
Context-Free Grammars
Notes on Automata and Theory of Computation

Chia-Ping Chen

Department of Computer Science and Engineering

National Sun Yat-Sen University

Kaohsiung, Taiwan ROC

Context-Free Grammars – p. 1

Introduction

Consider the language,

L = {anbn, n ≥ 0}.

L describes a nested structure, such as nested
parenthesis.

L has been shown not to be regular.

We will introduce the context-free grammar (cfg) which
can characterize L.

A language is context-free if there exists a cfg for it.
The set of context-free languages includes the regular
set as a subset.

Context-Free Grammars – p. 2

Parsing

The membership problemof cfg is this:

Given a cfg G and a string w, is w ∈ L(G)?

If w ∈ L(G), then there is a sequence of production
rules that leads to w starting from S.

An important concept in learning cfg is parsing. A
parsing algorithm determines how a string w can be
derived with a grammar G.

Parsing describes sentence structure. It is important
for understanding natural languages as well as
programming languages.

Context-Free Grammars – p. 3

Context-Free Grammar

A grammar G = (V, T, S, P) is context-free if all
production rule in P has the form

A → x,

where A ∈ V and x ∈ (V ∪ T)∗.

It is called context-free because the left side has a
single variable. No context of the variable is relevant.
The application of a rule does not depend on other
parts of the sentential form.

We can see that a regular grammar is a cfg.

Context-Free Grammars – p. 4

Context-Free Language

Recall that the language of a grammar G is defined by

L(G) = {w ∈ T ∗ : S
∗
⇒ w}.

A language L is said to be context-free if L = L(G) for
some cfg G.

For example, a regular language is context-free since a
regular grammar is context-free.

Context-Free Grammars – p. 5

Example of cfg

The following language

L = {wwR : w ∈ {a, b}∗}.

is context-free since it can be generated by

S → aSa | bSb | λ.

Note if x ∈ L, then xR = x. Such a language is also
called palindrome.

Context-Free Grammars – p. 6

Another Example

We design a cfg for the language

L = {anbm : n 6= m}.

We consider the rules for n > m and n < m.
For extra a’s, we decompose S by a string of a’s (A),
followed by an equal number of b’s (S1).

S → AS1; S1 → aS1b | λ; A → aA | a.

Similarly for extra b’s. So the rules for L is

S → aS1 | S1B; S1 → aS1b | λ; A → aA | a; B → Bb | b.

Context-Free Grammars – p. 7

Yet Another Example

A grammar can be context-free but not linear, e.g.

S → aSb | SS | λ.

Looking simple, this cfg is a useful one as it accepts

L = {w ∈ {a, b}∗ : na(w) = nb(w),

na(v) ≥ nb(v) for prefix v of w},

which is a homomorphism to the set of properly nested
parentheses.

Context-Free Grammars – p. 8

Derivation

A derivation of a string w ∈ L(G) is a sequence of
sentential forms from S to w.

When a cfg is not linear, a production rule may have
more than one variables on the right side, so there may
be more than one variable in a sentential form.

In such cases, we have a choice for the next variable to
be replaced by a corresponding right side.

Context-Free Grammars – p. 9

Leftmost/Rightmost Derivation

A derivation is said to be leftmost if in each step the
leftmost variable in the sentential form is replaced.

It is rightmost if the rightmost variable is replaced in
each step.

Leftmost and rightmost derivations always exist for a
string w ∈ L(G).

Context-Free Grammars – p. 10

Derivation Tree

A derivation tree of a cfg G = (V, T, S, P) is a tree.
The root is S.
An interior node is labeled by A ∈ V .
A leaf is labeled by a ∈ T or λ.
The label of an interior node and the labels of its
children constitute a rule in P .
A leaf labeled λ has no siblings.

A derivation tree shows which rules are used in the
derivation of w. The order of the rules used is not
shown in the tree.

Context-Free Grammars – p. 11

Partial Derivation Tree

A partial derivation tree is similar to a derivation tree,
except that

The root may not be S.
A leaf is labeled by A ∈ V ∪ T ∪ {λ}.

The string of symbols from left to right of a tree,
omitting λ′s, is called the yield. Here “left to right”
means the tree is traversed in a depth-first manner,
always taking the leftmost unexplored branch.

The yield of a derivation tree for w is w.

Context-Free Grammars – p. 12

Theorem

We first establish the connection between derivation
and derivation tree.

Let G be a cfg.

If w ∈ L(G), i.e. there exists a derivation S
∗
⇒ w,

then there exists a derivation tree whose yield is w.
Conversely, if w is the yield of a derivation tree,
then w ∈ L(G).

In addition, if tG is any partial derivation tree rooted by
S, then the yield of tG is a sentential form of G.

Context-Free Grammars – p. 13

Proof

We first show that for every sentential form, say u,
there is a corresponding partial derivation tree. If u can
be derived from S in one step, there there must be a
rule S → u. Suppose the claim is true for all sentential
forms derivable in n steps. For a u that is derived from
S in (n + 1) steps, the first n steps correspond to a
partial tree by the inductive assumption, and a new
partial derivation tree can be built based on the last
step of the production.

Similarly, we can prove that every partial derivation
tree rooted by S corresponds to a sentential form.

The theorem is proved since a terminal string in L(G)
is a sentential form, and a derivation tree is a partial
derivation tree.

Context-Free Grammars – p. 14

Existence of Leftmost Derivation

The derivation tree is a representation of derivation. In
this representation, the order of production rules in the
derivation is irrelevant.

From a derivation tree, we can always get a sequence
of partial derivation trees rooted by S in which the
leftmost node of variable is expanded.

In terms of sentential form, the leftmost variable is
expanded, which corresponds to a leftmost derivation.

We conclude that for each w ∈ L(G), there is a leftmost
derivation.

Context-Free Grammars – p. 15

Parsing

Given G, we may want to know L(G), i.e. the set of
strings that can be derived using G.

Given G and a string w, we may be interested in
whether w ∈ L(G). This is the membership problem.

Suppose w ∈ L(G), then there exists a sequence of
productions that w is derived from S. Parsing is the
process of finding such a sequence.

Context-Free Grammars – p. 16

Brute Force Parsing

The brute-force (exhaustive) method to decide whether
w ∈ L(G) would be to construct all derivations and see
if any of them matches w.

We can do this recursively.
First we construct all x derived from S in one step.
If none matches w, we expand the leftmost variable
for every x, which gives all sentential forms derived
from S in two steps, and so on.
If w ∈ L(G), there is a leftmost derivation for w in a
finite number of steps. So eventually w will be
matched.

Let’s look at an example.

Context-Free Grammars – p. 17

Flaw and Remedy

The brute-force parsing has a serious flaw: it may
never terminate. In fact, if w /∈ L(G), clearly w will
never be matched.

In the case w /∈ L(G), we want to be able to terminate
the search when we are sure of it.

We can put some restriction on the form of production
rules to be able to terminate the search when
w /∈ L(G). These restriction should have virtually no
effect on the descriptive power of cfg’s.

Context-Free Grammars – p. 18

Theorem

If all of the production rules are not of the forms

A → λ, or A → B.

then the exhaustive search can terminate in no more
than 2|w| rounds.

(proof) With the above condition, each step in
derivation either increases the number of terminals or
the length in the sentential form. Since none of these
numbers can be more than |w| to derive w, we need no
more than 2|w| steps to decide if w ∈ L(G).

Context-Free Grammars – p. 19

Efficiency Issue

While the previous theorem guarantees a termination,
the number of sentential forms may grow excessively
large.

If we restrict ourselves to leftmost derivations, we can
have no more than |P | sentential forms after the first
round, |P |2 sentential forms after the second round,
and so on. So the maximum number of sentential
forms generated during exhaustive search is

n ≤ |P | + |P |2 + · · · + |P |2|w| = O(|P |2|w|+1).

Exhaustive search is thus generally very inefficient.

Context-Free Grammars – p. 20

Simple Grammar

A more efficient algorithm than the exhaustive search
to decide whether w ∈ L(G) can do the job in a number
of steps proportional to |w|3.

Even O(|w|3) can be excessive. Is there a linear-time
parsing algorithm?

A cfg G = (V, T, S, P) is said to be a simple grammar, or
s-grammar, if all of its production rules are of the form

A → ax,

where a ∈ T, x ∈ V ∗ and any pair (A, a) occurs at most
once in P .

Context-Free Grammars – p. 21

Linear Time

For a simple grammar G, any string w ∈ L(G) can be
parsed in |w| steps.

Suppose w = a1a2 . . . an ∈ L(G). Since there can be
only at most one rule with S on the left and a1 on the
right, the derivation has to begin with

S ⇒ a1A1 . . . Am.

Similarly, there can be only at most one rule with A1 on
the left and a2 on the right, so the next sentential form
has to be

S
∗
⇒ a1a2B1 . . . A2 . . . Am.

Each step produces one more terminal, so the entire
derivation cannot have more than |w| steps.

Context-Free Grammars – p. 22

Ambiguity of Grammar

A cfg G is said to be ambiguousif there exists some
w ∈ L(G) with two or more distinct derivation trees
(parses).

Ambiguity implies the existence of two or more leftmost
derivations for some string.

See example 5.11.

While it may be possible to associate precedence with
operators, it is better to rewrite the grammars.

Ambiguity is not desired in programming languages. In
some cases, one can rewrite an ambiguous grammar
in an equivalent and unambiguous one.

Context-Free Grammars – p. 23

Ambiguity of Language

Suppose L is a context-free language.
It is not ambiguous if there exists an unambiguous
cfg for L.
Otherwise, i.e. if all cfg’s for L are ambiguous, then
L is said to be (inherently) ambiguous.

While the grammar in example 5.11 is ambiguous, the
language is not, as there is a non-ambiguous cfg that
generates the same language.

It is a difficult matter to show that a language is
inherently ambiguous. See example 5.13.

Context-Free Grammars – p. 24

Example

Consider the language

L = {anbncm} ∪ {anbmcm}, n,m ≥ 0.

L is a context-free language. Specifically, L = L1 ∪ L2,
where P1 = S1 → S1c|A, A → aAb|λ, and similarly for
L2. A grammar for L is

P = P1 ∪ P2 ∪ {S → S1|S2}.

A string aibici has two distinct derivations, one begins
with S → S1 and the other begins with S → S2, so the
grammar is ambiguous.

It does not follow that the language is ambiguous. A
rigorous proof is quite technical and is omitted here.

Context-Free Grammars – p. 25

Programming Languages

One important application of formal languages is in the
definition of programming languages and in the
construction of compilers and interpreters.

We want to define a programming language in a
precise manner so we can use this definition to write
translation programs.

Both regular and context-free languages are important
in designing programming languages. One is used to
recognize certain patterns and the other is used to
model more complicated structures.

Context-Free Grammars – p. 26

Backus-Naur Form

A programming language can be defined by a
grammar. This is traditionally specified by the
Backus-Naur form (BNF), which is essentially same as
cfg but with a different system of notation.

It is easy to look at an example of BNF to see how it
corresponds to a cfg.

Context-Free Grammars – p. 27

Syntax and Semantics

Those aspects of a programming language that can be
modeled by a cfg are called syntax.

Even if a program is syntactically correct, it may not be
acceptable. For example, type clashes may not be
permitted in a programming language.

The semanticsof a programming language models
aspects other than those modeled by the syntax. It is
related to the interpretation or meaning of objects.

It is an ongoing research to find effective methods to
model programming language semantics.

Context-Free Grammars – p. 28

Transforming Grammars

In our definition of cfg’s, there is no restriction on the
form of the right side of a rule.

Such flexibility is in fact not necessary. That is, given a
cfg, we can transform it to an equivalent cfg whose
rules conform to certain restrictions.

Specifically, a normal form is a restricted class of cfg
but which is broad enough to cover all context-free
languages (except perhaps {λ}).

We will introduce the Greibach and the Chomsky
normal forms.

Context-Free Grammars – p. 29

A Technical Note

The empty string λ often requires special attention, so
we will assume that the languages are λ-free in the
following discussion.

This is based on the following facts.
If L is a λ-free context-free language, then L ∪ {λ}
is context-free as well.
In addition, suppose L is context-free, then there
exists a cfg for L − {λ}.

Context-Free Grammars – p. 30

Substitution Rule

Suppose variables A 6= B and there is a rule

A → x1Bx2.

Then one can substitute this rule by

A → x1y1x2 | x1y2x2 | . . . | x1ynx2.

where B → y1 | y2 | . . . | yn is the set of rules with B as
the left side.

In other words, B can be replaced by all strings it
derives in one step.

Context-Free Grammars – p. 31

Proof

Suppose w ∈ L(G) so

S
∗
⇒G w.

If the sequence of derivations does not include that
rule, then the same sequence exists for Ĝ, so
w ∈ L(Ĝ). If it does include that rule, then B eventually
has to be replaced. It can be assumed that B is
replaced immediately, and then obviously there is a
rule in Ĝ leading to the next sentential form. Therefore
w ∈ L(Ĝ).

Context-Free Grammars – p. 32

Useless Production

A variable A is said to be useful iff there exists w such
that

S
∗
⇒ xAy

∗
⇒ w,

where x, y ∈ (V ∩ T)∗. Otherwise it is useless.

A variable may be useless because
it cannot be reached from S

it cannot derive a terminal string

A production rule is useless if it involves any useless
variables. They can be removed from P without
changing L(G).

Context-Free Grammars – p. 33

Dependency Graph

To decide if a variable can be reached from S, we can
use a dependency graphas follows.

In this graph, each vertex corresponds to a variable.
There is an edge from C to D iff there exists a rule of
the form

C → xDy.

As a result, a variable A is useless if there is no path
from S to A in this dependency graph.

Context-Free Grammars – p. 34

Theorem

Let G be a cfg. Then there exists an equivalent cfg Ĝ
which has no useless variables or productions.

We first construct G1 that involves only variables that
can derive terminal strings.
1. Set V1 = ∅. Repeat until no variables are added to

V1. Add A to V1 if there exists a rule A → α where
all symbols of α are in V1 ∪ T .

2. Take P1 as those rules in P that involves only
symbols in V1 ∪ T .

We then remove variables in V1 not reachable from S
by constructing the aforementioned dependency graph.

Context-Free Grammars – p. 35

λ-Production

A λ-production is
A → λ.

A variable A is said to be nullable if it is possible that

A
∗
⇒ λ.

A λ-production can be removed. Example 6.4 gives an
example.

Context-Free Grammars – p. 36

Theorem

Let G be a cfg and λ /∈ L(G). Then there exists an
equivalent cfg Ĝ without λ-production.

We first find the set of nullable variables VN .
1. For all A with A → λ, add A to VN .
2. Repeat until no variables are added to VN . For any

B ∈ V , if there exists a rule B → α where all
symbols of α are in VN , then add B to VN .

For a production rule A → x1 . . . xm in P , put this rule,
as well as those with nullable variables replaced by λ’s
in all possible combinations, in P̂ .

Context-Free Grammars – p. 37

Unit-Production

A unit-production is

A → B, A,B ∈ V.

Let G be a cfg without λ-productions. Then there exists
an equivalent cfg Ĝ without unit-production.

We first add all non-unit production rules of P to P̂ .

Then we find all A 6= B such that A
∗
⇒ B, and add

to P̂

A → y1| . . . |yn,

where B → y1| . . . |yn is the set of all rules in P̂ with
B on the left side.

Context-Free Grammars – p. 38

Theorem

Let L (λ /∈ L) be a context-free language. Then there
exists a cfg G for L, where G does not have

useless production rules
λ-productions
unit-productions.

Context-Free Grammars – p. 39

Chomsky Normal Form

A cfg is said to be in Chomsky normal form if all
production rules are of the form

A → BC, or A → a.

where a ∈ T and B,C ∈ V .

The right side is either a single terminal symbol or a
string of two variables.

(Theorem 6.6) Let L (λ /∈ L) be a context-free
language. Then there exists a cfg in Chomsky normal
form for L.

Context-Free Grammars – p. 40

Greibach Normal Form

A cfg is said to be in Greibach normal form if all
production rules are of the form

A → ax,

where a ∈ T and x ∈ V ∗.

A right side has to be a terminal symbol followed by a
variable string of an arbitrary length.

(Theorem 6.7) Let L (λ /∈ L) be a context-free
language. Then there exists a cfg in Greibach normal
form for L.

Context-Free Grammars – p. 41

Membership Algorithm

The membership problem for cfg is

Given G and w, decide if w ∈ L(G).

An algorithm to answer correctly for all instances of G
and w is called a membership algorithm for cfg.

Does there exist a membership algorithm for cfg? We
claimed that there is one with complexity O(|w|3). This
is the CYK algorithm, after Cocke, Younger and
Kasami.

Context-Free Grammars – p. 42

CYK Algorithm

The idea of CYK is to solve one big problem by solving
a sequence of smaller ones.

Assume we have a grammar in Chomsky normal form
and a string w = a1 . . . an.

Define the set of variables

Vij = {A ∈ V : A
∗
⇒ wij = ai . . . aj}.

Note w ∈ L(G) ⇔ S ∈ V1n.

Context-Free Grammars – p. 43

Details

To decide Vij, observe that A ∈ Vii iff A → ai. So Vii for
all i can be decided trivially.

For j > i, A
∗
⇒ wij iff A → BC, B

∗
⇒ wik, and

C
∗
⇒ wk+1j. That is

Vij =
⋃

k∈{i,...,j−1}

{A : A → BC,B ∈ Vik, C ∈ Vk+1j}.

The order of computation is thus
Compute V11, V22, . . . , Vnn.
Compute V12, V23, . . . , Vn−1n.
Compute V13, V24, . . . , Vn−2n, and so on.

Context-Free Grammars – p. 44

	Introduction
	Parsing
	Context-Free Grammar
	Context-Free Language
	Example of cfg
	Another Example
	Yet Another Example
	Derivation
	Leftmost/Rightmost Derivation
	Derivation Tree
	Partial Derivation Tree
	Theorem
	Proof
	Existence of Leftmost Derivation
	Parsing
	Brute Force Parsing
	Flaw and Remedy
	Theorem
	Efficiency Issue
	Simple Grammar
	Linear Time
	Ambiguity of Grammar
	Ambiguity of Language
	Example
	Programming Languages
	Backus-Naur Form
	Syntax and Semantics
	Transforming Grammars
	A Technical Note
	Substitution Rule
	Proof
	Useless Production
	Dependency Graph
	Theorem
	$lambda $-Production
	Theorem
	Unit-Production
	Theorem
	Chomsky Normal Form
	Greibach Normal Form
	Membership Algorithm
	CYK Algorithm
	Details

