Preliminaries

Notes on Automata and Theory of Computation

Chia-Ping Chen

Department of Computer Science and Engineering National Sun Yat-Sen University Kaohsiung, Taiwan ROC

Preliminaries - p. 1

Overview

- Theory of Computation
- Mathematical Preliminaries
 - Sets
 - Functions
 - Graphs and Trees
 - Mathematical Proof
- Languages, Grammars and Automata
- Applications

Theory of Computation

- Theoretical foundation of computer science
- Provides common underlying principles
- Related directly to applications such as programming languages (compilers)
- Intellectually stimulating and fun
- Includes models of automata, formal languages, grammars, computability and complexity

Sets

- A set is a collection of objects, called elements.
- A set can be specified by enclosing the description of its elements in braces. For example,

•
$$S = \{1, 2, 3\}$$

•
$$S = \{1, 2, 3, \dots\}$$

•
$$S = \{i : i > 0, i \text{ is prime}\}$$

- $S = \{i \mid i > 0, i \text{ is prime}\}$
- The membership of x in a set S is denoted by $x \in S$.
- A finite set consists of a finite number of elements.
- A infinite set consists of an infinite number of elements. It can be either countable or uncountable.

Set Operation

🥒 union

$$S_1 \cup S_2 = \{x : x \in S_1 \text{ or } x \in S_2\}$$

intersection

$$S_1 \cap S_2 = \{x : x \in S_1 \text{ and } x \in S_2\}$$

difference

$$S_1 - S_2 = \{x : x \in S_1 \text{ and } x \notin S_2\}$$

complementation

$$\overline{S} = U - S$$

Special Sets

- The empty set or null set is the set which contains no elements. It is denoted by \emptyset .
- The universal set is the set containing all possible elements. It is denoted by U.
- The following properties are true.

$$S \cup \emptyset = S - \emptyset = S$$
$$S \cap \emptyset = \emptyset$$
$$\overline{\emptyset} = U$$
$$\overline{\overline{S}} = S$$

Subsets

• A set S_1 is said to be a subset of S if every element of S_1 is an element of S. This is denoted by

 $S_1 \subseteq S$.

• A set S_1 is said to be a proper subset of S if

 $S_1 \subseteq S$ and $S - S_1 \neq \emptyset$.

• Two sets S_1 and S_2 are said to be disjoint if

$$S_1 \cap S_2 = \emptyset.$$

• A collection of sets $S_1 \dots S_n$ is said to be a partition of S if they are disjoint and their union is S.

Powerset and Cartesian Product

- The powerset of S is the set of all subsets of S. It is denoted by 2^S . Note that 2^S is a set of sets.
- The Cartesian product of two sets S_1, S_2 is defined by

 $S_1 \times S_2 = \{ (x, y) : x \in S_1, y \in S_2 \}.$

We can look at a few examples.

Functions

- A function is a rule that assigns to an element of a set, called domain, a unique element in another set, called range.
- We write

$$f:S_1\to S_2$$

to indicate the domain of f is a subset of S_1 , and the range is a subset of S_2 .

- f is called a total function if the domain of f is S_1 .
- Otherwise it is called a partial function.

Order of Magnitude

- Functions defined on the set of positive integers, \mathcal{Z}^+ , are frequently encountered in this course.
- We are often interested in the behaviors of these functions as the arguments become large.
- Let f(n), g(n) be two functions defined on \mathcal{Z}^+ .

$O, \Omega,$ and Θ

■ If $\exists c, n_0 > 0$ s.t. $|f(n)| \le c|g(n)| \forall n > n_0$, we say f has order at most g, and denote it as

$$f(n) = O(g(n)).$$

● If $\exists c, n_0 > 0 \ s.t. \ |f(n)| \ge c|g(n)| \ \forall n > n_0$, we say f has order at least g, and denote it as

$$f(n) = \Omega(g(n)).$$

If f has order at least g and at most g, we say f and g have the same order of magnitude, and denote it as

$$f(n) = \Theta(g(n)).$$

We can look at a few examples.

Relation

A function might be represented by a set of pairs,

 $\{(x_1, y_1), (x_2, y_2), \dots\}.$

In such a representation, each x_i can appear only once in the set.

A relation is more general than a function in the sense that an x may appear more than once in the above set.

Equivalence Class

An equivalence relation is one which ensures that

$$x \equiv x \ \forall x$$
$$x \equiv y \ \Rightarrow y \equiv x$$
$$x \equiv y, \ y \equiv z \ \Rightarrow x \equiv z$$

- It is a generalization of equality.
- We can use an equivalence relation to partition a set into equivalence classes. In each class, the elements are equivalent.
- We can look at a few examples.

Graphs

A graph G consists of vertices and edges. We can define a graph by the set of vertices V and the set of edges E,

$$G = (V, E).$$

- **•** Each edge in E is a pair of vertices from V.
- A graph can be directed or undirected. In a directed graph, an edge $e_i = (v_j, v_k)$ means that e_i starts at vertex v_j and ends at vertex v_k .
- What is V and E for Figure 1.1?

Walk, Path and Cycle

• A (directed) walk from v_i to v_n is a sequence of edges

```
(v_i, v_j), (v_j, v_k), \ldots, (v_m, v_n),
```

that starts at v_i and ends at v_n .

- A path is a walk with no repeated edges.
- A path is simple if no vertex is repeated.
- A cycle with base v_i is a walk from v_i to itself. It is simple if no other vertex is repeated.
- An edge from a vertex to itself is called a loop.

Tree

A (directed) tree is a particular kind of graph.

- It has no cycles.
- It has a vertex, called root, that there is exactly one path from the root to any other vertex.
- There are some vertices without outgoing edges. They are called leaves.
- If there is an edge (v_i, v_j) , then v_i is called the **parent** of v_j and v_j is called a **child** of v_i .
- The level of a vertex is the number of edges from the root to it.
- The height of a tree is the largest level of vertices.

Formal Proof

- In order to develop a theory, statements are required to be proved, to make sure they are correct.
- It is generally insufficient to assert the correctness of a statement by supportive instances. (However, a statement can be invalidated by any counterexample.)
- Learning how to prove also helps to create a program. The implicit verification you do in your mind guides you to design your program.
- Proving something to be true could be very tricky. Fortunately, there are a number of techniques that could be useful.

Deductive Proof

- A deductive proof for 'if H then C' consists of a sequence of statements led by the hypothesis H (a.k.a. given statement) and ended by the conclusion statement C.
- Each statement in the sequence is established logically by the previous statements and other implicit facts.
- ✓ We can prove that if x is a sum of the squares of four positive integers (H), then $2^x \ge x^2$ (C) by deductive proof. That is,

$$H \Rightarrow x \ge 4 \Rightarrow C.$$

Reduction to Definition

- Sometimes it is useful to covert all terms to their basic definitions.
- For example, to show that 'If S is a finite subset of an infinite set U and T is the complement of S, then T is infinite.'
 - S is finite $\Rightarrow \exists n \text{ such that } |S| = n$
 - U is infinite $\Rightarrow \nexists p$ such that |U| = p
 - $T = \overline{S} \Rightarrow S \cap T = \emptyset, S \cup T = U$

Assuming T to be finite, we can reach a contradiction. So T must be infinite.

Contrapositive

The contrapositive of the statement

if H then C

is

if not C then not H.

A statement and its contrapositive are either both true or both false.

The converse of the statement

if H then C

is

if C then H.

A statement and its converse do not always have the same truth value.

Counterexample

- A statement cannot be proved to be true by any number of positive examples.
- A statement can be proved to be false by the existence of one counterexample.
- That is why one cannot simply test a program millions of times to justify its correctness.
- The statement

all primes are odd

is not true since 2 is prime and 2 is not odd. 2 is an counterexample.

Proof by Induction

- Proof by induction is used to prove a collection of statements indexed by integers. There are two parts to prove.
 - **basis**: For some $k \ge 1$, we prove P_1, \ldots, P_k to be true.
 - induction: For any $n \ge k$, we prove that the truths of P_1, \ldots, P_n imply the truth of P_{n+1} .
- Example

$$S_n = \sum_{i=1}^n i = \frac{n(n+1)}{2}.$$

Structural Induction

- Some structures are defined recursively. There are some basic cases, and the more complicated cases are defined through the application of specific operations.
- For example, a tree can be defined recursively by
 - A single node is a tree.
 - If T_1, \ldots, T_k are trees, then we can form a new tree by creating a new root node and joining T_1, \ldots, T_k to this node.
- Statement about structures defined recursively can be proved by structural induction.
- We can prove a tree has one more nodes than it has edges by structural induction.

Proof by Contradiction

- It works as follows. To prove some statement is true, we assume the opposite to be true and arrive at a contradiction to something known to be true.
- We have seen an example of proof by contradiction earlier.
- We can use this method to prove that $\sqrt{2}$ is irrational.

Language

- An alphabet is a finite, non-empty set of symbols.
- A string is a finite sequence of symbols from some alphabet.
- Given an alphabet Σ , we use Σ^* to denote the set of strings of zero or more symbols from Σ .
- A language is a subset of Σ^* .

Strings

- concatenation: If $u = u_1 \dots u_n, v = v_1 \dots v_m$, then $uv = u_1 \dots u_n v_1 \dots v_m$.
- **•** length: |v| = m, |u| = n.
- reverse: $v^R = v_m \dots v_1$.
- **power:** w^n is the concatenation of n copies of w's.
- **substring**: a string of consecutive symbols of w.
- **prefix** and suffix: If w = uv, then u is a prefix and v is a suffix of w.

String Length

A recursive definition for string length is

$$\begin{cases} |a| = 1\\ |ua| = |u| + 1. \end{cases}$$

We will show that

$$|uv| = |u| + |v|$$
, for all u, v .

- By definition, this is true for any u and |v| = 1.
- Assuming it is true for any u and |v| = 1, ..., k. For |v| = k + 1, let v = wa where |w| = k. Then

|uv| = |uwa| = |uw| + 1 = |u| + |w| + 1 = |u| + k + 1.

Operations on Languages

complement

$$\overline{L} = \Sigma^* - L.$$

concatenation

$$L_1 L_2 = \{ xy : x \in L_1, y \in L_2 \}$$

reverse

$$L^R = \{w : w^R \in L\}$$

power (a recursive definition)

$$L^0 = \{\lambda\}, \ L^{n+1} = L^n L.$$

Closures

star-closure (a.k.a. Kleene closure)

$$L^* = L^0 \cup L^1 \cup L^2 \dots$$

positive closure

$$L^+ = L^1 \cup L^2 \cup L^3 \dots$$

It helps to look at some examples.

Grammars

- A grammar for English tells us whether a sentence is well-formed or not.
- So it actually defines a set of (grammatical) sentences, i.e., a language.
- Formally, a grammar is a quadruple

$$G = (V, T, S, P)$$

- V is a finite set of variables
- T is a finite set of terminals
- $S \in V$ is the start symbol
- *P* is a finite set of production rules

Production Rule

A production rule is of the form

$$x \to y$$
, where $x \in (V \cup T)^+$ and $y \in (V \cup T)^*$.

• The application of such a rule changes a string w = uxv to z = uyv. This is also written as

$$w \Rightarrow z.$$

If $w_1 \Rightarrow w_2 \Rightarrow \cdots \Rightarrow w_n$, then we say w_1 derives w_n . This is also denoted by

$$w_1 \stackrel{*}{\Rightarrow} w_n.$$

The Language of a Grammar

The language defined (or generated) by a grammar G = (V, T, S, P) is the set of terminal strings derived from S,

$$L(G) = \{ w \in T^* : S \stackrel{*}{\Rightarrow} w \}.$$

If $w \in L(G)$, then there exists a sequence

$$S \Rightarrow w_1 \Rightarrow w_2 \Rightarrow \cdots \Rightarrow w_n \Rightarrow w_n$$

This sequence is called a derivation of w. S, w_1, \ldots, w_n are called the sentential forms of the derivation.

It helps to look at some examples.

Equivalent Grammars

- A given language may have multiple grammars (or none) to generate it. These grammars are equivalent in the sense that they generate the same language.
- Formally, two grammars G_1, G_2 are equivalent if

$$L(G_1) = L(G_2).$$

Automata

- An automaton
 - can read input
 - can read and write data in some temporary space
 - has a control unit
- A configuration consists of the state identity, the input data and position, and the content of the storage.
- A change from one configuration to the next is called a move. Moves are governed by the transition function.
- The basic components of an automaton are shown in Figure 1.4.

Classes of Automata

- finite acceptors, pushdown automata, and Turing machines: they differ in their temporary storages.
- deterministic vs. nondeterministic: a deterministic automaton must have a unique move for each configuration, while a nondeterministic automaton has a set of possible moves (including none).
- acceptor vs. transducer: an acceptor simply determines whether an input string is accepted; a transducer outputs a string of symbols.

Applications

- A variable identifier in the c language
 - is a sequence of letters, digits and underscores
 - starts with a letter or underscore

These rules can be implemented by a grammar, or an automaton as shown in Figure 1.6.

A binary adder can be implemented as a transducer with two states. One is for carry and the other is for no carry.