (NULLSPACE AND LEFT NULLSPACE)

- Let A be a matrix.
 - The nullspace of A is defined by

$$\mathbb{N}(oldsymbol{A}) = \left\{oldsymbol{x} \mid oldsymbol{A}oldsymbol{x} = oldsymbol{0}
ight\}$$

• The left nullspace of A is defined by

$$\mathbb{N}\left(oldsymbol{A}^{T}
ight)=\left\{oldsymbol{y}\ \left|\ oldsymbol{A}^{T}oldsymbol{y}=oldsymbol{0}
ight\}$$

Let A be a matrix of order $m \times n$. We have $\mathbb{N}(A) \subset \mathbb{R}^n, \ \mathbb{N}(A^T) \subset \mathbb{R}^m$ $\mathbb{N}(A^T)$ is called the left nullspace because $y \in \mathbb{N}(A^T) \Rightarrow A^T y = 0 \Rightarrow y^T A = 0$

EXAMPLE (FUNDAMENTAL SUBSPACES OF A MATRIX)

$$\mathbb{C}(\boldsymbol{A}) = \left\{ \boldsymbol{y} \mid \boldsymbol{y} = c_1 \begin{bmatrix} 1 \\ 3 \end{bmatrix} + c_2 \begin{bmatrix} 2 \\ 6 \end{bmatrix} \right\} = \left\{ \boldsymbol{y} \mid \boldsymbol{y} = c \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\}$$
$$\mathbb{C}\left(\boldsymbol{A}^T\right) = \left\{ \boldsymbol{x} \mid \boldsymbol{x} = c_1 \begin{bmatrix} 1 & 2 \end{bmatrix}^T + c_2 \begin{bmatrix} 3 & 6 \end{bmatrix}^T \right\} = \left\{ \boldsymbol{x} \mid \boldsymbol{x} = c \begin{bmatrix} 1 & 2 \end{bmatrix}^T \right\}$$
$$\mathbb{N}(\boldsymbol{A}) = \left\{ \boldsymbol{x} \mid \boldsymbol{x} = c \begin{bmatrix} -2 \\ 1 \end{bmatrix} \right\}$$
$$\mathbb{N}\left(\boldsymbol{A}^T\right) = \left\{ \boldsymbol{y} \mid \boldsymbol{y} = c \begin{bmatrix} -3 & 1 \end{bmatrix}^T \right\}$$

Chen P

DEFINITION (RANK)

The **rank** of A is the number of pivots in the echelon matrix converted from A.

• For example

$$\boldsymbol{A} = \begin{bmatrix} 1 & 3 & 3 & 2 \\ 2 & 6 & 9 & 7 \\ -1 & -3 & 3 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & 3 & 2 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 6 & 6 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & 3 & 2 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

 $\mathsf{rank}({\boldsymbol{A}})=2$

• Let \boldsymbol{A} be a matrix of order $m \times n$. Then

 $\mathsf{rank}(\mathbf{A}) \le \min(m, n)$

4 ロ ト 4 母 ト 4 臣 ト 4 臣 ト 臣 9 9 9 46/70

BASES OF FUNDAMENTAL SUBSPACES

Let A be a matrix of order $m \times n$ with rank r. Let U be the echelon matrix converted from A so A = LU.

- The r pivot columns of $oldsymbol{A}$ constitute a basis of $\mathbb{C}\left(oldsymbol{A}
 ight)$
- The r pivot rows of $oldsymbol{U}$ constitute a basis of $\mathbb{C}\left(oldsymbol{A}^T
 ight)$
- The (n-r) independent solutions of Ax = 0 constitute a basis of $\mathbb{N}(A)$
- The last (m-r) rows in L^{-1} where $U = L^{-1}A$ constitute a basis of $\mathbb{N}(A^T)$

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ ̄豆 _ のへで ...

EXAMPLE (BASES OF FUNDAMENTAL SUBSPACES)

Find the bases of the fundamental subspaces of

$$\boldsymbol{A} = \begin{bmatrix} 1 & 3 & 3 & 2 \\ 2 & 6 & 9 & 7 \\ -1 & -3 & 3 & 4 \end{bmatrix}$$

The echelon matrix U converted from A is

$$\boldsymbol{A} = \begin{bmatrix} 1 & 3 & 3 & 2 \\ 2 & 6 & 9 & 7 \\ -1 & -3 & 3 & 4 \end{bmatrix} \to \dots \to \begin{bmatrix} 1 & 3 & 3 & 2 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \boldsymbol{U}$$

Note $U = L^{-1}A$ where $L^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 5 & -2 & 1 \end{bmatrix}$ • Row 1 and row 2 are the pivot rows

$$\mathbb{C}\left(\boldsymbol{A}^{T}\right):\ \left\{\begin{bmatrix}1 & 3 & 3 & 2\end{bmatrix}^{T},\ \begin{bmatrix}0 & 0 & 3 & 3\end{bmatrix}^{T}\right\}$$

• Column 1 and column 3 are the pivot columns

CHEN P

$$\mathbb{C}(\boldsymbol{A}): \left\{ \begin{bmatrix} 1\\2\\-1 \end{bmatrix}, \begin{bmatrix} 3\\9\\3 \end{bmatrix} \right\}$$

• For the left nullspace

$$\mathbb{N}\left(\boldsymbol{A}^{T}\right): \left\{ \begin{bmatrix} 5 & -2 & 1 \end{bmatrix}^{T} \right\}$$

• For the nullspace

THEOREM (FUNDAMENTAL THEOREM PART I)

Let A be a matrix of order $m \times n$ and rank r.

- The column space $\mathbb{C}(\mathbf{A})$ is of dimension r
- The row space $\mathbb{C}(\mathbf{A}^T)$ is of dimension r
- The nullspace $\mathbb{N}(\mathbf{A})$ is of dimension n-r
- The left nullspace $\mathbb{N}(\mathbf{A}^T)$ is of dimension m-r

COROLLARY (ROW SPACE AND COLUMN SPACE)

The row space and the column space of a matrix always have the same dimension.

・ロト ・ 同ト ・ ヨト ・ ヨト - ヨー

SQC

THEOREM (EXISTENCE AND UNIQUENESS OF SOLUTION)

Let A be of order $m \times n$ and rank r. Consider Ax = b.

- If $b \in \mathbb{C}(A)$, b is a linear combination of the column vectors of A, so a solution exists
- If r = m, $\mathbb{C}(\mathbf{A}) = \mathbb{R}^m$, so solution exists for every \mathbf{b}
- If r = n, the column vectors are linearly dependent, so there is at most one solution for every b

<ロト < 部 < 注 > < 注 > 注 の < 31/70

Linear Transformation

<□ > < @ > < \ > < \ > > \ = > ○ < @ 52/70

TRANSFORMATION AND LINEAR TRANSFORMATION

Let \mathbb{D} (domain) and \mathbb{R} (range) be vector spaces.

A transformation from D to R maps a vector in D to a vector in R. This is denoted by

 $oldsymbol{T}:\mathbb{D}\mapsto\mathbb{R}$

• Let $T:\mathbb{D}\mapsto\mathbb{R}$ be a transformation. T is linear if

 $\boldsymbol{T}(c_1\boldsymbol{x}_1 + c_2\boldsymbol{x}_2) = c_1\boldsymbol{T}(\boldsymbol{x}_1) + c_2\boldsymbol{T}(\boldsymbol{x}_2)$

for any scalars c_1, c_2 and $x_1, x_2 \in \mathbb{D}$.

▲ロト ▲撮 ト ▲ 臣 ト ▲ 臣 ト の Q () -

THEOREM (MATRIX AND LINEAR TRANSFORMATION)

A linear transformation can be represented by matrix.

Figure 2.9: Transformations of the plane by four matrices.

$$\begin{bmatrix} c & 0 \\ 0 & c \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

・ロ ・ ・ @ ・ < 注 ・ 注 ・ 注 ・ うへで 54/70
</p>

REPRESENTATION OF A VECTOR BY A COLUMN

Let \mathbb{V} be a space of dimension n. Through a basis, a vector of \mathbb{V} can be represented by a column of size n.

Let $\mathcal{B} = \{v_1, \cdots, v_n\}$ be a basis of \mathbb{V} . For any $x \in \mathbb{V}$, there exist x_1, \cdots, x_n (to be shown to be unique) such that

$$oldsymbol{x} = \sum_{i=1}^n x_i oldsymbol{v}_i$$

Thus \boldsymbol{x} can be represented by a column of size n

$$[\boldsymbol{x}_{\mathcal{B}}] = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \iff \boldsymbol{x} = x_1 \boldsymbol{v}_1 + \cdots + x_n \boldsymbol{v}_n$$

THEOREM (UNIQUENESS OF REPRESENTATION)

Given basis, the representation of a vector is unique.

Let $\mathbb V$ be a space of dimension n and $\mathcal B = \{ v_1, \cdots, v_n \}$ be a basis of $\mathbb V$. For any $x \in \mathbb V$, suppose

$$oldsymbol{x} = a_1oldsymbol{v}_1 + \dots + a_noldsymbol{v}_n = b_1oldsymbol{v}_1 + \dots + b_noldsymbol{v}_n$$

Then

$$oldsymbol{x} - oldsymbol{x} = \sum_{i=1}^n a_i oldsymbol{v}_i - \sum_{i=1}^n b_i oldsymbol{v}_i = \sum_{i=1}^n (a_i - b_i) oldsymbol{v}_i = oldsymbol{0}$$

Since $\{v_1, \dots, v_n\}$ is linearly independent, the linear combination $\sum_{i=1}^{n} (a_i - b_i) v_i$ must be trivial. Hence

$$a_i = b_i, \quad \forall i$$

CHARACTERIZATION OF LINEAR TRANSFORMATION

Let $T : \mathbb{D} \mapsto \mathbb{R}$ be a linear transformation. T can be specified by the transformation by T for the vectors in a basis of \mathbb{D} .

Let $\mathcal{B} = \{ \boldsymbol{v}_1, \cdots, \boldsymbol{v}_n \}$ be a basis of \mathbb{D} .

- Let $oldsymbol{T}(oldsymbol{v}_j)$ be the transformation by $oldsymbol{T}$ for $oldsymbol{v}_j$
- For any $oldsymbol{x} \in \mathbb{D}$, we have $oldsymbol{x} = \sum\limits_{i} x_j oldsymbol{v}_j$
- By the linearity of T, the transformation by T for x is

$$T(\boldsymbol{x}) = T\left(\sum_{j} x_{j} \boldsymbol{v}_{j}\right) = \sum_{j} x_{j} T(\boldsymbol{v}_{j})$$

<□ > < 母 > < 茎 > < 茎 > 茎 の Q 0 57/70

REPRESENTATION OF LINEAR TRANSFORM BY MATRIX

Let $T : \mathbb{D} \mapsto \mathbb{R}$ be linear, $\mathcal{B} = \{v_1, \cdots, v_n\}$ be a basis of \mathbb{D} , and $\mathcal{B}' = \{v'_1, \cdots, v'_m\}$ be a basis of \mathbb{R} . Suppose

$$oldsymbol{T}(oldsymbol{v}_j) = \sum_{i=1}^m a_{ij}oldsymbol{v}_i', \quad j = 1, \cdots, n$$

- Coefficients a_{ij} specify the transformation by T for the basis vectors v_1, \ldots, v_n
- Define matrix

$$[\boldsymbol{T}_{\mathcal{B}\mathcal{B}'}] = \{a_{ij}\}$$

The size is $m \times n$, where column j is decided by $T(v_j)$ The matrix $[T_{\mathcal{BB}'}]$ completely specifies $T : \mathbb{D} \mapsto \mathbb{R}$ through basis \mathcal{B} for \mathbb{D} and basis \mathcal{B}' for \mathbb{R} .

4 ロ ト 4 母 ト 4 茎 ト 4 茎 ト 茎 の 4 で 58/70

LINEAR TRANSFORM AS MATRIX MULTIPLICATION

Let $T : \mathbb{D} \mapsto \mathbb{R}$ be linear, $x \in \mathbb{D}$, and $y \in \mathbb{R}$. Let $\mathcal{B} = \{v_1, \cdots, v_n\}$ be a basis of \mathbb{D} , and $\mathcal{B}' = \{v'_1, \cdots, v'_m\}$ be a basis of \mathbb{R} . We have

$$oldsymbol{y} = oldsymbol{T}(oldsymbol{x}) \Leftrightarrow oldsymbol{[y_{\mathcal{B}'}]} = oldsymbol{[T_{\mathcal{B}\mathcal{B}'}]} oldsymbol{[x_{\mathcal{B}}]}$$

Let $oldsymbol{x} = \sum\limits_{j=1}^n x_j oldsymbol{v}_j$ and $oldsymbol{y} = \sum\limits_{i=1}^m y_i oldsymbol{v}'_i$.

$$T(\boldsymbol{x}) = \sum_{j=1}^{n} x_j T(\boldsymbol{v}_j) = \sum_{j=1}^{n} x_j \sum_{i=1}^{m} a_{ij} \boldsymbol{v}'_i = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} x_j \right) \boldsymbol{v}'_i = \boldsymbol{y}$$

$$\Rightarrow y_i = \sum_j a_{ij} x_j, \ i = 1, \cdots, m$$

$$\Rightarrow [\boldsymbol{y}_{\mathcal{B}'}] = [\boldsymbol{T}_{\mathcal{B}\mathcal{B}'}] [\boldsymbol{x}_{\mathcal{B}}]$$

<ロト < 部 < 注 > < 注 > 注 の < で 59/70

EXAMPLE (DIFFERENTIATION: DERIVATION OF MATRIX)

Let $\boldsymbol{D}: \mathcal{P}_3 \mapsto \mathcal{P}_2$ be differentiation on polynomials. A basis of \mathcal{P}_3 is $\mathcal{B} = \{\boldsymbol{v}_1 = 1, \ \boldsymbol{v}_2 = t, \ \boldsymbol{v}_3 = t^2, \ \boldsymbol{v}_4 = t^3\}$, and a basis of \mathcal{P}_2 is $\mathcal{B}' = \{\boldsymbol{v}'_1 = 1, \ \boldsymbol{v}'_2 = t, \ \boldsymbol{v}'_3 = t^2\}$. We have

$$\dot{m{v}}_1 = 0 = 0m{v}_1' + 0m{v}_2' + 0m{v}_3'$$

 $\dot{m{v}}_2 = 1 = 1m{v}_1' + 0m{v}_2' + 0m{v}_3'$
 $\dot{m{v}}_3 = 2t = 0m{v}_1' + 2m{v}_2' + 0m{v}_3'$
 $\dot{m{v}}_4 = 3t^2 = 0m{v}_1' + 0m{v}_2' + 3m{v}_3'$

The coefficients go to the columns of a matrix

$$[\boldsymbol{D}_{\mathcal{B}\mathcal{B}'}] = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$

▲ロト ▲眉 ト ▲ 臣 ト ▲ 臣 ト 一 臣 - つくで

EXAMPLE (ALTERNATIVE DERIVATION OF MATRIX)

Suppose
$$oldsymbol{x} = x_1oldsymbol{v}_1 + x_2oldsymbol{v}_2 + x_3oldsymbol{v}_3 + x_4oldsymbol{v}_4$$
, and $oldsymbol{D}(oldsymbol{x}) = oldsymbol{y}$

с –

$$\Rightarrow \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} \boldsymbol{D}_{\mathcal{B}\mathcal{B}'} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$

・ロト・(部・・目・・日・)のへの

CHEN P UNDER-DETERMINED SYSTEM & VECTOR SPACE

<ロ > < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > (2/70)

EXAMPLE (ROTATION: DERIVATION OF MATRIX)

Let \boldsymbol{R} be the counter-clockwise rotation by θ in \mathbb{R}^2 . Let $\mathcal{B} = \mathcal{B}' = \left\{ \boldsymbol{e}_1 = \begin{bmatrix} 1 & 0 \end{bmatrix}^T, \boldsymbol{e}_2 = \begin{bmatrix} 0 & 1 \end{bmatrix}^T \right\}$. Rotation of the basis vectors leads to

$$\boldsymbol{R}(\boldsymbol{e}_1) = \cos\theta \, \boldsymbol{e}_1 + \sin\theta \, \boldsymbol{e}_2$$
$$\boldsymbol{R}(\boldsymbol{e}_2) = \cos\left(\frac{\pi}{2} + \theta\right) \, \boldsymbol{e}_1 + \sin\left(\frac{\pi}{2} + \theta\right) \, \boldsymbol{e}_2$$
$$= -\sin\theta \, \boldsymbol{e}_1 + \cos\theta \, \boldsymbol{e}_2$$

Hence

$$[\mathbf{R}_{\mathcal{B}\mathcal{B}'}] = \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix}$$

<ロト < 部 < 注 > < 注 > 注 の < e 3/70

EXAMPLE (ALTERNATIVE DERIVATION OF MATRIX)

Suppose \boldsymbol{R} rotates $\boldsymbol{x} = [x_1 \ x_2]^T$ to $\boldsymbol{y} = [y_1 \ y_2]^T$. Let the angle between \boldsymbol{x} and the horizontal axis be ϕ . Then the angle between \boldsymbol{y} and the horizontal axis is $(\phi + \theta)$.

$$\begin{aligned} x_1 &= |\boldsymbol{x}| \cos \phi, \ x_2 &= |\boldsymbol{x}| \sin \phi, \ |\boldsymbol{y}| = |\boldsymbol{x}| \\ y_1 &= |\boldsymbol{y}| \cos(\theta + \phi) = |\boldsymbol{x}| (\cos \theta \cos \phi - \sin \theta \sin \phi) \\ &= \cos \theta x_1 - \sin \theta x_2 \\ y_2 &= |\boldsymbol{y}| \sin(\theta + \phi) = |\boldsymbol{x}| (\sin \theta \cos \phi + \cos \theta \sin \phi) \\ &= \sin \theta x_1 + \cos \theta x_2 \\ \Rightarrow \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \\ [\boldsymbol{R}_{\mathcal{B}\mathcal{B}'}] &= \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \end{aligned}$$

▲□▶ ▲□▶ ★ 三▶ ★ 三▶ - 三 - のへで、

EXAMPLE (PROJECTION: DERIVATION OF MATRIX)

Let P be the **projection** to line L, which is at angle θ to the horizontal axis. Projection of the basis vectors leads to

$$\boldsymbol{P}(\boldsymbol{e}_1) = \cos\theta(\cos\theta\,\boldsymbol{e}_1 + \sin\theta\,\boldsymbol{e}_2) = \cos^2\theta\,\boldsymbol{e}_1 + \cos\theta\sin\theta\,\boldsymbol{e}_2$$

 $P(e_2) = \sin\theta(\cos\theta e_1 + \sin\theta e_2) = \sin\theta\cos\theta e_1 + \sin^2\theta e_2$

Hence

$$[\boldsymbol{P}_{\mathcal{B}\mathcal{B}'}] = \begin{bmatrix} \cos^2\theta & \sin\theta\cos\theta\\ \cos\theta\sin\theta & \sin^2\theta \end{bmatrix}$$

▲□▶ ▲□▶ ★ 三▶ ★ 三▶ - 三 - のへで、

EXAMPLE (ALTERNATIVE DERIVATION OF MATRIX)

Suppose P projects $x = [x_1 \ x_2]^T$ to $y = [y_1 \ y_2]^T$. Let the angle between x and the horizontal axis be ϕ . Then the angle between x and y is $(\theta - \phi)$, and the angle between y and horizontal axis is θ .

$$\begin{aligned} x_1 &= |\boldsymbol{x}| \cos \phi, \ x_2 &= |\boldsymbol{x}| \sin \phi, \ |\boldsymbol{y}| = |\boldsymbol{x}| \cos(\theta - \phi) \\ y_1 &= |\boldsymbol{y}| \cos \theta = |\boldsymbol{x}| \cos(\theta - \phi) \cos \theta \\ &= |\boldsymbol{x}| (\cos \theta \cos \phi + \sin \theta \sin \phi) \cos \theta \\ &= \cos^2 \theta \, x_1 + \sin \theta \cos \theta \, x_2 \\ y_2 &= |\boldsymbol{y}| \sin \theta = |\boldsymbol{x}| \cos(\theta - \phi) \sin \theta \\ &= |\boldsymbol{x}| (\cos \theta \cos \phi + \sin \theta \sin \phi) \sin \theta \\ &= \cos \theta \sin \theta \, x_1 + \sin^2 \theta \, x_2 \end{aligned}$$

EXAMPLE (REFLECTION)

Figure 2.11: Reflection through the θ -line: the geometry and the matrix.

CHEN P UNDER-DETERMINED SYSTEM & VECTOR SPACE

EXAMPLE (REFLECTION: DERIVATION OF MATRIX)

Let H be the **reflection** with respect to line L, which is at angle θ to the horizontal axis. Reflection of the basis vectors leads to

$$H(\mathbf{e}_1) = \cos 2\theta \, \mathbf{e}_1 + \sin 2\theta \, \mathbf{e}_2$$
$$H(\mathbf{e}_2) = \cos \left(2\theta - \frac{\pi}{2}\right) \, \mathbf{e}_1 + \sin \left(2\theta - \frac{\pi}{2}\right) \, \mathbf{e}_2$$
$$= \sin 2\theta \, \mathbf{e}_1 - \cos 2\theta \, \mathbf{e}_2$$

Hence

$$[\boldsymbol{H}_{\mathcal{B}\mathcal{B}'}] = \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{bmatrix}$$

CHEN P UNDER-DETERMINED SYSTEM & VECTOR SPACE

EXAMPLE (ALTERNATIVE DERIVATION OF MATRIX)

Suppose \boldsymbol{H} reflects $\boldsymbol{x} = [x_1 \ x_2]^T$ to $\boldsymbol{y} = [y_1 \ y_2]^T$. Let the angle between \boldsymbol{x} and the horizontal axis be ϕ . Then the angle between \boldsymbol{y} and horizontal axis is $(2\theta - \phi)$.

$$\begin{aligned} x_1 &= |\boldsymbol{x}| \cos \phi, \ x_2 &= |\boldsymbol{x}| \sin \phi, \ |\boldsymbol{y}| = |\boldsymbol{x}| \\ y_1 &= |\boldsymbol{y}| \cos(2\theta - \phi) = |\boldsymbol{x}| \cos 2\theta \cos \phi + |\boldsymbol{x}| \sin 2\theta \sin \phi \\ &= \cos 2\theta \, x_1 + \sin 2\theta \, x_2 \\ y_2 &= |\boldsymbol{y}| \sin(2\theta - \phi) = |\boldsymbol{x}| \sin 2\theta \cos \phi - |\boldsymbol{x}| \cos 2\theta \sin \phi \\ &= \sin 2\theta \, x_1 - \cos 2\theta \, x_2 \end{aligned}$$
$$\Rightarrow \quad \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

SUMMARY OF LINEAR TRANSFORMATION

A linear transformation $T : \mathbb{D} \mapsto \mathbb{R}$ from \mathbb{D} of dimension n to \mathbb{R} of dimension m is completely represented by a matrix of order $m \times n$. Such a matrix is constructed as follows.

- \bullet Find a basis of $\mathbb D$ and a basis of $\mathbb R$
- Apply T to a basis vector of $\mathbb D$ and express the result as a linear combination of the basis vectors of $\mathbb R$
- Put the coefficients in a column of a matrix
- \bullet Repeat until every basis vector of $\mathbb D$ has been processed

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <