
Linear Predictive Analysis - I

Recursive Formula for the Cepstrum

Taking the derivative of X̂ (z) , log X (z)

dX̂ (z)
dz

=
d
dz

log X (z) =
1

X (z)
dX (z)

dz
⇒

dX (z)
dz

= X (z)
dX̂ (z)

dz
, (1)

and noting that the inverse z-transform of −zdX (z)
dz is nx [n] (and of −zdX̂ (z)

dz is
nx̂ [n]), we have

nx [n] = x [n] ∗ (nx̂ [n]) =
∑

k

kx̂ [k ]x [n − k ]. (2)

Suppose x [n] = 0 and x̂ [n] = 0 for n < 0 (e.g. x [n] is minimum-phase). For
n = 0, using the initial value theorem of z-transforms, we have

lim
z→∞

X̂ (z) = lim
z→∞

log X (z) ⇒ x̂ [0] = log x [0]. (3)

For n > 0, we have

nx [0]x̂ [n] = nx [n]−
n−1
∑

k=0

kx̂ [k ]x [n − k ]

⇒ x̂ [n] =
x [n]
x [0]

−
n−1
∑

k=0

(

k
n

)

x [n − k ]
x [0]

x̂ [k ]

(4)

which is a recursive relation for x̂ [n].

All-Pole Model

The all-pole model for the vocal tract system is of the form

H(z) =
G

A(z)
=

G

1 −
p
∑

k=1
akz−k

=
G

p
∏

k=1
(1 − zkz−1)

, (5)

where zk , k = 1, . . . , p are all poles. Taking the inverse z-transform, the
corresponding difference equation for (5) is

H(z)



1 −

p
∑

k=1

akz−k



 = G ⇒ h[n] =
p

∑

k=1

akh[n − k ] + Gδ[n]. (6)

Linear Predictive Analysis

Basic Idea
The linear predictive analysis (a.k.a. linear predictive coding, LPC) is based
on the assumption that a speech sample can be approximated as a linear
combination of p past samples.

s[n] ≈ s̃[n] =
p

∑

k=1

αks[n − k ]. (7)

The linear predictive coefficients

α1, . . . , αp (8)

are determined by minimizing the squared error of the predicted signal and
the actual signal.

Theoretical Ground
LPC is based on the simplified speech production model that we are familiar
with now. Note that we have bundled the glottal pulse function g[n], the vocal
tract impulse response v [n] and the radiation load response r [n] together,
which is denoted as h[n]. H(z) is called the vocal tract system function. The
excitation is denoted as u[n], which is the impulse function or unit-variance
random noise, depending on the voicing of speech.
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Figure: Simplied Speech Production Model

From the above figure, we have

S(z) = GU(z)H(z) ⇒ H(z) =
S(z)

GU(z)
. (9)

In LPC, H(z) is approximated by an all-pole function

H(z) =
1

1 −
p
∑

k=1
akz−k

, (10)

so we have the time-domain LCCDE

s[n] =
p

∑

k=1

aks[n − k ] + Gu[n]. (11)

Prediction Error
The prediction error is defined as

e[n] , s[n]− s̃[n] = s[n]−
p

∑

k=1

αks[n − k ]. (12)

Taking the z-transform, we have

E(z) = S(z)−
p

∑

k=1

αkz−kS(z) ⇒
E(z)
S(z)

= 1 −

p
∑

k=1

αkz−k , A(z). (13)

A(z) is called the predictor error polynomial.

Perfect Estimation
Perfect estimation means

αk = ak , k = 1, . . . , p. (14)

In this case, we have

e[n] = s[n]−
p

∑

k=1

aks[n − k ] = Gu[n]. (15)

Therefore, E(z) = GU(z), and we have

A(z) =
1

H(z)
. (16)
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Figure: Inverse Filtering

Basic Formulation for LPC Equations
The short-time squared prediction error is defined as

En̂(α1, . . . , αp) =
∑

m

e2
n̂[m] =

∑

m



sn̂[m]−

p
∑

k=1

αksn̂[m − k ]





2

, (17)

where n̂ is the index for short-time processing. To find the minimum
E(α̂1, . . . , α̂p), we take the derivative of (17) with respect to αi and set it to 0
to get

∑

m

sn̂[m − i ]s[m] =

p
∑

k=1

α̂k

∑

m

sn̂[m − i ]sn̂[m − k ], 1 ≤ i ≤ p. (18)

Defining the auto-correlation function

ϕn̂[i , k ] =
∑

m

sn̂[m − i ]sn̂[m − k ], (19)

(18) can be re-written as
p

∑

k=1

α̂kϕn̂[i , k ] = ϕn̂[i ,0], (20)

which is a problem in linear algebra! At this minimum, the squared prediction
error is

Ên̂ =
∑

m

s2
n̂[m]−

p
∑

k=1

∑

m

α̂ksn̂[m]sn̂[m − k ]

= ϕn̂[0,0]−
p

∑

k=1

α̂kϕn̂[0, k ]

(21)

Computation of LPC Coefficients

(20) is a system of linear equations in variables αk and coefficients ϕn̂[i , k ].
The solution is quite straightforward once ϕn̂[i , k ] is decided. There are
several methods which differ mainly in how the error function (17) is actually
computed.

The Autocorrelation Method
In this approach, the value of signal is set to 0 outside the analysis window,

sn̂[m] = s[m + n̂]w [m], 0 ≤ m ≤ L − 1, (22)

and the sum of the squared errors is over the entire signal, but is effectively
L + p

En̂ =

∞
∑

m=−∞

e2
n̂[m] =

L−1+p
∑

m=0

e2
n̂[m] (23)

since e2
n̂[m] = 0 outside the range [0, L − 1 + p]. Applying the general results

in the case, ϕn̂[i , k ] in (19) becomes

ϕn̂[i , k ] =
L−1+p
∑

m=0

sn̂[m − i ]sn̂[m − k ] =
L−1−i+p
∑

m=0

sn̂[m]sn̂[m + i − k ]

=

L−1−i+k
∑

m=0

sn̂[m]sn̂[m + i − k ], 0 ≤ i , k ≤ p

(24)

which is the short-time auto-correlation of sn̂[m] evaluated for (i − k). So we
can write

ϕn̂[i , k ] = Rn̂[i − k ], 0 ≤ i , k ≤ p. (25)
Note that Rn̂[k ], the short-time auto-correlation function is symmetric,

Rn̂[i − k ] = Rn̂[|i − k |], 0 ≤ i , k ≤ p. (26)

It follows we have the following system of linear equations
p

∑

k=1

α̂kRn̂[|i − k |] = Rn̂[i ], 1 ≤ i ≤ p, (27)

and the following minimum squared prediction error

Ên̂ = Rn̂[0]−
p

∑

k=1

α̂kRn̂[k ] (28)

(27) can be written in a matrix form as follows












Rn̂[0] Rn̂[1] . . . Rn̂[p − 1]
Rn̂[1] Rn̂[0] . . . Rn̂[p − 2]
Rn̂[2] Rn̂[1] . . . Rn̂[p − 3]

... ... ... ...
Rn̂[p − 1] Rn̂[p − 2] . . . Rn̂[0]

























α1

α2

α3
...
αp













=













Rn̂[1]
Rn̂[2]
Rn̂[3]

...
Rn̂[p]













(29)

The Covariance Method
In this alternative approach, the number of terms in the sum of the squared
errors is fixed by the window size L. The squared prediction error function is

En̂(α1, . . . , αp) =

L−1
∑

m=0



sn̂[m]−

p
∑

k=1

αksn̂[m − k ]





2

, (30)

Applying the general results in the case, ϕn̂[i , k ] becomes

ϕn̂[i , k ] = φn̂[i , k ] =
L−1
∑

m=0

sn̂[m − i ]sn̂[m − k ], 0 ≤ i , k ≤ p (31)

Noting that sn̂[m] = s[n̂ + m], we have

φn̂[i , k ] =
L−i−1
∑

m=−i

sn̂[m]sn̂[m + i − k ] =
L−k−1
∑

m=−k

sn̂[m]sn̂[m + k − i ] (32)

It follows we have the following system of linear equations
p

∑

k=1

α̂kφn̂[i , k ] = φn̂[i ,0], 1 ≤ i ≤ p, (33)

and the following minimum squared prediction error

Ên̂ = φn̂[0, 0]−
p

∑

k=1

α̂kφn̂[0, k ] (34)

(33) can be written in a matrix form as follows












φn̂[1, 1] φn̂[1,2] . . . φn̂[1, p]
φn̂[2, 1] φn̂[2,2] . . . φn̂[2, p]
φn̂[3, 1] φn̂[3,2] . . . φn̂[3, p]

... ... ... ...
φn̂[p, p] φn̂[p,p] . . . φn̂[p,p]

























α1

α2

α3
...
αp













=













φn̂[1, 0]
φn̂[2, 0]
φn̂[3, 0]

...
φn̂[p,0]













(35)

Note that the matrix in (29) is Toeplitz, while in (35) is symmetric and positive
definite. The latter property is also possessed by a covariance matrix, hence
the name covariance method.

Computation of LPC Gain

Suppose H̃(z) is the system function with

H̃(z) =
G

1 −
p
∑

k=1
αkz−k

(36)

where αk , k = 1, . . . , p are estimated, say by the autocorrelation method on
a speech window. The impulse response of such a system satisfies the
difference equation

h̃[n] =
p

∑

k=1

αkh̃[n − k ] + Gδ[n]. (37)

Denote the autocorrelation function of h̃[n] as

R̃[m] =
∑

n

h̃[n]h̃[n + m] = R̃[−m]. (38)

It can be shown that R̃[m] satisfies the linear equations as the short-time
autocorrelation function of the speech signal, (27), and thus is proportional
and Rn̂[m]. Furthermore

R̃[0] =
p

∑

k=1

αkR̃[k ] + G2 (39)

Autocorrelation Matching Property
This is a condition that

R̃[m] = Rn̂[m]. (40)
It follows that the gain is

G2 = R̃[0]−
p

∑

k=1

αkR̃[k ] = Rn̂[0]−
p

∑

k=1

αkRn̂[k ] = Ên̂. (41)

Frequency Domain Interpretation

The frequency response of the vocal tract system function is approximated by

H̃(ejω) =
G

1 −
p
∑

k=1
αke−jωk

. (42)

Due to the fact that R̃[m] and Rn̂[m] are identical for m = 1, . . . , p, we have

lim
p→∞

|H̃(ejω)|2 = |Sn̂(e
jω)|2, (43)

so |H̃(ejω)| is an approximation to |Sn̂(e
jω)|, the STFT of the window at n̂,

Sn̂(e
jω) =

∑

m

s[n̂ + m]w [m]e−jωm. (44)

Essentially, |H̃(ejω)| is a “smoothed” version of Sn̂(e
jω)|, with the excitation

structure removed. Figure 9.5 and Figure 9.6 show voiced and unvoiced
examples.

Squared Prediction Error in the Frequency Domain
Recall that in autocorrelation method, the squared prediction error is

En̂ =

L−1+p
∑

m=0

e2
n̂[m]. (45)

(45) translates into

En̂ =
1

2π

∫ π

−π

|En̂(e
jω)|2dω =

1
2π

∫ π

−π

|Sn̂(e
jω)|2

|H̃(ejω)|2
dω (46)

in the frequency domain. According to (46), the minimization of En̂ to
determine tends H̃(ejω) to emphasize the high speech energy part and
de-emphasize the low speech energy part. Figure 9.7.
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