
Frequency-Domain
Representations

Introduction

The speech production model shown in Figure 1 is a linear system for either
voiced or unvoiced speech.
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Figure: Speech Production Model

For a sustained voiced speech, we have

S(ejω) = AVP(ejω)G(ejω)V (ejω)R(ejω) (1)

For a sustained unvoiced speech, assuming white noise with unit power, we
have

Φss(ejω) = A2
N|V (ejω)|2|R(ejω)|2 (2)

So it is clear that the discrete-time Fourier transform of the output signal is
dependent on the input signal.

Short-time Fourier Transform
Since the temporal properties of a speech signal changes every 10 − 40
msec, we should instead use the short-time Fourier transform (STFT).

Discrete-time Fourier Analysis

Discrete-time Fourier Transform and the Inverse
Recall that DTFT and IDTFT are defined as

X (ejω) =
∑

n

x [n]e−jωn, x [n] =
1

2π

∫ π

−π

X (ejω)ejωndω. (3)

Furthermore, the DFT and IDFT are defined as

X [k ] =
N−1
∑

n=0

x [n]e−j(2πk/N)n, k = 0, 1, . . . ,N − 1

x [n] =
1
N

N−1
∑

n=0

X [k ]ej(2πk/N)n, n = 0, 1, . . . ,N − 1

(4)

For a finite-length sequence,

X [k ] = X (ejω)|ω=2πk/N (5)

An Important Example: Periodic Impulse Train
Consider the signal

p[n] =
∑

r

δ[n − rN], (6)

which is a periodic impulse train with period N. By (4), the DFT of p[n] is 1.
So we have (also by (4))

p[n] =
1
N

N−1
∑

k=0

ej 2πk
N n. (7)

Thus we have

P(ejω) =
2π
N

N−1
∑

k=0

δ(ω −
2πk
N

) (8)

since the DTFT of a complex complex exponential signal ejω0n is 2πδ(ω − ω0).

Short-time Fourier Analysis

The short-time (time-dependent) Fourier transform is defined as

Xn̂(e
jω̂) =

∑

m

w [n̂ − m]x [m]e−jω̂m, (9)

which is the DTFT of a window of x [n] around n̂. Alternatively, by change of
variable, (9) is equivalent to

Xn̂(e
jω̂) =

∑

m′

w [m′]x [n̂ − m′]e−jω̂(n̂−m′)

= e−jω̂n̂
∑

m

x [n̂ − m]w [m]ejω̂m.
(10)

We can express (10) as

Xn̂(e
jω̂) = e−jω̂n̂X̃n̂(e

jω̂), (11)

where
X̃n̂(e

jω̂) ,
∑

m

x [n̂ − m]w [m]ejω̂m

=
∑

m

x [n̂ + m]w [−m]e−jω̂m.
(12)

Note that X̃n̂(e
jω̂) can be seen as a function of ω̂ for fixed n̂ (the DTFT

perspective), or a function of n̂ for fixed ω̂ (the linear filtering perspective).

DTFT Interpretation
By (9), Xn̂(e

jω̂) is the DTFT of the sequence w [n̂ − m]x [m]. Applying the
inverse DTFT, we have

w [n̂ − m]x [m] =
1

2π

∫ π

−π

Xn̂(e
jω̂)ejω̂md ω̂. (13)

It follows that
x [n̂] =

1
2πw [0]

∫ π

−π

Xn̂(e
jω̂)ejω̂nd ω̂. (14)

(14) is an important theoretical result, showing how to reproduce x [n] from
STFT in principle. So x [n] and X̃n̂(e

jω̂) are equivalent. However,
computationally it is not very useful since it involves an integral. It can be
shown that a discrete version of STFT, short-time discrete Fourier transform
X̃n̂[k ] can be used to represent x [n].

Since time-domain multiplication leads to frequency-domain convolution, we
have

Xn̂(e
jω̂) =

1
2π

∫ π

−π

W (e−jω)e−jωn̂X (ej(ω̂−ω))dω, (15)

where W (e−jω)e−jωn̂ is the DTFT of w [n̂ − m]. Clearly, the spectrum W (ejω) is
influential on the short-time spectrum. In terms of spectral resolution, the
longer the window, the better the resolution since the main lobe width of
W (ejω) is proportional to 1

L.

Linear Filtering Interpretation
(9) can be re-written as

Xn̂(e
jω̂) =

∑

m

w [n̂ − m]
(

x [m]e−jω̂m
)

. (16)

We can view Xn̂(e
jω̂) in (16) for fixed ω̂ as a time sequence of complex

numbers indexed by n̂. Specifically, it is obtained by the convolution (i.e.
filtering) of the sequences w [n] and x [n]e−jω̂n.
Yet another perspective of linear filtering is (10).

Spectrographic Displays

Spectrogram
An image for STFT. Each slice represents the spectrum of an analysis frame.

Wideband Spectrogram
With a short analysis window, the spectral resolution is broad and the
spectrum is smooth. The variation from window to window is clear, leading to
vertical striations.

Narrowband Spectrogram
With a long analysis window, the spectral resolution is detailed and the
spectrum is not smooth.

Overlap Addition Method of Synthesis

Let R be the sampling period in time of STFT, and L be the length of analysis
window. We have, from (9),

XrR(ejω) =

rR
∑

m=rR−L+1

w [rR − m]x [m]e−jωm, (17)

Suppose we have N sampling points

XrR(ejωk), ωk = 2πk/N, k = 0, 1, . . . ,N − 1

in the frequency domain. X [k ] , XrR(ejωk) are the DFT of
y [m] , w [rR − m]x [m], and therefore

y [m] = w [rR − m]x [m] =
1
N

N−1
∑

k=0

XrR[k ]ejωkm. (18)

So in principle, x [m] can be reconstructed from STFT, as long as

R ≤ L ≤ N (19)

to ensure every point is included in at least a window, and the number of
frequency-domain sampling points is sufficient.

OLA Synthesis
The basic equation is

y [n] =
∑

r





1
N

N−1
∑

k=0

Yr [k ]ejωkn



 , (20)

where Yr [k ] , XrR(ejωk). Defining the reconstruction signal of the r th analysis
window

yr [n] =
1
N

N−1
∑

k=0

Yr [k ]ejωkn = x [n]w [rR − n] (21)

we have
y [n] =

∑

r

yr [n] = x [n]
∑

r

w [rR − n] , x [n]w̃ [n]. (22)

For exact construction, we need that

w̃ [n] =
∑

r

w [rR − n] = C, (23)

where C is called the reconstruction gain.
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