
Preliminaries
Notes on Automata and Theory of Computation

Chia-Ping Chen

Department of Computer Science and Engineering

National Sun Yat-Sen University

Kaohsiung, Taiwan ROC

Preliminaries – p. 1



Overview

Theory of Computation

Mathematical Preliminaries
Sets
Functions
Graphs and Trees
Mathematical Proof

Languages, Grammars and Automata

Applications

Preliminaries – p. 2



Theory of Computation

Theoretical foundation of computer science

Provides common underlying principles

Related directly to applications such as programming
languages (compilers)

Intellectually stimulating and fun

Includes models of automata, formal languages,
grammars, computability and complexity

Preliminaries – p. 3



Sets

A set is a collection of objects, called elements.

A set can be specified by enclosing the description of
its elements in braces. For example,

S = {1, 2, 3}
S = {1, 2, 3, . . . }
S = {i : i > 0, i is prime}
S = {i | i > 0, i is prime}

The membership of x in a set S is denoted by x ∈ S.

A finite set consists of a finite number of elements.

A infinite set consists of an infinite number of elements.
It can be either countable or uncountable.

Preliminaries – p. 4



Set Operation

union
S1 ∪ S2 = {x : x ∈ S1 or x ∈ S2}

intersection

S1 ∩ S2 = {x : x ∈ S1 and x ∈ S2}

difference

S1 − S2 = {x : x ∈ S1 and x /∈ S2}

complementation
S = U − S

Preliminaries – p. 5



Special Sets

The empty set or null set is the set which contains no
elements. It is denoted by ∅.

The universal set is the set containing all possible
elements. It is denoted by U .

The following properties are true.

S ∪ ∅ = S − ∅ = S

S ∩ ∅ = ∅
∅ = U

S = S

Preliminaries – p. 6



Subsets

A set S1 is said to be a subset of S if every element of
S1 is an element of S. This is denoted by

S1 ⊆ S.

A set S1 is said to be a proper subset of S if

S1 ⊆ S and S − S1 6= ∅.

Two sets S1 and S2 are said to be disjoint if

S1 ∩ S2 = ∅.

A collection of sets S1 . . . Sn is said to be a partition of
S if they are disjoint and their union is S.

Preliminaries – p. 7



Powerset and Cartesian Product

The powerset of S is the set of all subsets of S. It is
denoted by 2S . Note that 2S is a set of sets.

The Cartesian product of two sets S1, S2 is defined by

S1 × S2 = {(x, y) : x ∈ S1, y ∈ S2}.

We can look at a few examples.

Preliminaries – p. 8



Functions

A function is a rule that assigns to an element of a set,
called domain, a unique element in another set, called
range.

We write
f : S1 → S2

to indicate the domain of f is a subset of S1, and the
range is a subset of S2.

f is called a total function if the domain of f is S1.
Otherwise it is called a partial function.

Preliminaries – p. 9



Order of Magnitude

Functions defined on the set of positive integers, Z
+,

are frequently encountered in this course.

We are often interested in the behaviors of these
functions as the arguments become large.

Let f(n), g(n) be two functions defined on Z
+.

Preliminaries – p. 10



O, Ω, and Θ

If ∃ c, n0 > 0 s.t. |f(n)| ≤ c|g(n)| ∀n > n0, we say f has
order at most g, and denote it as

f(n) = O(g(n)).

If ∃ c, n0 > 0 s.t. |f(n)| ≥ c|g(n)| ∀n > n0, we say f has
order at least g, and denote it as

f(n) = Ω(g(n)).

If f has order at least g and at most g, we say f and g
have the same order of magnitude, and denote it as

f(n) = Θ(g(n)).

We can look at a few examples.
Preliminaries – p. 11



Relation

A function might be represented by a set of pairs,

{(x1, y1), (x2, y2), . . . }.

In such a representation, each xi can appear only
once in the set.

A relation is more general than a function in the sense
that an x may appear more than once in the above set.

Preliminaries – p. 12



Equivalence Class

An equivalence relation is one which ensures that

x ≡ x ∀x

x ≡ y ⇒ y ≡ x

x ≡ y, y ≡ z ⇒ x ≡ z.

It is a generalization of equality.

We can use an equivalence relation to partition a set
into equivalence classes. In each class, the elements
are equivalent.

We can look at a few examples.

Preliminaries – p. 13



Graphs

A graph G consists of vertices and edges. We can
define a graph by the set of vertices V and the set of
edges E,

G = (V,E).

Each edge in E is a pair of vertices from V .

A graph can be directed or undirected. In a directed
graph, an edge ei = (vj , vk) means that ei starts at
vertex vj and ends at vertex vk.

What is V and E for Figure 1.1?

Preliminaries – p. 14



Walk, Path and Cycle

A (directed) walk from vi to vn is a sequence of edges

(vi, vj), (vj , vk), . . . , (vm, vn),

that starts at vi and ends at vn.

A path is a walk with no repeated edges.

A path is simple if no vertex is repeated.

A cycle with base vi is a walk from vi to itself. It is
simple if no other vertex is repeated.

An edge from a vertex to itself is called a loop.

Preliminaries – p. 15



Tree

A (directed) tree is a particular kind of graph.
It has no cycles.
It has a vertex, called root, that there is exactly one
path from the root to any other vertex.
There are some vertices without outgoing edges.
They are called leaves.
If there is an edge (vi, vj), then vi is called the
parent of vj and vj is called a child of vi.

The level of a vertex is the number of edges from the
root to it.

The height of a tree is the largest level of vertices.

Preliminaries – p. 16



Formal Proof

In order to develop a theory, statements are required to
be proved, to make sure they are correct.

It is generally insufficient to assert the correctness of a
statement by supportive instances. (However, a
statement can be invalidated by any counterexample.)

Learning how to prove also helps to create a program.
The implicit verification you do in your mind guides you
to design your program.

Proving something to be true could be very tricky.
Fortunately, there are a number of techniques that
could be useful.

Preliminaries – p. 17



Deductive Proof

A deductive proof for ‘if H then C ’ consists of a
sequence of statements led by the hypothesis H
(a.k.a. given statement) and ended by the conclusion
statement C.

Each statement in the sequence is established logically
by the previous statements and other implicit facts.

We can prove that if x is a sum of the squares of four
positive integers (H), then 2x ≥ x2 (C) by deductive
proof. That is,

H ⇒ x ≥ 4 ⇒ C.

Preliminaries – p. 18



Reduction to Definition

Sometimes it is useful to covert all terms to their basic
definitions.

For example, to show that ‘If S is a finite subset of an
infinite set U and T is the complement of S, then T is
infinite.’

S is finite ⇒ ∃ n such that |S| = n

U is infinite ⇒ @ p such that |U | = p

T = S ⇒ S ∩ T = ∅, S ∪ T = U

Assuming T to be finite, we can reach a contradiction.
So T must be infinite.

Preliminaries – p. 19



Contrapositive

The contrapositive of the statement

if H then C

is
if not C then not H.

A statement and its contrapositive are either both true
or both false.

Preliminaries – p. 20



Converse

The converse of the statement

if H then C

is
if C then H.

A statement and its converse do not always have the
same truth value.

Preliminaries – p. 21



Counterexample

A statement cannot be proved to be true by any
number of positive examples.

A statement can be proved to be false by the existence
of one counterexample.

That is why one cannot simply test a program millions
of times to justify its correctness.

The statement

all primes are odd

is not true since 2 is prime and 2 is not odd. 2 is an
counterexample.

Preliminaries – p. 22



Proof by Induction

Proof by induction is used to prove a collection of
statements indexed by integers. There are two parts to
prove.

basis: For some k ≥ 1, we prove P1, . . . , Pk to be
true.
induction: For any n ≥ k, we prove that the truths
of P1, . . . , Pn imply the truth of Pn+1.

Example

Sn =
n

∑

i=1

i =
n(n + 1)

2
.

Preliminaries – p. 23



Structural Induction

Some structures are defined recursively. There are
some basic cases, and the more complicated cases
are defined through the application of specific
operations.

For example, a tree can be defined recursively by
A single node is a tree.
If T1, . . . , Tk are trees, then we can form a new tree
by creating a new root node and joining T1, . . . , Tk

to this node.

Statement about structures defined recursively can be
proved by structural induction.

We can prove a tree has one more nodes than it has
edges by structural induction.

Preliminaries – p. 24



Proof by Contradiction

It works as follows. To prove some statement is true,
we assume the opposite to be true and arrive at a
contradiction to something known to be true.

We have seen an example of proof by contradiction
earlier.

We can use this method to prove that
√

2 is irrational.

Preliminaries – p. 25



Language

An alphabet is a finite, non-empty set of symbols.

A string is a finite sequence of symbols from some
alphabet.

Given an alphabet Σ, we use Σ∗ to denote the set of
strings of zero or more symbols from Σ.

A language is a subset of Σ∗.

Preliminaries – p. 26



Strings

concatenation: If u = u1 . . . un, v = v1 . . . vm, then
uv = u1 . . . unv1 . . . vm.

length: |v| = m, |u| = n.

reverse: vR = vm . . . v1.

power: wn is the concatenation of n copies of w′s.

substring: a string of consecutive symbols of w.

prefix and suffix: If w = uv, then u is a prefix and v is a
suffix of w.

Preliminaries – p. 27



String Length

A recursive definition for string length is
{

|a| = 1

|ua| = |u| + 1.

We will show that

|uv| = |u| + |v|, for all u, v.

By definition, this is true for any u and |v| = 1.
Assuming it is true for any u and |v| = 1, . . . , k. For
|v| = k + 1, let v = wa where |w| = k. Then

|uv| = |uwa| = |uw| + 1 = |u| + |w| + 1 = |u| + k + 1.

Preliminaries – p. 28



Operations on Languages

complement
L = Σ∗ − L.

concatenation

L1L2 = {xy : x ∈ L1, y ∈ L2}

reverse
LR = {w : wR ∈ L}

power (a recursive definition)

L0 = {λ}, Ln+1 = LnL.

Preliminaries – p. 29



Closures

star-closure (a.k.a. Kleene closure)

L∗ = L0 ∪ L1 ∪ L2 . . .

positive closure

L+ = L1 ∪ L2 ∪ L3 . . .

It helps to look at some examples.

Preliminaries – p. 30



Grammars

A grammar for English tells us whether a sentence is
well-formed or not.

So it actually defines a set of (grammatical) sentences,
i.e., a language.

Formally, a grammar is a quadruple

G = (V, T, S, P )

V is a finite set of variables
T is a finite set of terminals
S ∈ V is the start symbol
P is a finite set of production rules

Preliminaries – p. 31



Production Rule

A production rule is of the form

x → y, where x ∈ (V ∪ T )+ and y ∈ (V ∪ T )∗.

The application of such a rule changes a string
w = uxv to z = uyv. This is also written as

w ⇒ z.

If w1 ⇒ w2 ⇒ · · · ⇒ wn, then we say w1 derives wn. This
is also denoted by

w1

∗⇒ wn.

Preliminaries – p. 32



The Language of a Grammar

The language defined (or generated) by a grammar
G = (V, T, S, P ) is the set of terminal strings derived
from S,

L(G) = {w ∈ T ∗ : S
∗⇒ w}.

If w ∈ L(G), then there exists a sequence

S ⇒ w1 ⇒ w2 ⇒ · · · ⇒ wn ⇒ w.

This sequence is called a derivation of w. S,w1, . . . , wn

are called the sentential forms of the derivation.

It helps to look at some examples.

Preliminaries – p. 33



Equivalent Grammars

A given language may have multiple grammars (or
none) to generate it. These grammars are equivalent
in the sense that they generate the same language.

Formally, two grammars G1, G2 are equivalent if

L(G1) = L(G2).

Preliminaries – p. 34



Automata

An automaton
can read input
can read and write data in some temporary space
has a control unit

A configuration consists of the state identity, the input
data and position, and the content of the storage.

A change from one configuration to the next is called a
move. Moves are governed by the transition function.

The basic components of an automaton are shown in
Figure 1.4.

Preliminaries – p. 35



Classes of Automata

finite acceptors, pushdown automata, and Turing
machines: they differ in their temporary storages.

deterministic vs. nondeterministic: a deterministic
automaton must have a unique move for each
configuration, while a nondeterministic automaton has
a set of possible moves (including none).

acceptor vs. transducer: an acceptor simply
determines whether an input string is accepted; a
transducer outputs a string of symbols.

Preliminaries – p. 36



Applications

A variable identifier in the c language
is a sequence of letters, digits and underscores
starts with a letter or underscore

These rules can be implemented by a grammar, or an
automaton as shown in Figure 1.6.

A binary adder can be implemented as a transducer
with two states. One is for carry and the other is for
no carry.

Preliminaries – p. 37


	Overview
	Theory of Computation
	Sets
	Set Operation
	Special Sets
	Subsets
	Powerset and Cartesian Product
	Functions
	Order of Magnitude
	$O$, $Omega $, and $Theta $
	Relation
	Equivalence Class
	Graphs
	Walk, Path and Cycle
	Tree
	Formal Proof
	Deductive Proof
	Reduction to Definition
	Contrapositive
	Converse
	Counterexample
	Proof by Induction
	Structural Induction
	Proof by Contradiction
	Language
	Strings
	String Length
	Operations on Languages
	Closures
	Grammars
	Production Rule
	The Language of a Grammar
	Equivalent Grammars
	Automata
	Classes of Automata
	Applications

