
Hidden Markov Model - I

Markov Chain

Stochastic Processes
A stochastic process, say St, is a collection of related random variables
indexed by t . St and t can be discrete or continuous. Moreover, they can be
vector-valued. In our discussion, we assume St and t are discrete unless
otherwise specified.
Markov Chain
The Markov chain makes the assumption that

Pr (St|St−1,St−2, . . . ,S1) = Pr (St|St−1) (1)

Under this assumption, the probability of a state sequence is

Pr (S1, . . . ,ST) =

T
∏

t=1

Pr (St|S1:t−1) = Pr (S1)

T
∏

t=2

Pr (St|St−1) (2)

State Space and State Transition Probability
We can define the state space,

Ω = {1, 2, . . . ,N} (3)

for the values for St. The probability

Pr (St = j |St−1 = i) = aij(t), i , j = 1, . . . ,N (4)

is called the state transition probability, and

Pr (S1 = i) = πi, i = 1, . . . ,N (5)

is called the initial probability.
Time-Invariant Markov Chain
A Markov chain is time-invariant if the transition probabilities do not vary with
time, i.e.,

aij(t) = aij (6)

An Example of Markov Chain
Consider the stock market, DJI. Let the state space be

X = {1 = up, 2 = down, 3 = flat}. (7)

Assume that the transition probability and the initial probability are

A =





0.6 0.2 0.2
0.5 0.3 0.2
0.4 0.1 0.5



 , π =





0.5
0.2
0.3



 (8)

What is the probability that DJI is up for the first 5 days?

Hidden Markov Models

A sequence of observations may not be modeled well by a Markov chain. In
some cases, we can assume that there is an unobserved Markov chain, and
the observed sequence depends probabilistically on the hidden state
sequence. Such a model is called a hidden Markov model (HMM).
State Emitting Probability
In addition to the A and π as needed in a Markov chain, the characterization
of an HMM also includes the distribution of observation given the Markov
state, which is called the state emitting probability.
Parameter Set
Let O be an observation and S be the hidden state. Let the state-emitting
probability be denoted by

bi(k) = p(O = k |S = i). (9)

The parameters in the probability models of an HMM can be represented by

λ = (π,A,B). (10)

Example: Coin Toss
Suppose there are a number of coins 1, . . . ,N, each with its own bias. A coin
is randomly selected is flipped, and the outcome (but not the coin) is
recorded. This is repeated for T times. What is the probability of recording
(o1, . . . , oT )?

Pr (o1, . . . , oT ) =
∑

c1,...,cT

Pr (o1, . . . , oT , c1, . . . , cT )

=
∑

c1,...,cT

Pr (o1, . . . , oT |c1, . . . , cT )Pr (c1, . . . , cT ).
(11)

Suppose the (un-observed) coin sequence is a Markov chain, then we have

Pr (o1, . . . , oT ) =
∑

c1,...,cT

(

∏

t

Pr (ot|ct)

)(

Pr (c1)
∏

t

Pr (ct|ct−1)

)

(12)

Another Example: Urns and Balls
Suppose there are N urns. At turn t , one of the urns, urn Ut, is randomly
selected and a ball Bt is randomly selected from Ut, and the color Ct is
recorded. Suppose the selection of Ut is dependent on Ut−1. Then the
observed color sequence is characterized by a HMM.

Pr (c1, . . . , cT) =
∑

u1,...,uT

(

∏

t

Pr (ct|ut)

)(

Pr (u1)
∏

t

Pr (ut|ut−1)

)

(13)

Only observing the balls, do we really know how many urns there are?

Fundamental Problems in HMM

Evaluation Problem
Given the observations o and the model set λ of an HMM H, evaluate

p(o|H) (14)

A brute-force summation over all possible hidden state sequences give

p(o|λ) =
∑

s

p(o,S = s|λ)

=
∑

s

p(o|S = s, λ)p(S = s|λ)

=
∑

s1,...,sT

p(s1)p(o1|s1)

T
∏

t=2

p(ot|st)ast−1st

(15)

with a time complexity of O(TNT ). With a better algorithm, the complexity
can be reduced to O(TN2)

Decoding Problem
Given o and λ, determine the optimal state sequence s∗

s∗ = arg max
s

p(S = s|o,H) = arg max
s

p(o,S = s|H). (16)

Let the partial state sequence be denoted by st = s1, . . . , st, and define

δi(t) , max
st−1

p(st−1,St = i ,ot) (17)

We have
δj(t + 1) = max

st

p(st,St+1 = j ,ot, ot+1)

= max
st

p(st,ot) p(ot+1,St+1 = j |st,ot)

= max
i

max
st−1

p(st−1,St = i ,ot) aij p(ot+1|St+1 = j)

= max
i

δi(t) aij bj(ot+1)

(18)

Estimation Problem
Given o, estimate the parameter set λ∗

λ∗ = arg max
λ

f (o, λ). (19)

Forward-Backward Algorithm

Forward Probability
The forward probability is defined as

αi(t) , p(o1, . . . , ot,St = i) (20)

We artificially introduce an initial non-emitting state 1 for time 1−, and a final
non-emitting state N for time T+. Let

πi = a1i. (21)

The following relation holds for αi(t):
αj(1) = p(o1,S1 = j ,S1− = 1)

= a1jbj(o1), j = 2, . . . ,N − 1
αj(t) = p(o1, . . . ,ot,St = j)

=

N−1
∑

i=2

p(o1, . . . , ot,St−1 = i ,St = j)

=

N−1
∑

i=2

p(o1, . . . , ot−1,St−1 = i)p(ot,St = j |St−1 = i)

=

N−1
∑

i=2

αi(t − 1)aijbj(ot), j = 2, . . . ,N − 1

αN(T ) = p(o1, . . . ,oT ,ST+ = N)

=

N−1
∑

i=2

p(o1, . . . , oT ,ST = i ,ST+ = N)

=

N−1
∑

i=2

αi(T )aiN

(22)

Since p(o) = αN(T ), one can compute p(o) with O(TN2) time complexity.

Backward Probability
The backward probability is defined as

βi(t) , p(ot+1, . . . , oT |St = i) (23)

The following relation holds for βi(t):
βi(T ) = p(ST+ = N|ST = i)

= aiN, i = 2, . . . ,N − 1
βi(t) = p(ot+1, . . . , oT |St = i)

=

N−1
∑

j=2

p(ot+1, . . . , oT ,St+1 = j |St = i)

=

N−1
∑

j=2

p(ot+1, . . . , oT |St = i ,St+1 = j)p(St+1 = j |St = i)

=

N−1
∑

j=2

p(ot+2, . . . , oT |St+1 = j)p(ot+1|St+1 = j)p(St+1 = j |St = i)

=

N−1
∑

j=2

aijbj(ot+1)βj(t + 1);

β1(1−) = p(o1, . . . , oT |S1− = 1)

=

N−1
∑

j=2

p(o1, . . . , oT ,S1 = j |S1− = 1)

=

N−1
∑

j=2

p(S1 = j |S1− = 1)p(o1, . . . , oT |S1 = j)

=

N−1
∑

j=2

p(S1 = j |S1− = 1)p(o1|S1 = j)p(o2, . . . , oT |S1 = j)

=

N−1
∑

j=2

a1jbj(o1)βj(1).

(24)

Observation Data Likelihood
We have for any time t and state i

p(St = i ,o) = p(o1, . . . , ot, ot+1, . . . , oT ,St = i)
= p(o1:t,St = i)p(ot+1:T |St = i ,o1:t)

= p(o1:t,St = i)p(ot+1:T |St = i)
= αi(t)βi(t)

(25)

It follows that the data likelihood can be computed by

p(o) =
∑

i

p(St = i ,o) =
∑

i

αi(t)βi(t) (26)

States at Consecutive Times
The joint probability for the observation sequence and two states of
consecutive times is given by

p(St = i ,St+1 = j ,o)
= p(o1, . . . , ot, ot+1, . . . , oT ,St = i ,St+1 = j)
= p(o1:t,St = i)p(ot+1:T ,St+1 = j |St = i , o1:t)

= p(o1:t,St = i)p(St+1 = j |St = i ,o1:t)p(ot+1:T |St+1 = j ,St = i , o1:t)

= p(o1:t,St = i)p(St+1 = j |St = i)p(ot+1|St+1 = j)p(ot+2:T |St+1 = j , ot+1)

= p(o1:t,St = i)p(St+1 = j |St = i)p(ot+1|St+1 = j)p(ot+2:T |St+1 = j)
= αi(t)aijbj(ot+1)βj(t + 1)

(27)
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