
The Cepstrum and
Homomorphic Processing

Introduction

◮ The Quefrency Alanysis of Time Series for Echoes
◮ “In general, we find ourselves operating on the frequency side in ways

customary on the time side and vice versa”

Cepstrum

Definition
The cepstrum of a signal x [n] is defined by

c[n] =
1

2π

∫ π

−π

log |X (ejω)|ejωndω (1)

where X (ejω) is the DTFT of x [n]. From (1), we can see that c[n] is the
inverse DTFT of the logrithm of the magnitude spectrum log |X (ejω)|.

Complex Cepstrum
The complex cepstrum is defined by

x̂ [n] =
1

2π

∫ π

−π

log X (ejω)ejωndω (2)

Homomorphic Systems

Oppenheim defined classes of non-linear systems based on a generalized
principle of superposition. Such systems are called homomorphic systems.

The Principle of Superposition
For a linear system L(·), the principle of superposition is obeyed. That is,

L(x1[n] + x2[n]) = Lx1[n] + Lx2[n]
L(cx [n]) = cLx [n]

(3)

as shown in the following figure

x[n] y[n] = L(x[n])

++

L(·)

Figure: Conventional Linear System

Homomorphic Systems
For a homomorphic system H(·), the generalized principle of superposition is
obeyed. The actually representation depends on the operation of interest. In
the case of convolution, we have

y [n] = H(x1[n] ∗ x2[n]) = Hx1[n] ∗ Lx2[n] = y1[n] ∗ y2[n] (4)

as shown in the following figure

y[n] = H(x1[n]) ∗ H(x2[n])

∗∗

x1[n] ∗ x2[n]

H(·)

Figure: A Homomorphic System for Convolution

Canonical Homomorphic System for Convolution
A homomorphic system (for convolution) is equivalent to a cascade of three
homomorphic systems depicted as follows

∗

x1[n] ∗ x2[n]

x[n]

∗+ +++

x̂[n] ŷ[n] y[n]

x̂1[n] = x̂2[n] ŷ1[n] + ŷ2[n] y1[n] ∗ y2[n]

D∗(·) L(·) D−1

∗
(·)

Figure: Canonical System for a Homomorphic System for Convolution

D∗(·) is called the characteristic system for convolution, while D−1
∗ (·) is called

the inverse characteristic system for convolution. Both are (normally) fixed
systems. The linear system L(·) is to be designed for special applications.
The input-output relations of the subsystems are as follows.

x̂ [n] = D∗(x1[n] ∗ x2[n]) = D∗x1[n] +D∗x2[n] = x̂1[n] + x̂2[n]
ŷ [n] = L(x̂1[n] + x̂2[n]) = Lx̂1[n] + Lx̂2[n] = ŷ1[n] + ŷ2[n]
y [n] = D−1

∗ (ŷ1[n] + ŷ2[n]) = D−1
∗ ŷ1[n] ∗ D−1

∗ ŷ2[n] = y1[n] ∗ y2[n]
(5)

Representation by DTFT
A characteristic system for homomorphic deconvolution using DTFT is

F(·) log(·) F−1(·)

X(ejω) X̂(ejω)
x̂[n]x[n]

D∗(·)

· +
∗ +

· +

Figure: Characteristic System for Homomorphic System using DTFT

We have
X (ejω) =

∑

n

xn̂[n]e
−jωn,

X̂ (ejω) = log{X (ejω)},

x̂ [n] =
1

2π

∫ π

−π

X̂ (ejω)ejωndω

(6)

It is easy to show that

z[n] = x [n] ∗ y [n] ⇒ ẑ[n] = x̂ [n] + ŷ [n] (7)

Representation by z-Transform
A similar characteristic system can be defined using z-transform instead of
DTFT. See Figures 8.9 and 8.10.

Computation of the Complex Cepstrum

Rational z-Transforms
A rational z-transform can be represented by

X (z) =
A
∏Mi

k=1(1 − akz−1)
∏Mo

k=1(1 − b−1
k z−1)

∏Ni
k=1(1 − ckz−1)

(8)

where ak is a zero inside the unit circle, ck is a pole inside the unit circle, and
b−1

k is a zero outside the unit circle. Taking the logarithm, we have

X̂ (z) = log |A| +
Mo
∑

k=1

log |b−1
k | + log(z−Mo) +

Mi
∑

k=1

log(1 − akz−1)

+

Mo
∑

k=1

log(1 − bkz)−
Ni
∑

k=1

log(1 − ckz−1)

(9)

Using the power series,

log(1 − a) = −
∞
∑

n=1

an

n
, |a| < 1, (10)

we obtain the complex cepstrum

x̂ [n] =



























log |A| +
∑Mo

k=1 log |b−1
k |, n = 0

Ni
∑

k=1

cn
k

n −
Mi
∑

k=1

an
k

n , n > 0

Mo
∑

k=1

b−n
k
n , n < 0

(11)

Homomorphic Analysis of Speech Signal

Our basic assumption for speech production is based on convolution.
Specifically, for voiced speech, we assume

s[n] = p[n] ∗ hV [n], where hV [n] = AV · g[n] ∗ v [n] ∗ r [n]. (12)

For unvoiced speech, we assume

s[n] = u[n] ∗ hU[n], where hU[n] = AU · v [n] ∗ r [n]. (13)

In (12) and (13), g[n], v [n], and r [n] are the glottal pulse, the vocal tract
impulse response, and the radiation load response respectively. p[n] is the
quasi-periodic excitation, u[n] is the unvoiced excitation signal with unit
variance, and AU,AV are the gains.

Example of Voiced Speech
Figure 8.13 shows the respective time-domain functions of g[n], v [n], r [n], p[n]
for a model for sustained vowel /AE/. Figure 8.14 shows the pole-zero plots
of the respective z-transforms. Figure 8.15 shows the log magnitudes of the
respective DTFTs. Figure 8.17 shows the respective complex cepstra.
Figure 8.18 shows the speech complex cepstrum and cepstrum.

Example of Unvoiced Speech
For unvoiced speech, there is no glottal pulse. The periodic excitation is
replaced by a random noise function u[n]. The autocorrelation representation
is thus modeled by

φss[n] = φvv [n] ∗ φrr [n] ∗ A2
Uδ[n] = A2

Uφvv [n] ∗ φrr [n]. (14)

The DTFT of (14) is

Φss(ejω) = A2
U|V (ejω)|2|R(ejω)|2, (15)

so the complex cepstrum of the autocorrlation function is

φ̂ss[n] = 2 log AUδ[n] + (v̂ [n] + v̂ [−n]) + (r̂ [n] + r̂ [−n]) (16)

Figure 8.20 shows an example for unvoiced /AE/.

Short-time Cepstral Analysis

To extract a window of speech of length L beginning at n̂, we define a
finite-length sequence

xn̂[n] =

{

w [n]s[n̂ + n] 0 ≤ n ≤ L − 1

0 otherwise
(17)

The DTFT of xn̂[n] is the short-time Fourier transform of s[n]

Xn̂(e
jω̂) =

L−1
∑

n=0

xn̂[n]e
−jω̂n. (18)

(6) is modified to be

Xn̂(e
jω̂) =

L−1
∑

n=0

xn̂[n]e
−jω̂n,

X̂n̂(e
jω̂) = log{Xn̂(e

jω̂)},

x̂n̂[n] =
1

2π

∫ π

−π

X̂n̂(e
jω)ejωndω

(19)

Short-time Cepstral Analysis Based on DFT
Using DFT, (19) is simplified (approximated) to

Xn̂[k ] =
L−1
∑

n=0

xn̂[n]e
−j 2π

N kn, 0 ≤ k ≤ N − 1

X̂n̂[k ] = log{Xn̂[k ]}, 0 ≤ k ≤ N − 1

˜̂xn̂[n] =
1
N

X̂n̂[k ]e
j 2π

N kn, 0 ≤ n ≤ N − 1

(20)

It can be shown that
˜̂xn̂[n] =

∑

r

x̂n̂[n + rN], 0 ≤ n ≤ N − 1 (21)

Homomorphic Filtering of Natural Speech

We assume that over the length of window, say L, the speech signal satisfies

s[n] = e[n] ∗ h[n], (22)

where e[n] is excitation and h[n] is the impulse response from glottis to lip.
Furthermore, we assume that h[n] is short compared to L, so

x [n] = w [n]s[n] = w [n](e[n] ∗ h[n]) ≈ ew [n] ∗ h[n], (23)

where ew [n] = w [n]e[n].

Voiced Speech
Let e[n] be a unit impulse train of the form

e[n] =
Nw−1
∑

k=0

δ[n − kNp], (24)

where Np is the pitch period (in samples), and Nw is the number of impulses
in a window. The windowed excitation is

ew [n] = w [n]e[n] =
Nw−1
∑

k=0

wNp[k ]δ[n − kNp], (25)

where

wNp[k ] =

{

w [kNp] 0 ≤ k ≤ Nw − 1

0 otherwise
(26)

Taking the DTFT of (25), we have

Ew(ejω) =

Nw−1
∑

k=0

wNp[k ]e
−jωkNp = WNp(e

jωNp), (27)

which is periodic in ω with period 2π
Np

. It follows that the log spectrum

X̂ (ejω) = log HV(ejω) + log Ew(ejω) (28)

has two components: a slow-varying log HV(ejω) and a periodic log Ew(ejω).
Note that as log Ew(ejω) is also periodic, and the inverse DTFT produces an
impulse train with period Np. Thus the two components in

x̂ [n] = ĥV [n] + êw [n] (29)

can be distinguished.

Using DFT
The above procedure can be carried out by DFT as well. The system is
depicted in Figure 8.31.

Liftering
The desired component of the input can be selected by a window function in
quefrency, denoted by l [n]. This is also called liftering. For excitation signal, a
high-pass filtering of the log spectrum is used, while for the impulse
response, the low-pass filtering is used. Figure 8.32 shows an example.
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