
Finite Automata
Notes on Automata and Theory of Computation

Chia-Ping Chen

Department of Computer Science and Engineering

National Sun Yat-Sen University

Kaohsiung, Taiwan ROC

Finite Automata – p. 1

Finite Automata

We begin a systematic treatment of the automata
theory with the simplest kind: the class of finite
acceptors.

They are characterized by having no temporary
storage.
A finite amount of information can be retained by
using different states.

We use abbreviation fa for finite acceptor.

Finite Automata – p. 2

Deterministic Finite Acceptor

A deterministic finite acceptor (dfa) M is defined by a
quintuple (5-tuple)

M = (Q,Σ, δ, q0, F).

Q is a finite set of states
Σ is a finite set of symbols called alphabet
δ : Q × Σ → Q is a total function called transition
function
q0 ∈ Q is the initial state
F ⊆ Q is the set of final states

Finite Automata – p. 3

Operation of dfa

Initially, M is in state q0.

At any instant, it reads an input symbol and transits to
a new state according to the transition function.

It continues until no further changes can be made, i.e,
the entire input string has been read.

Since the transition function of M is a total function,
there is always a state to transit to unless there are no
more input symbols.

Finite Automata – p. 4

State Transition

The transition function can be represented by a labeled
directed graph, called transition graph, where

a vertex represents a state
an edge from a vertex (state) to another is labeled
by the symbol needed for the corresponding state
transition
conventionally, q0 is indicated by an incident edge
from “space”, and the final states are indicated by
double circles.

It can also be represented by a table, called transition
table.

Let’s look at some examples.

Finite Automata – p. 5

Extended Transition Function

We are interested in the state a dfa is in when an input
string has been used.

This leads to the extended transition function

δ∗ : Q × Σ∗ → Q,

where the second argument is a string rather than a
symbol.

Based on δ, δ∗ is defined recursively by

δ∗(q, λ) = q

δ∗(q, wa) = δ(δ∗(q, w), a)

Finite Automata – p. 6

Transition Graph and δ∗

Let M be a dfa. Let GM be its transition graph and δ∗M
be its extended transition function.

For any states qi, qj ∈ Q and w ∈ Σ+, δ∗M (qi, w) = qj if
and only if there is a walk in GM with label w from
vertex qi to vertex qj .

For |w| = 1, it is obvious.
Suppose it is true for |w| = n. For |w| = n + 1, write
w = va with |v| = n and a ∈ Σ. By definition,
δ∗M (qi, w) = δM (δ∗M (qi, v), a), so δ∗M (qi, w) = qj if and
only if there exists qk such that qk = δ∗M (qi, v) and
δM (qk, a) = qj. This amounts to a walk in GM from
qi to qj (via qk).

Finite Automata – p. 7

Acceptance by dfa

Let w be a string. It is said to be accepted by M if

δ∗(q0, w) ∈ F.

Otherwise it is said to be rejected.

The language of M is the set of strings accepted by M .

L(M) = {w : w accepted by M}.

We look at a few examples from text.

Finite Automata – p. 8

Regular Languages

A language L is regular if it is accepted by a dfa.

∃ M s.t. L = L(M).

A dfa defines a regular language.

To show a language is regular, we can construct a dfa
for it. We look at a few examples.

There are other ways to prove a language to be
regular. They will be discussed later.

To show a language is not regular, we often prove it
does not satisfy some necessary condition for being
regular.

Finite Automata – p. 9

Nondeterministic Finite Automata

Nondeterminism allows a set of possible moves in a
given configuration.

Since determinism is a special case of
nondeterminism, nfa is more general than dfa.

Formally, we define an nfa N = (Q,Σ, δ, q0, F) with

δ : Q × (Σ ∪ {λ}) → 2Q.

The value of δ is a set of states, including the
empty set.
The inclusion of λ allows an nfa to make a move
without using any input symbol.

Finite Automata – p. 10

δ∗ for nfa

Without λ-transition, the transition function of an nfa
can be extended to have a string as the second
argument. δ∗ : Q × Σ∗ → 2Q is defined recursively by

δ∗(q, λ) = {q}

δ∗(q, wa) =
⋃

qk∈δ∗(q,w)

δ(qk, a)

With λ-transition, δ∗ is slightly more complicated.

δ∗(q, λ) = closure(q) = set of states reachable from q by λ

δ∗(q, wa) =
⋃

r ∈
S

qk∈δ∗(q,w) δ(qk,a)

closure(r)

Finite Automata – p. 11

δ∗ and Transition Graph

The extended transition function is defined such that
δ∗(qi, w) contains qj if and only if there is a walk in the
transition graph from qi to qj labeled w.

How do we decide whether there is a walk labeled w
between qi and qj (q0 and q ∈ F especially)?

We can enumerate the walks originating from qi. If any
of these walks ends at qj and is labelled as w, then the
answer is yes.

Finite Automata – p. 12

Enumerating Walks

The set of walks starting from a particular node, say v,
in a graph can be enumerated.

The idea is to enumerate by the length of walk.
Start with length-0, which is v itself.
Suppose we have enumerated the walks up to
length n. To enumerated the walks of length n + 1,
we extend the walks of length n in the enumeration
order. If there are multiple extensions, then they
are enumerated by the order of destination node.

Finite Automata – p. 13

Lengths to be Checked

Without λ-transition, the length of a walk equals the
length of the label (string). So the decision can be
made within |w| iterations.

With λ-transition, the length of a walk may be larger
than the length of the label. Yet, there is still a limit on
the length of walk to be inspected. The reason is that
for each repeated λ edge, there must be an edge in
between with non-λ label. Otherwise we have a cycle
with λ label which does not affect acceptance. If the
graph has n λ-edges, at most n λ edges can be used
without repetition, so every non-λ label is accompanied
by at most n λ-edges.

Finite Automata – p. 14

Acceptance by nfa

Let w be a string. It is said to be accepted by an nfa N
if there exists a sequence of possible moves that put N
in a final state at the end of w. Otherwise it is said to
be rejected.

The language of N is the set of strings accepted by N .

L(N) = {w : δ∗(q0, w) ∩ F 6= ∅}.

In other words, the language consists of all strings w
for which there is a walk labeled w from the initial
vertex to a final vertex.

Finite Automata – p. 15

Why Nondeterminism

Digital computers are completely deterministic. Why
bother with nondeterministic automata if we are
modeling real systems?

Many problems require one to find an optimal solution.
At the point of uncertainty, determinism solves this
problem by backtracking, which is often inefficient.
Nondeterminism allows one to solve such problems
without backtracking.

Nondeterminism also has a theoretical significance. It
is used in stating how hard a computable problem is.

Finite Automata – p. 16

Equivalence of nfa and dfa

Two finite acceptors are equivalent if the languages
they accept are the same,

L(M1) = L(M2).

We show that for any nfa N , there is an equivalent dfa
for N . So the set of languages accepted by nfa’s is a
subset of the set of languages accepted by dfa’s.

By definition, a dfa is a special kind of nfa, so the set of
languages accepted by dfa’s is a subset of the set of
languages accepted by nfa’s.

We conclude that dfa and nfa are equivalent, in the
sense that they accept the same set of languages.

Finite Automata – p. 17

Constructive Proof

We will show that for a given nfa, there exists an
equivalent dfa, by construction.

After an nfa has read a string w, while the state it is in
is uncertain, the set of states the nfa may be in is
certain (dictated by δ∗).

For a dfa, the state it is in is certain after reading an
input string.

So the idea in establishing equivalence is to link a set
of states in nfa to a state in the equivalent dfa.

Since the nfa has |Q| states, an equivalent dfa has at
most 2|Q| states, which is finite.

Finite Automata – p. 18

Procedure nfa-to-dfa

Create a graph GD with vertex {q0}. This is the initial
vertex.

Repeat until nothing further can be done.
Take any vertex {qi, qj , . . . , qk} that has no outgoing
edges for some a ∈ Σ. Let

{ql, qm, . . . , qn} =
⋃

q∈{qi,qj ,...,qk}

δ∗N (q, a),

add an edge to {ql, qm, . . . , qn} with label a.

A vertex of GD containing any q ∈ F is a final vertex.

Make {q0} a final vertex if λ is in the language.

Finite Automata – p. 19

Reduction of Finite Automata

While a given dfa defines a unique language, a given
language may be accepted by more than one dfa’s.

We want to reduce the number of states for practical
and theoretical reasons.

We introduce the concept of indistinguishable states.

Finite Automata – p. 20

Indistinguishable States

Two states p and q of a dfa are said to be
indistinguishable if

δ∗(p, w) ∈ F ⇔ δ∗(q, w) ∈ F, ∀w ∈ Σ∗.

Otherwise they are said to be distinguishable.

Note that indistinguishability has the properties of an
equivalence relation. Thus, we can partition Q into
subsets of indistinguishable states.

Finite Automata – p. 21

Procedure: mark

1. Remove all inaccessible states, which are the vertices
in the transition graph that cannot be reached by the
initial vertex. This can be done by enumerating the
simple paths of the graph starting from q0.

2. Consider all pairs (p, q). If p ∈ F, q /∈ F , then mark (p, q).

3. Repeat until no previously unmarked pairs are marked:
For any a ∈ Σ and pairs (p, q) that are not yet
marked, if pa = δ(p, a) and qa = δ(q, a) has been
marked, then mark (p, q).

Finite Automata – p. 22

Properties

A marked pair (p, q) is indeed distinguishable, since
there exists a sequence of symbols leading p to a final
state and q to a non-final state.

A pair (qi, qj) is marked at pass n if and only if there
exists a ∈ Σ and qk, ql marked at pass n − 1, such that

δ(qi, a) = qk, δ(qj, a) = ql.

Otherwise (qi, qj) would have been marked earlier than
pass n.

Finite Automata – p. 23

Theorem

Procedure mark is sure to terminate since there is only
a finite number of pairs.

Procedure mark, when applied to a dfa, determines all
pairs of distinguishable states.

Finite Automata – p. 24

Proof

We prove that, at the completion of pass n all pairs
distinguishable by a string of length no more than n are
marked, by induction on n.

The basis case for n = 0 is step 2.
By the inductive assumption, at the beginning of
pass n, all pairs distinguishable by a string of
length n − 1 or less have been marked. A pair
distinguishable by a string of length n will be
marked by the properties.

Suppose the procedure terminates at pass m, and an
unmarked pair, say (p, q), cannot be distinguished by a
string of length m − 1 or less. Then (p, q) cannot be
distinguished at pass m + 1 since everything would
stay the same way.

Finite Automata – p. 25

Procedure: reduce

1. Use procedure mark to generate equivalence classes
of indistinguishable states.

2. For each equivalence class, say {qiqj . . . qk}, create a

new state labeled ij . . . k for M̂ .

3. For each transition δ(qr, a) = qp, find the classes qr and
qp belong to. Add an edge from the class of qr to the
class of qp with label a.

4. The initial state q̂0 of M̂ is the state whose label
includes 0.

5. F̂ is the set of states with label containing i such that
qi ∈ F .

Finite Automata – p. 26

Minimization Theorem

Given any dfa M , application of the procedure reduce

yields a dfa M̂ such that L(M) = L(M̂).

M̂ is minimum in the sense that there is no other dfa
with a smaller number of states to accept L(M).

Since all states of M̂ are accessible, there exist strings
w1, . . . , wm such that δ̂∗(q0, wi) = pi. Suppose M1 has
less states, then there must exist k, l such that
δ∗1(q0, wk) = δ∗1(q0, wl). Since pk and pl are
distinguishable, there exists x such that
δ̂∗(qk, x) = δ̂∗(q0, wkx) ∈ F but δ̂∗(ql, x) = δ̂∗(q0, wlx) /∈ F .
However, for M1, both wkx and wlx end in the same
state.

Finite Automata – p. 27

	Finite Automata
	Deterministic Finite Acceptor
	Operation of dfa
	State Transition
	Extended Transition Function
	Transition Graph and $delta ^*$
	Acceptance by dfa
	Regular Languages
	Nondeterministic Finite Automata
	$delta ^*$ for nfa
	$delta ^*$ and Transition Graph
	Enumerating Walks
	Lengths to be Checked
	Acceptance by nfa
	Why Nondeterminism
	Equivalence of nfa and dfa
	Constructive Proof
	Procedure nfa-to-dfa
	Reduction of Finite Automata
	Indistinguishable States
	Procedure: {	tfamily mark}
	Properties
	Theorem
	Proof
	Procedure: {	tfamily reduce}
	Minimization Theorem

