
Regular Languages
Notes on Automata and Theory of Computation

Chia-Ping Chen

Department of Computer Science and Engineering

National Sun Yat-Sen University

Kaohsiung, Taiwan ROC

Regular Languages – p. 1

Regular Languages

The regular languages have been defined to be those
languages accepted by a dfa (or nfa, since they are
equivalent).

It could be time-consuming and tricky trying to build a
dfa for a language. Therefore it would be nice to have
some terse characterizations.

Such characterizations do exit. We introduce the
regular expressions and the regular grammars.

Regular Languages – p. 2

Regular Expressions

A regular expression represents a set of strings. It
does so by using an alphabet, parentheses, and the
operators +, ·, and ∗.

{a} is denoted by a.
{a, b} is denoted by a + b (union).
{ab} is denoted by a · b (concatenation).
{λ, a, aa, aaa, . . . } is denoted by a∗ (star-closure).
Parentheses are used for grouping purposes.

For example,

(a + (b · c))∗ = the star-closure of {a} ∪ {bc}

= {λ, a, bc, aa, abc, bca, bcbc, . . . }.

Regular Languages – p. 3

Formal Definition

Let Σ be an alphabet. Then
∅, λ and a ∈ Σ are regular expressions. They are
called primitive regular expressions.
If r1 and r2 are regular expressions, then so are
r1 + r2, r1 · r2, r∗1 and (r1).
r is a regular expression if and only if it can be
derived from primitive regular expressions by a
finite number of applications of +, ·, ∗, and
parenthesis.

Regular Languages – p. 4

Language of Regular Expression

The language of a regular expression r is defined by
basic rules 




L(∅) = ∅

L(λ) = {λ}

L(a) = {a}

recursive rules




L(r1 + r2) = L(r1) ∪ L(r2)

L(r1 · r2) = L(r1)L(r2)

L(r∗) = (L(r))∗

L((r)) = L(r)

Regular Languages – p. 5

L(r) Is Regular

If r is a regular expression, then L(r) is a regular
language.

That is, we can construct a dfa or nfa to accept L(r).

To prove, let r be a regular expression.
If r is primitive, then L(r) is regular since ∅, λ, {a}
are all regular. The automata are shown in Figure
3.1.
If r is not primitive, then r must be derived by a
finite number of applications of ·, + and ∗. For each
of these operations, we can construct an nfa to
accept the new language from the nfas for the old
languages. Therefore L(r) is regular.

Regular Languages – p. 6

A Regular L is L(r)

Is the converse true? That is, is it true that for every
regular language there exists a regular expression?

More precisely, can we find a regular expression to
generate the labels of all walks from q0 to any final
state, given a fa?

We will show this to be true by using the generalized
transition graphs (GTG).

Regular Languages – p. 7

Generalized Transition Graphs

A GTG is a transition graph whose edges are labeled
by regular expressions, rather than symbols.

The label of a walk from the initial state to a final state
is a concatenation of regular expressions so is itself a
regular expression.

The language of a GTG is the union of languages
represented by the labels (regular expressions) of such
walks. It can be represented by a regular expression.

Every regular language has an nfa. Every nfa has a
transition graph which is a special case of GTG. Every
GTG has a regular expression.

Figure 3.8 is a simple example.

Regular Languages – p. 8

Complete GTG

Two GTGs are equivalent if they accept the same
language.

Given a GTG G, we can create a sequence of
increasingly simple GTGs equivalent to G. Eventually,
we end up with an equivalent GTG with two states.

It will be convenient to introduce complete GTG, which
is a graph with all edges present. Thus, a complete
GTG with |V | vertices has |V |2 edges.

Figure 3.9 illustrate how to make a GTG complete.

Regular Languages – p. 9

Two-State GTG

For a complete two-state GTG, say Figure 3.10, the
regular expression that covers all possible walks is

r∗1r2(r4 + r3r
∗

1r2)
∗

A three-state GTG has an equivalent two-state GTG as
illustrated in Example 3.10. Essentially, we modify the
labels of edges not incident on q2 and then remove all
other edges.

For a GTG with more than 2 states, we can remove
one state at a time using the following procedure.

Regular Languages – p. 10

Procedure nfa-to-rex

1. Start with an nfa M with a single final state.

2. Convert M to a complete GTG G. The edge from qi to
qj is labeled by rij.

3. If there are only two states, qi initial and qj final, G has
the regular expression r∗iirij(rjj + rjir

∗

iirij)
∗.

4. If there are three states, qi initial and qj final and qk,
remove qk and associated edges after modifying labels
of edges between α, β = i, j to be rαβ + rαkr

∗

kkrkβ.

5. For four or more states, pick a state qk to remove.
Apply the above rule for all state pairs qα, qβ 6= qk.

6. Repeat 3-5 if |V | > 2.

Regular Languages – p. 11

Right-linear Grammars

A grammar is said to be linear if there is only one
variable, say B, on the right side.

A grammar G = (V, T, S, P) is said to be right-linear if
all productions are of the form

A → xB,

A → x,

where A,B ∈ V and x ∈ T ∗.

Notice the variable on the right side appears in the end.

Regular Languages – p. 12

Language of a Regular Grammar

If G = (V, T, S, P) is right-linear, then L(G) is regular.

We can construct an nfa M for L(G) as follows.
Let V0 = S. For variable Vi, we construct a state qi.
In addition, we construct a final state qf .
We construct δ such that

Vi → vVj ⇒ δ∗(qi, v) = qj

Vi → u ⇒ δ∗(qi, u) = qf

If S
∗

⇒ w, then there exists a walk labeled w from q0 to
qf by the construction. So w ∈ L(G) ⇒ w ∈ L(M). If
there exists a walk from q0 to qf labeled w, then by

following qi in the walk, we have a derivation S
∗

⇒ w.

Regular Languages – p. 13

Grammar of a Regular Language

If L is regular, then there exists a right-linear grammar
G such that L = L(G).

Let M = (Q = {q0, . . . , qn},Σ = {a1, . . . , am}, δ, q0, F) be
a dfa that L(M) = L. We can construct G = (V,Σ, S, P)
for L as follows.

Associate variable Vi for qi, for all i.
If δ(qi, a) = qj , then P has a rule Vi → aVj.
If qk ∈ F , then P has a rule Vk → λ.

If there exists a walk from q0 to qk ∈ F labeled w, then
S

∗

⇒ w by the construction. So w ∈ L(M) ⇒ w ∈ L(G).
If S

∗

⇒ w, then by this derivation we can find a walk
from q0 to qk ∈ F . So w ∈ L(G) ⇒ w ∈ L(M).

Regular Languages – p. 14

Left-linear Grammars

A left-linear grammar is similarly defined, i.e.

A → Bx, A → x, where A,B ∈ V and x ∈ T ∗.

If G is left-linear, by reversing the right side of every
production rule, we can construct a right-linear Ĝ such
that

L(Ĝ) = (L(G))R.

LR is the reversal of L.

Since regular languages are closed under reversal, we
conclude that a left-linear grammar also generates a
regular language.

Regular Languages – p. 15

Basic Questions

How general is the set of regular languages?
Given a language (a set of strings), is it always
possible to build a dfa for it?
If the answer is no, can we identify those
languages that are not regular?

A language is a set. What can we say about the
language created by basic set operations, such as
union and intersection, on regular languages?

In answering these questions, we will introduce some
properties of regular languages.

Regular Languages – p. 16

Closure Properties

By regular set, we mean the set of languages that are
regular. Any regular language is in the regular set.

The regular set is closed under the following operations.
union, intersection, concatenation,
complementation, and star-closure
reversal
homomorphism
right quotient

Regular Languages – p. 17

Union

Let L1, L2 be regular languages, then L1 ∪L2 is regular.

To prove, let L1 = L(r1) and L2 = L(r2). Since r1 + r2 is
a regular expression, L(r1 + r2) is a regular language.
By definition,

L(r1 + r2) = L(r1) ∪ L(r2) = L1 ∪ L2.

So L1 ∪ L2 is regular.

Alternatively, one can construct an automaton for
L1 ∪ L2. So the language is regular.

Regular Languages – p. 18

Intersection

Let L1, L2 be regular languages, then L1 ∩L2 is regular.

Let M1 = (Q,Σ, δ1, q0, F1) and M2 = (P,Σ, δ2, p0, F2) be
the dfa’s for L1 and L2. Let M̂ = (Q̂,Σ, δ̂, (q0, p0), F̂),
with

Q̂ = Q × P, F̂ = {(q, p) : q ∈ F1, p ∈ F2},

δ̂((qi, pj), a) = (qk, pl) ⇔ δ1(qi, a) = qk ∧ δ2(pj , a) = pl.

Then L1 ∩ L2 = L(M̂).

For an indirect proof, note that

L1 ∩ L2 = L1 ∪ L2.

Regular Languages – p. 19

Concatenation

Let L1, L2 be regular languages, then L1L2 is regular.

To prove, let L1 = L(r1) and L2 = L(r2). Since r1 · r2 is
a regular expression, L(r1 · r2) is a regular language.
By definition,

L(r1 · r2) = L(r1)L(r2) = L1L2.

So L1L2 is regular.

Regular Languages – p. 20

Complementation

Let L be a regular language, then L = U − L is regular.

To prove, suppose M = (Q,Σ, δ, q0, F) is the dfa that
accepts L. Let M = (Q,Σ, δ, q0, Q − F). Then any string
accepted by M is not accepted by M , and any string
not accepted by M is accepted by M . So

L(M) = L.

Regular Languages – p. 21

Star-Closure

Let L be a regular language, then L∗ is regular.

To prove, let L = L(r). Since r∗ is a regular expression,
L(r∗) is a regular language. By definition,

L(r∗) = (L(r))∗ = L∗.

So L∗ is regular.

Regular Languages – p. 22

Reversal

If L is regular, then so is LR.

First, note that for a given regular language L, it is
always possible to construct an nfa with a single final
state to accept L.

Change the final state to initial state, initial state to final
state and reverse the direction of edges in the
transition graph. Then the new automaton accept LR.
So LR is regular.

Regular Languages – p. 23

Homomorphism

Suppose Σ and T are alphabets. A homomorphism
h(a) is a function

h : Σ → T ∗.

In other words, h substitutes a single letter in Σ by a
string in T ∗.

The domain of a homomorphism can be extended to
the set of strings by

h(w = a1 . . . an) = h(a1)h(a2) . . . h(an).

The homomorphic image of a language L is defined by

h(L) = {h(w) : w ∈ L}.

Regular Languages – p. 24

Closure under Homomorphism

Let h be a homomorphism. If L is regular, then h(L) is
also regular.

(proof) If L is regular, then L = L(r) for some regular
expression r. If we replace each symbol a ∈ Σ of r by
h(a), the result h(r) is a regular expression, which
denotes h(L). So h(L) is regular.

Regular Languages – p. 25

Right Quotient

The right quotient of L1 with L2 is defined by

L1/L2 = {x : xy ∈ L1 for some y ∈ L2}.

A string x is in L1/L2 even if there exist only one y ∈ L2.

To find L1/L2, we take any string in L1. Each removal
of a suffix in L2 creates a string in L1/L2.

Regular Languages – p. 26

Closure under Right Quotient

If L1, L2 are regular, then L1/L2, the right quotient of L1

with L2, is also regular.

This can be shown by constructing a dfa for L1/L2. Let
M = (Q,Σ, δ, q0, F) be the dfa that accepts L1. We
construct M̂ = (Q,Σ, δ, q0, F̂) as follows.

For each qi ∈ Q, construct Mi = (Q,Σ, δ, qi, F).
Check if L(Mi) ∩ L(M2) is empty (how?). If not, add
qi to F̂ .

Then L(M̂) = L1/L2.

Regular Languages – p. 27

Membership Question

The membership question is

Given a string w and a language L, is w ∈ L?

A membership algorithm for a membership question
must be able to give the correct answer for each
instance of L and w.

For a regular language L, a membership algorithm
exists: We can simply run a dfa M for L on input w to
see if M ends up in a final state.

Regular Languages – p. 28

Empty, Finite or Infinite

For a regular language L, there exists algorithms for
deciding whether L is empty, or whether L is infinite.

To see this, let M be a dfa for L. Consider the
transition graph of M .

If there is a simple path from q0 to any q ∈ F , then L
is not empty. Otherwise, L is empty.
To decide finiteness, find all vertices that are the
base of a cycle. If any of these vertices is on a
simple path from q0 to a final state, then L is
infinite. Otherwise it is finite.

Regular Languages – p. 29

Equality Question

Given two regular languages L1 and L2, is L1 = L2?

We can decide the answer of this question by defining

L3 = (L1 ∩ L2) ∪ (L1 ∩ L2).

Note
L3 = ∅ ⇔ L1 = L2.

L3 is regular by closure properties, so there exists an
algorithm to decide if it is empty. If it is, then L1 = L2.
Otherwise L1 6= L2.

Regular Languages – p. 30

Non-Regular Languages

Outside the regular set, there are many other
languages.

Since regular languages are associated with finite
automata, if a language requires unlimited memory,
then it cannot be regular. In particular,

L = {anbn : n ≥ 0} cannot be regular.

Here we develop methods that can be used to prove a
language to be non-regular.

Regular Languages – p. 31

The Pigeonhole Principle

If we put n pigeons reside in m holes, with n > m, then
there exists a hole that is occupied by at least two
pigeons.

We can use this principle to show L is non-regular.

Suppose L is regular. Then there exists a dfa M for L.
Consider δ∗M (q0, a

i). Since the number of states is
finite, by the pigeonhole principle, there must be m 6= n
such that

δ∗M (q0, a
m) = q = δ∗M (q0, a

n).

If anbn is accepted by M , then ambn is also accepted by
M . This contradicts L(M) = L.

Regular Languages – p. 32

Pumping Lemma

More generally, the pigeonhole principle can be used
to derive pumping lemmas.

A pumping lemma P of a set of languages S is a
necessary condition for the membership of S.

L ∈ S ⇒ L satisfies P .

If L violates P , then L cannot be a member of S. This
is how we prove a language to be non-regular: by
showing that a pumping lemma for regular set is not
satisfied.

Regular Languages – p. 33

Pumping Lemma for Regular Set

Let L be an infinite regular language. There exists a
positive integer m such that for any w ∈ L with |w| ≥ m
there exists x, y, z with

w = xyz, and |xy| ≤ m, |y| ≥ 1,

such that

wi = xyiz ∈ L, for all i = 0, 1, 2,

Any long-enough string in L can be decomposed into
three parts. The middle part can be pumped any
number of times and the resultant string is still in L.

Regular Languages – p. 34

Proof

Let M be a dfa such that L = L(M). Let m = n + 1
where n + 1 is the number of states. During the
processing of a string w with |w| = m, m + 1 states
have been visited so at least two of them are the same.
Suppose the revisited state is qr. We identify the label
of the path from q0 to the first qr to be x, from qr to qr to
be y, and from the last qr to qf to be z. Apparently,
there is a cycle with base qr. Repeating this cycle i

times yields yi. For any i, xyiz corresponds to a path
from q0 to qf so it is accepted by M .

Regular Languages – p. 35

Application of Pumping Lemma

We use the pumping lemma to show that
L = {anbn : n ≥ 0} is not regular.

Suppose L is regular, then an m as in the pumping
lemma exists. To establish contradiction, we show that
there exists a w with |w| ≥ m and there is no x, y, z to
satisfy the required conditions.

We choose w = ambm. All decomposition falls into
three categories: y contains a only, y contains b only
and y contains both a and b. In any case, it is easy to
show that xyiz cannot be in L for all i.

Regular Languages – p. 36

{wwR : w ∈ Σ∗}

As another example, we use the pumping lemma to
show that L = {wwR : w ∈ {a, b}∗} is not regular.

We use w = ambmbmam. Since |xy| ≤ m, y can only
contain a’s. xyiz cannot be in L for all i since the run of
a in the beginning is longer than in the end.

The same idea can be used to prove
L = {w ∈ {a, b}∗ : na(w) < nb(w)} is not regular, by
choosing w = ambm+1.

Regular Languages – p. 37

	Regular Languages
	Regular Expressions
	Formal Definition
	Language of Regular Expression
	$L(r)$ Is
Regular
	A Regular L is $L(r)$
	Generalized Transition Graphs
	Complete GTG
	Two-State GTG
	Procedure {�f nfa-to-rex}
	Right-linear Grammars
	Language of a Regular Grammar
	Grammar of a Regular Language
	Left-linear Grammars
	Basic Questions
	Closure Properties
	Union
	Intersection
	Concatenation
	Complementation
	Star-Closure
	Reversal
	Homomorphism
	Closure under Homomorphism
	Right Quotient
	Closure under Right Quotient
	Membership Question
	Empty, Finite or Infinite
	Equality Question
	Non-Regular Languages
	The Pigeonhole Principle
	Pumping Lemma
	Pumping Lemma for Regular Set
	Proof
	Application of Pumping Lemma
	${ ww^R: w in Sigma ^* }$

