1.1.1 Show $|2^{n}|=2^{|n|}$ As the set is an empty set φ . There is only one element in the set. $|2^{s}|=1=2^{|s|}$ As |S|=1, the set is an element. $|2^{1}|=2=2^{|1|}$ Assume $|S| \leq n, |2^{n}|=2^{|n|}$ is true Then, as |S|=n+1It has two case: pre n items including (n+1)th item or not. $S=\{a1,a2,\dots,a_{n}\}$ (1)S'=S $\cup \{a_{n+1}\}, |S'|=n+1$ (2)S'=S, |S'|=nSo we can get $|2^{n+1}|=2*2^{|n|}=2^{|n+1|}=2^{|n+1|}$ By induction, we prove it.

1.2.1

As n=0, | u^0 |=| λ |=0=0|u| As n=1, | u^1 |=|u|=1*|u| Assume n \leq k, |u^k|=k|u| is true Then, as n=k+1 We already know |u \cdot v|=|u|+|v| $|u^{k+1}|=|u^k \cdot u|=|u^k|+|u|=k|u|+|u|=(k+1)|u|$ By induction, we prove it.

1.3.4

From accepter, we can see $<\!\!id\!\!>\!\!>\!\!letterLdigitL|letterLdigitLdigitLdigitLdigitLdigitLdigitLdigitL$ L->letterL| λ

2.1.1 0001 and 01001 are accepted.

2.2.1 |w| has (|w|+1) interval at most. Every interval has Λ at most. We get $(|w|+1)\Lambda$. The number of walk is |w|. Total is $(|w|+1)\Lambda + |w| = \Lambda + (\Lambda + 1)|w|$

2.3.1

2.4.1

 $S1=\{q0\}$ $S2=\{q0,q1\}\{q0,q1,q2\}$ $S3=\{q1\}\{q1,q2\}$ $S4=\{q2\}\phi$

3.3.1

3.2.1