
Digital Signal Processing - II

Discrete Fourier Transform

◮ The discrete Fourier transform (DFT) of a sequence of finite duration N is
defined by

X [k ] =
N−1
∑

n=0

x [n]W nk , 0 ≤ k < N, W = e−j(2π/N) (1)

◮ The inverse transform (IDFT) is given by

x [n] =
1
N

N−1
∑

k=0

X [k ]W−kn, 0 ≤ n < N. (2)

◮ The above equality can be proved with the help of the following equality
N−1
∑

k=0

W n′kW−nk = Nδn′n. (3)

◮ For x [n] of finite duration N, the X [k ]’s are exactly the N equally spaced
samples at points ωk = k 2π

N of X (ejω)

Digital Filters

◮ A discrete-time LTI system is also called a digital filter .
◮ From y [n] = x [n] ∗ h[n], the input-output relation of a digital filter can also be

expressed in the z-domain as

Y (z) = X (z)H(z), (4)

or in the ω-domain as
Y (ejω) = X (ejω)H(ejω), (5)

◮ H(z) is called the system function or transfer function.
◮ H(ejω) is called the frequency response.

Convolution Theorem

◮ Proof of (4)

Y (z) =
∑

n

y [n]z−n =
∑

n

∑

m

x [m]h[n − m]z−n

=
∑

n

∑

m

x [m]h[n − m]z−(n−m)z−m

=
∑

m

x [m]z−m
∑

n

h[n − m]z−(n−m)

= X (z)H(z).

(6)

Causal Systems and Stable Systems

◮ A system is causal if its impulse response is zero for negative n, i.e.,

h[n] = 0, ∀n < 0. (7)

◮ Note that the output signal does not exist before the input signal.
◮ A system is stable if a bounded input signal produces a bounded output

signal (BIBO).
◮ A necessary and sufficient condition for stability is

∑

n

|h[n]| < ∞, (8)

which also sufficient for the existence of H(ejω).

Modulation Theorem

◮ We have the convolution theorem

y [n] = x [n] ∗ h[n] ⇒ Y (ejω) = X (ejω)H(ejω) (9)

◮ The dual is the modulation theorem

y [n] = x [n]h[n] ⇒ Y (ejω) = X (ejω) ∗ H(ejω) (10)

Zeros and Poles

◮ A pole of a function is where the value of the function is singular
◮ A zero of a function is where the value of the function is 0
◮ When a system function is expressed as the ratio of two polynomials

◮ the roots of the numerator are zeros
◮ the roots of the denominator are poles

Linear Difference Equations

◮ A causal LTI system is sometimes characterized by a linear difference
equation

y [n]−
N
∑

k=1

aky [n − k ] =
M
∑

r=0

brx [n − r ]. (11)

Transformation Analysis

◮ Noting the z-transform of y [n − k ] is z−kY (z), from (11) we have

H(z) =
Y (z)
X (z)

=

M
∑

r=0
brz−r

1 −
N
∑

k=1
akz−k

(12)

◮ In terms of the zeros and the poles, (12) can be re-written as

H(z) =
A

M
∏

r=1
(1 − crz−1)

N
∏

k=1
(1 − dkz−1)

, (13)

where cr ’s are the zeros and dk ’s are the poles.
◮ Note that for a stable and causal system, all dk ’s must be inside the unit circle.

Finite Impulse Response

◮ If the ak ’s in (11) are zero, we have

y [n] =
M
∑

r=0

brx [n − r ]. (14)

◮ This corresponds to an FIR filter with

h[n] =

{

bn, 0 ≤ n ≤ M

0, otherwise
(15)

Linear Phase and Ideal Delay

◮ Consider the ideal delay system

y [n] = x [n − nd ]. (16)

◮ The impulse response is
hid [n] = δ[n − nd ]. (17)

◮ The frequency response is the Fourier transform

Hid(ejω) = e−jωnd. (18)

One can see a delay introduce a linear phase change

∠Hid(ejω) = −ωnd. (19)

Linear-Phase FIR Filter

◮ An FIR filter can be made linear-phase as follows.
◮ Suppose h[n] = h[M − n], and M is even. Denoting M

2 as α, we have

H(ejω) =

M
∑

n=0

h[n]e−jωn =





α−1
∑

n=0

+

M
∑

n=α+1



 h[n]e−jωn + h[α]e−jωα

=

α
∑

k=1

(

h[α− k ]e−jω(α−k) + h[α + k ]e−jω(α+k)
)

+ h[α]e−jωα

=

α
∑

k=1

h[α− k ]
(

e−jω(α−k) + e−jω(α+k)
)

+ h[α]e−jωα

=

α
∑

k=1

h[α− k ]e−jωα
(

ejωk + e−jωk
)

+ h[α]e−jωα

= A(ω)e−jωα

(20)

Infinite Impulse Response

◮ (11) can be re-written as a recurrence formula

y [n] =
N
∑

k=1

aky [n − k ] +
M
∑

r=0

brx [n − r ]. (21)

◮ Suppose M ≤ N. (12) can be expanded by partial fraction expansion

H(z) = A0 +

N
∑

k=1

Ak

1 − dkz−1. (22)

◮ For a causal system, it is easily shown that

h(n) = A0δ[n] +
N
∑

k=1

Ak(dk)
nu[n]. (23)

h[n] has infinite duration. Such a filter is called infinite-impulse response
(IIR).

Implementation of IIR Filters

◮ Direct form I and direct from II, Fig. 2.9
◮ Cascade form and parallel form, Fig 2.10
◮ Design issues are the storage, round-off noise, stability, etc.

Sampling

◮ A discrete-time signal often arises from periodic sampling of a
continuous-time signal. That is,

x [n] = xa(nT ). (24)

◮ Note that there is an important parameter, T , which is called the sampling
period . With different sampling periods, the sampled sequences actually
look quite different.

◮ The big questions are
◮ Under what condition can we recover a continuous function xa(t) from its
samples x [n]?

◮ Intuitively, the smaller T , the more information we keep about xa(t) in x [n].
◮ Is there a small enough T such that we can reconstruct xa(t) from x [n]?
◮ Counter-intuitively, the answer is yes .
◮ If the sampling rate is sufficiently high relative to the signal bandwidth , it is

theoretically possible to reconstruct a xa(t) from xa(nT ).

The Sampling Theorem

◮ Let xa(t) be a bandlimited signal with

Xa(jΩ) = 0, |Ω| ≥ ΩN. (25)

Then xa(t) is uniquely determined by its samples
x [n] = xa(nT ), n = 0,±1,±2, . . . , if

Ωs ≥ 2ΩN. (26)

◮ FN = ΩN/2π is called the Nyquist frequency . 2FN is called the Nyquist rate ,
which is the minimum sampling frequency required for perfect reconstruction.

◮ It can be shown that

X (ejω) =
1
T

∞
∑

k=−∞

Xa

(

j
(ω

T
+ 2πk

))

(27)

◮ Suppose the sampling frequency satisfies Fs =
1
T > 2FN so ΩNT < π.

Combined with (25), one can see that

Xa

(

j
(ω

T
+ 2πk

))

, k = 0,±1,±2, . . . (28)

are non-overlapping. So the period of X (ejω) around ω = 0 reproduces the
original spectrum Xa(jΩ)|Ω=ω

T
.

◮ In fact, we can reconstruct xa(t) by

xa(t) =
∑

n

x [n]
sin(π(t − nT )/T )

π(t − nT )/T

⇒ xa(t) =
∑

n

xa(nT )
sin(π(t − nT )/T )

π(t − nT )/T
.

(29)

Sampling Rates

◮ Wideband Speech : 15000 − 20000 Hz; 16k Hz is common
◮ Telephone Bandwidth Speech : FN = 3200 Hz; 8k Hz is common
◮ Wideband Audio : 42000+ Hz, due to auditory threshold in frequency; 44100

is common

Changing Sampling Rates

◮ Suppose a continuous-time signal xa(t) is represented by a discrete-time
sequence

x [n] = xa(nT ). (30)
◮ It is often necessary to change the discrete-time representation to

x ′[n] = xa(nT ′) (31)

for some T ′ 6= T . This is called changing sampling rate .

Decimation
◮ When we are taking less samples, it is called decimation

T ′ = MT (32)

◮ A downsampler has output-input relation

xd[n] = x [nM] (33)

◮ Just like X (ejΩT ) is the sum of copies of Xa(jΩ), Xd(ejω) is the sum of copies
of X (ejω), with shift 2π/M. So a low-pass filter (in normalized frequency) can
make sure that the original low-frequency part is preserved.

◮ Fig. 2.15

Interpolation
◮ When we are taking more samples, it is called interpolation.

T ′′ = T/L (34)

◮ An upsampler has output-input relation

xu[n] =
∑

k

x [k ]δ[n − kL] =

{

x [n/L], n = 0,±L,±2L . . .

0, otherwise
(35)

◮ It can be shown that
Xu(ejω) = X (ejωL) (36)

That is, the spectrum X (ejωL) in (−pi , π) is squeezed in (−pi/L, π/L)
◮ To keep the original spectrum, a low-pass filter (in normalized frequency) is

required.
◮ Fig. 2.18

Non-integer Sampling Rate Changes
◮ For non-integer sampling rate changes, we can cascade an interpolator and

a decimator.
◮ Fig. 2.19
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