
Hidden Markov Model - II

Parameter Estimation for HMM (Training)

The maximum likelihood estimate method maximizes the data likelihood to
decide the parameter value. That is,

λ∗ = arg max
λ

p(o|λ) (1)

It would be great if the above equation yields closed-form solution for λ∗. In
the case that such is not possible, we have the following iterative algorithm
for parameter re-estimation.

Auxiliary Function
Consider the expectation value of the joint probability log p(S,o|λ), i.e.,

E log p(S,o|λ) =
∑

s

p(s|o, λ) log p(s,o|λ) (2)

where S denotes the random state sequence. To maximize (2) with respect
to λ iteratively, we first define an auxiliary function

Q(λ, λo) =
∑

s

p(s|o, λo) log p(s,o|λ) (3)

Note the posterior probability p(s|o, λo) is computed according to λo (known),
while log p(s,o|λ) depends on the variable λ.

Data Likelihood and Q(λ, λo)
Q(λ, λo) and the data likelihood p(o|λ) are related by

Q(λ, λo)−Q(λo, λo)

=
∑

s′

[p(s′|o, λo) log p(s′,o|λ)− p(s′|o, λo) log p(s′,o|λo)]

=
∑

s′

p(s′|o, λo) [log p(o|λ) + log p(s′|o, λ)]−

∑

s′

p(s′|o, λo) [log p(o|λo) + log p(s′|o, λo)]

= log p(o|λ)− log p(o|λo)−
∑

s′

p(s′|o, λo) log
p(s′|o, λo)

p(s′|o, λ)

= log p(o|λ)− log p(o|λo)− D(po||p).

(4)

It follows that
log p(o|λ∗)− log p(o|λo) = Q(λ∗, λo)−Q(λo, λo) + D(po||p)

≥ Q(λ∗, λo)−Q(λo, λo)
(5)

since D(po||p), the KL-distance between distributions po and p, is always
non-negative. Suppose λ∗ maximizes Q(λ, λo). The data likelihood p(o|λ) is
non-decreasing from λo to λ∗, and eventually converges to a local maximum.

Q Function with HMM
From the conditional independence assumptions of HMM, we have

p(s,o) = p(s)p(o|s) = p(s1)

T
∏

t=2

p(st|st−1)

T
∏

t=1

p(ot|st). (6)

Taking logarithm, we have

log p(s,o) = log p(s1) +

T
∑

t=2

log p(st|st−1) +

T
∑

t=1

log p(ot|st). (7)

Using (7) in (2), we have

Q(λ, λo) =
∑

s′

p(s′|o, λo) log p(s′,o|λ)

=
∑

s′

p(s′|o, λo) log p(s1|λ) +
∑

s′

p(s′|o, λo)

T
∑

t=1

log p(ot|st, λ)

+
∑

s′

p(s′|o, λo)

T
∑

t=2

log p(st|st−1, λ)

=

N−1
∑

i=2

p(S1 = i |o) logπi +

T
∑

t=1

N−1
∑

i=2

p(St = i |o) log bi(ot)

+

T
∑

t=2

N−1
∑

i=2

N−1
∑

j=2

p(St−1 = i ,St = j |o) log aij

(8)

Posterior Probabilities
In (8), the posterior probability of state i at time t , and the posterior probability
of states i , j at consecutive times t , t + 1 can be computed as follows

γi(t) , p(St = i |o)

=
p(St = i ,o)

p(o)

=
αi(t)βi(t)

∑

j αj(t)βj(t)

(9)

ξij(t) , p(St = i ,St+1 = j |o)

=
p(St = i ,St+1 = j ,o)

p(o)

=
αi(t)aijbj(ot+1)βj(t + 1)

p(o)

(10)

State Occupancy
Let I(St = i |o) be the indicator function of the event that St = i . It is a random
variable with value 0 or 1. The total number of occupancy for state i is

T
∑

t=1

I(St = i |o) (11)

with the expectation value of

C(i |o) = E





T
∑

t=1

I(St = i |o)



 =

T
∑

t=1

E(I(St = i |o)) =
T
∑

t=1

γi(t). (12)

State Transition
Let I(St = i ,St+1 = j |o) be the indicator function of the event that St = i and
St+1 = j . The expectation value of the total number of transitions from state i
to state j is

T−1
∑

t=1

ξij(t). (13)

Parameter Update
The parameter set is updated according to

π∗
i = γi(1)

a∗
ij =

∑

t
ξij(t)

∑

t
γi(t)

b∗
j (k) =

∑

t∈{t |ot+1=k}

∑

i
ξij(t)

∑

t

∑

i
ξij(t)

(14)

where the denominators and the numerators are the probability counts.

Speech as HMMs

◮ Each phone (or other acoustic unit) is an HMM with a number of states
depending on the length.

◮ It follows all words, sentences are HMMs as well, since they are
concatenation of the phone HMMs.

Common Practices
◮ State emitting probability is often modelled by the Gaussian mixture model

(GMM).
◮ The GMMs can be initialized by k -means clustering or a global mean and

covariance.
◮ The number of mixtures can be increased incrementally via splitting.
◮ The initial parameters of new mixtures are dependent on the parent mixtures.
◮ The HMM state transition diagram is often left-to-right, sometimes allowing

state-skipping.

Parameters and Data
◮ The model complexity is often measured in terms of the total number of

parameters.
◮ This number is closely related to the amount of training data, to avoid

over-training and under-training.
◮ We also apply parameter-tying schemes to strike a balance between reliable

estimates and the refinements of the models.

Decoding Speech

The basic problem of ASR is to find an “optimal” word sequence given
acoustic observations. That is,

Ŵ = arg max
W

p(W |o). (15)

This is the same as

Ŵ = arg max
W

p(o|W )p(W )

p(o)
= arg max

W
p(o|W )p(W ) (16)

where p(o|W ) is called the acoustic model score and p(W ) is called the
language model score.

Evaluation Measure: Word Error Rate

WER =
S + D + I

N
× 100% (17)

where N is the number of tokens in the reference, S is the number of
substitution errors, D is the number of deletion errors, and I is the number of
insertion errors. Note that S,D, I is determined by a
minimal-editorial-distance (MED) alignment between the recognition
hypothesis and the reference.
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