
Linear Predictive Analysis - II

Solution of the LPC Equations

The unknowns in the LPC equations are the linear prediction coefficients

αk , k = 1, . . . , p (1)

which must satisfy a system of linear equations due to the minimization of
the squared prediction errors.

Cholesky Decomposition for the Covariance Method
We have the following system of linear equations to solve

p
∑

k=1

α̂kφn̂[i , k ] = φn̂[i ,0], i = 1, . . . , p (2)

In what follows, the short-time index n̂ will be dropped for notational
simplicity. (2) can be written in a matrix form

Φα = ψ (3)

Note that Φ is symmetric in (3), so it can be written as

Φ = VDV T , (4)

where V is a unit-lower triangular matrix and D is diagonal. It follows that

φii =

i
∑

k=1

VikdkVik , φij =

j
∑

k=1

VikdkVjk . (5)

The entries in V and D can be computed column by column by

d1 = φ11, Vi1 =
φi1

d1
(6)

for the first column, and subsequently

di = φii −

i−1
∑

k=1

V 2
ikdk , Vij =

1
dj



φij −

j−1
∑

k=1

VikdkVjk



 (7)

With (4), (3) can be re-written as

VDV Tα = ψ, (8)

which can be solved by

VY = ψ and V Tα = D−1Y . (9)

Since V and V T are triangular, the solution of (10) can be computed very
fastly, with

Y1 = ψ1, Yi = ψi −

i−1
∑

j=1

VijYj

αp = Yp/dp, αi = Yi/di −

p
∑

j=i+1

Vijαj

(10)

by forward and backward substitution, respectively. For the squared error, we
have

Ên̂ = φn̂[0, 0]−
p

∑

k=1

α̂kφn̂[0, k ] = φn̂[0, 0]− αTψ

= φn̂[0, 0]− Y TD−1V−1ψ = φn̂[0, 0]− Y TD−1Y

= φn̂[0, 0]−
p

∑

k=1

Y 2
k /dk

(11)

Levinson-Durbin Algorithm for the Autocorrelation Method
For the autocorrelation method, we have the following system of linear
equations

p
∑

k=1

α̂kR[|i − k |] = R[i ], i = 1, . . . , p (12)

(12) can be written in a matrix form

Rα = r (13)

where R is a positive definite symmetric Toeplitz matrix with

Rij = R[|i − j |], (14)

and
ri = R[i ]. (15)

For the squared error, we have

Ê (p) = R[0]−
p

∑

k=1

αkR[k ], (16)

where the superscript (p) means it is obtained from a pth-order optimal
predictor. (12) and (16) can be combined in a matrix equation with p + 1
unknowns and p + 1 equations as follows
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Seeing (17) as the special case of i = p, for any order i , we can define a
system of linear equations

R(i)α(i) = e(i) (18)
The Levinson-Durbin algorithm can recursively compute α(i) given α(i−1).

Levinson-Durbin Recursion
Let α(i−1) be the solution for R(i−1)α(i−1) = e(i−1). By appending a 0 to α(i−1)

and multiply from left by R(i), we have
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where

γ(i−1) = R[i ]−
i−1
∑

j=1

α
(i−1)
j R[i − j ] (20)

(19) can also be written as
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by reversing the order of equations. Now, (19) and (21) can be combined as

R(i)
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To make (22) become (18), we must choose ki such that

γ(i−1) − kiE
(i−1) = 0 (23)

ki is called the partial correlation coefficients (PARCOR), and given by

ki =
γ(i−1)

E (i−1)
=

R[i ]−
i−1
∑

j=1
α
(i−1)
j R[i − j ]

E (i−1)
(24)

It follows that
E (i) = E (i−1) − kiγ

(i−1) = E (i−1)(1 − k2
i ) (25)

and

α
(i)
j =

{

α
(i−1)
j − kiα

(i−1)
i−j j < i

ki j = i
(26)

Starting with E (0) = R[0], ki and α(i)
j can be recursively obtained, as shown in

Figure 9.18.
From (25) we have

E (i) = E (i−1) − kiγ
(i−1) = E (i−1)(1 − k2

i ) = E (0)
i

∏

m=1

(1 − k2
m) (27)

Since E (i) ≥ 0, we conclude that the PARCOR coefficients satisfy

−1 ≤ km ≤ 1, ∀ m (28)

Evaluation of LPC

In this section we look at the LPC at work. First, we define the normalized
prediction error for the auto-correlation method as

Vn̂ =

L+p−1
∑

m=0
e2

n̂[m]

L−1
∑

m=0
s2

n̂[m]

, (29)

and for the covariance method as

Vn̂ =

L−1
∑

m=0
e2

n̂[m]

L−1
∑

m=0
s2

n̂[m]

, (30)

where e2
n̂[m] is the prediction error. There are several formula for Vn̂ in Table

9.2. One note that the autocorrelation method is the most flexible.

Spectrum of the Error Signal
Figure 9.25 - 9.28 shows that the spectrum is relatively flat, regardless of
male/female, auto-correlation/covariance method.

Prediction Error as a Function of Order p
Figure 9.29 is the case of L = 60, a short window, while Figure 9.30 is the
case of L = 120, a window longer than the pitch period 83 samples for a
synthetic vowel. One can see that the prediction error decreases with p.
Figure 9.31 shows the cases of varying frame sizes for a synthetic vowel.

Figure 9.32 shows the cases of varying p for a natural vowel, where L < Np.
Figure 9.33 shows the cases of varying p for a natural vowel, where L > Np.
Figure 9.35 shows the cases of varying frame sizes for a natural speech
voiced section.

The normalized error also depends on the frame position and window
function, as shown in Figure 9.35.

Properties of the LPC Polynomial

The LPC polynomial (a.k.a. prediction error polynomial) is

A(z) = 1 −

p
∑

k=1

αkz−k . (31)

The following properties are possessed by A(z)
1. All the zeros of A(z) is inside the unit circle.
2. The formants are related to the roots of A(z) closest to the unit circle.

There are two ways to show the first property. See (9.138), and (9.141). For
the second property, just remeber that the magnitude response is a sum of
terms, each is inversely proportional to the distance to the unit circle. Figure
9.36 and 9.37 give an example.

Alternative Representations

Roots of A(z)
z1, . . . , zp in

A(z) = 1 −

p
∑

k=1

αkz−k =

p
∏

k=1

(

1 − zkz−1) (32)

Impulse Response H̃(z)
h̃[n] in

H̃(z) =
G

A(z)
=

p
∑

k=1

Ak

1 − zkz−1 ⇒ h̃[n] =
p

∑

k=1

Akzn
k u[n] (33)

Autocorrelation of the Impulse Response
Denote

R̃[i ] =
∞
∑

n=0

h̃[n]h̃[n − i ] (34)

It can be shown that (see the last slide)

R̃[i ] =
p

∑

k=1

αkR̃[|i − k |], R̃[0] =
p

∑

k=1

αkR̃[k ] + G2 (35)

Cepstrum of h̃[n]
This is given by (see the last slide)

ˆ̃h[n] = αn +

n−1
∑

k=1

k
n
ˆ̃h[k ]αn−k, n ≥ 1 (36)

PARCOR
ki, i = 1, . . . , p. See Figure 9.43 and 9.44.

Log Area Ratio

gi = log
1 − ki

1 + ki
, 1 ≤ i ≤ p. (37)

Line Spectral Pair
From A(z) we can define the reciprocal polynomial

Ã(z) = z−(p+1)A(z−1) = −αpz−1 − · · · − α1z−p + z−(p+1). (38)

The roots of Ã(z) is the inverse of the roots of A(z). Consider the line
spectral pair polynomials

P(z) = A(z) + Ã(z) = A(z) + z−(p+1)A(z−1)

Q(z) = A(z)− Ã(z) = A(z)− z−(p+1)A(z−1).
(39)

Defining

F (z) =
Ã(z)
A(z)

, (40)

which is an all-pass system,

|F (ejωk)| =
∣

∣

∣
e−j(p+1)ω

∣

∣

∣

∣

∣

∣

∣

∣

A(e−jω)

A(ejω)

∣

∣

∣

∣

∣

= 1. (41)

The roots of P(z) correspond to F (z) = −1, and the roots of Q(z)
correspond to F (z) = 1. On the unit circle we have

F (ejωk) = −1 ⇒ arg{F (ejω)} = 2πk + π, k = 0, . . . , p − 1 (42)

for P(ejωk) = 0, and

F (ejωk) = 1 ⇒ arg{F (ejω)} = 2πk , k = 0, . . . , p − 1 (43)

for Q(ejωk) = 0. These ωk are called line-spectral frequencies. Figure 9.47
gives an example.
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