Context-Free Grammars*Notes on Automata and Theory of Computation*

Chia-Ping Chen

Department of Computer Science and EngineeringNational Sun Yat-Sen UniversityKaohsiung, Taiwan ROC

Context-Free Grammars – p. 1

Introduction

Consider the language,

$$
L = \{a^n b^n, n \ge 0\}.
$$

- L describes a nested structure, such as nested
respectives: parenthesis.
- L has been shown not to be regular.
- We will introduce the **context-free grammar** (cfg) which can characterize $L.$
- A language is context-free if there exists ^a cfg for it. The set of context-free languages includes the regularset as ^a subset.

Parsing

The **membership problem** of cfg is this:

Given a cfg G and a string w , is $w\in L(G)$?

- If $w\in L(G)$, then there is a sequence of production rules that leads to w starting from $S.$
- An important concept in learning cfg is **parsing**. ^Aparsing algorithm determines how a string w can be
derived with a system on α derived with a grammar $G.$
- **Parsing describes sentence structure. It is important** for understanding natural languages as well asprogramming languages.

Context-Free Grammar

A grammar $G = (V, T, S, P)$ is context-free if all
preduction rule in P bes the ferm production rule in P has the form

$$
A \to x,
$$

where $A\in V$ and $x\in (V\cup T)^*$.

- **It is called context-free because the left side has a** single variable. No context of the variable is relevant. The application of ^a rule does not depend on otherparts of the sentential form.
- We can see that a regular grammar is a cfg.

Context-Free Language

Recall that the language of a grammar G is defined by

$$
L(G) = \{ w \in T^* : S \stackrel{*}{\Rightarrow} w \}.
$$

- A language L is said to be context-free if $L=L(G)$ for some cfg $G_\textnormal{\texttt{.}}$
- For example, ^a regular language is context-free since ^aregular grammar is context-free.

Example of cfg

The following language \bullet

$$
L = \{ww^R : w \in \{a, b\}^*\}.
$$

is context-free since it can be generated by

$$
S \to aSa \mid bSb \mid \lambda.
$$

Note if $x\in L,$ then x called **palindrome**. $\begin{array}{c} R\!\! _{}\!\!\!\!\!\!-\end{array}$ x_\cdot Such a language is also

Another Example

We design a cfg for the language

$$
L = \{a^n b^m : n \neq m\}.
$$

We consider the rules for $n > m$ and $n < m$.
For extra c's, we decompose S by a string c For extra a 's, we decompose S by a string of a 's (A), ϵ followed by an equal number of b 's (S_1).

$$
S \to AS_1; S_1 \to aS_1b \mid \lambda; A \to aA \mid a.
$$

Similarly for extra b 's. So the rules for L is

 $S \rightarrow aS$ 1 $\vert_1 \mid S$ $_1B; S_1 \rightarrow aS$ $_1b \mid \lambda$; $A \rightarrow aA \mid a$; $B \rightarrow Bb \mid b$.

Yet Another Example

A grammar can be context-free but not linear, e.g.

 $S \rightarrow aSb \mid SS \mid \lambda$.

C Looking simple, this cfg is a useful one as it accepts

$$
L = \{w \in \{a, b\}^* : n_a(w) = n_b(w),
$$

$$
n_a(v) \ge n_b(v) \text{ for prefix } v \text{ of } w\},
$$

which is ^a homomorphism to the set of properly nestedparentheses.

Derivation

- A derivation of a string $w \in L(G)$ is a sequence of sentential forms from S to $w.$
- When a cfg is not linear, a production rule may have more than one variables on the right side, so there maybe more than one variable in ^a sentential form.
- **In such cases, we have a choice for the next variable to** be replaced by ^a corresponding right side.

Leftmost/Rightmost Derivation

- A derivation is said to be **leftmost** if in each step the leftmost variable in the sentential form is replaced.
- It is **rightmost** if the rightmost variable is replaced ineach step.
- **C** Leftmost and rightmost derivations always exist for a string $w\in L(G).$

Derivation Tree

- A derivation tree of a cfg $G = (V, T, S, P)$ is a tree.
	- The root is $S.$
	- An interior node is labeled by $A\in V$ \cdot .
	- A leaf is labeled by $a\in T$ or λ .
	- The label of an interior node and the labels of itschildren constitute a rule in $P.$
	- A leaf labeled λ has no siblings.
- A derivation tree shows which rules are used in the derivation of $w.$ The order of the rules used is not shown in the tree.

Partial Derivation Tree

- A **partial derivation** tree is similar to ^a derivation tree, except that
	- The root may not be $S.$
	- A leaf is labeled by $A \in V \cup T \cup \{\lambda\}$.
- **•** The string of symbols from left to right of a tree, omitting λ' means the tree is traversed in ^a depth-first manner, ^s, is called the **^yield**. Here "left to right" always taking the leftmost unexplored branch.
- The yield of a derivation tree for w is w .

Theorem

- We first establish the connection between derivationand derivation tree.
- Let G be a cfg.
	- If w $w\in L(G)$, i.e. there exists a derivation $S\overset{*}{\Rightarrow}$ $\Rightarrow w,$ ield is then there exists a derivation tree whose yield is $w.$
	- Conversely, if w is the yield of a derivation tree,
then $\epsilon \in L(\mathbb{C})$ then $w \in L(G)$.
- In addition, if t_G is any partial derivation tree rooted by
Cuthon the viold of turie e contential form of G S , then the yield of t_G is a sentential form of $G.$

Proof

- We first show that for every sentential form, say $u,$ there is a corresponding partial derivation tree. If u can be derived from S in one step, there there must be a
rule S , an Suppose the claim is true for all septentic rule $S \to$ u . Suppose the claim is true for all sentential
derivable in n stens. For a u that is derived from forms derivable in n steps. For a u that is derived from S in $(n + 1)$ steps, the first n steps correspond to a partial tree by the inductive assumption, and ^a new partial derivation tree can be built based on the last step of the production.
- **Similarly, we can prove that every partial derivation** tree rooted by S corresponds to a sentential form.
- The theorem is proved since a terminal string in $L(G)$ is ^a sentential form, and ^a derivation tree is ^a partial derivation tree.

Existence of Leftmost Derivation

- **•** The derivation tree is a representation of derivation. In this representation, the order of production rules in thederivation is irrelevant.
- **•** From a derivation tree, we can always get a sequence of partial derivation trees rooted by S in which the
Life leftmost node of variable is expanded.
- In terms of sentential form, the leftmost variable isexpanded, which corresponds to ^a leftmost derivation.
- We conclude that for each $w\in L(G),$ there is a leftmost derivation.

Parsing

- Given G , we may want to know $L(G)$, i.e. the set of etrings that see had derived using G strings that can be derived using $G.$
- Given G and a string w , we may be interested in
whether $w\in L(G)$. This is the mambership probl whether $w\in L(G).$ This is the membership problem.
- Suppose $w \in L(G)$, then there exists a sequence of productions that w is derived from S . Parsing is the
process of finding such a sequence process of finding such ^a sequence.

Brute Force Parsing

- The brute-force (exhaustive) method to decide whether $w\in L(G)$ would be to construct all derivations and see \mathbf{L} and \mathbf{L} if any of them matches $w.$
- We can do this recursively.
	- First we construct all x derived from S in one step.
' If none matches w , we expand the leftmost variable for every x , which gives all sentential forms derived from S in two steps, and so on.
	- If $w\in L(G)$, there is a leftmost derivation for w in a
finite number of stans. Co systemally, will be \mathbf{A} finite number of steps. So eventually w will be
matched matched.
- **Let's look at an example.**

Flaw and Remedy

- The brute-force parsing has a serious flaw: it may never terminate. In fact, if $w\notin L(G)$, clearly w will
parameter matched. never be matched.
- In the case $w \notin L(G)$, we want to be able to terminate \sim \sim \sim the search when we are sure of it.
- We can put some restriction on the form of production rules to be able to terminate the search when $w\notin L(G).$ These restriction should have virtually no $\mathbf{L} = \mathbf{L}$ effect on the descriptive power of cfg's.

Theorem

If all of the production rules are *not* of the forms

 $A \to \lambda$, or $A \to B$.

then the exhaustive search can terminate in no morethan $2|w|$ rounds.

(proof) With the above condition, each step in derivation either increases the number of terminals or the length in the sentential form. Since none of thesenumbers can be more than $\left| w \right|$ to derive w , we need no more than $2|w|$ steps to decide if $w\in L(G).$

Efficiency Issue

- While the previous theorem guarantees ^a termination, the number of sentential forms may grow excessivelylarge.
- **If we restrict ourselves to leftmost derivations, we can** have no more than $|P|$ sentential forms after the first round, $\vert P\vert^2$ sentential forms after the second round, and so on. So the maximum number of sentential forms generated during exhaustive search is

$$
n \leq |P| + |P|^2 + \dots + |P|^{2|w|} = O(|P|^{2|w|+1}).
$$

Exhaustive search is thus generally very inefficient.

Simple Grammar

- A more efficient algorithm than the exhaustive searchto decide whether $w\in L(G)$ can do the job in a number $\mathbf{1}$ $\mathbf{1}$ $\mathbf{1}$ $\mathbf{1}$ of steps proportional to $|w|^3$.
- Even $O(|w|^3$ parsing algorithm? $^{3})$ can be excessive. Is there a linear-time
- A cfg $G = (V, T, S, P)$ is said to be a simple grammar, or **s-grammar**, if all of its production rules are of the form

$$
A \to ax,
$$

where $a\in T, x\in V^*$ and any pair (A, a) occurs at most once in $P_{\textstyle{\cdot}}$

Linear Time

- For a simple grammar G , any string $w\in L(G)$ can be parsed in $\left| w \right|$ steps.
- Suppose $w=a_1a_2\ldots a_n\in L(G).$ Since there can be \sim of one rule with α only at most one rule with S on the left and a_1 on tl right, the derivation has to begin with $_1$ on the

$$
S \Rightarrow a_1 A_1 \dots A_m.
$$

Similarly, there can be only at most one rule with A_1 on the left and a_2 on the right, so the next sentential form $_{\rm 2}$ on the right, so the next sentential form has to be

$$
S \stackrel{*}{\Rightarrow} a_1 a_2 B_1 \dots A_2 \dots A_m.
$$

 Each step produces one more terminal, so the entirederivation cannot have more than $\left| w \right|$ steps.

Ambiguity of Grammar

- A cfg G is said to be **ambiguou**s if there exists some $w\in L(G)$ with two or more distinct derivation trees (parses).
- **•** Ambiguity implies the existence of two or more leftmost derivations for some string.
- See example 5.11.
- While it may be possible to associate precedence withoperators, it is better to rewrite the grammars.
- Ambiguity is not desired in programming languages. In some cases, one can rewrite an ambiguous grammarin an equivalent and unambiguous one.

Ambiguity of Language

- Suppose L is a context-free language.
	- It is *not* ambiguous if there exists an unambiguous cfg for L .
	- Otherwise, i.e. if all cfg's for L are ambiguous, then L is said to be **(inherently) ambiguous**.
- While the grammar in example 5.11 is ambiguous, the language is not, as there is ^a non-ambiguous cfg that generates the same language.
- **It is a difficult matter to show that a language is** inherently ambiguous. See example 5.13.

Example

Consider the language

 $L = \{a^n b^n c^m\} \cup \{a^n b^m c^m\}, \ \ n, m \ge 0.$

L is a context-free language. Specifically, $L = L_1 \cup L_2$, where $P_1 = S_1 \rightarrow S_1 c | A, A \rightarrow aAb | \lambda$, and similarly for I_{∞} A grammar for I_{∞} is L_2 . A grammar for L is

$$
P = P_1 \cup P_2 \cup \{S \rightarrow S_1 | S_2\}.
$$

- A string $a^i b^i c^i$ has two distinct derivations, one begins with $S\to S_1$ and the other begins with $S\to S_2$, so the
orammar is ambiquous grammar is ambiguous.
- It does not follow that the language is ambiguous. Arigorous proof is quite technical and is omitted here.

Programming Languages

- One important application of formal languages is in the definition of programming languages and in theconstruction of compilers and interpreters.
- We want to define a programming language in a precise manner so we can use this definition to writetranslation programs.
- Both regular and context-free languages are important in designing programming languages. One is used torecognize certain patterns and the other is used tomodel more complicated structures.

Backus-Naur Form

- A programming language can be defined by ^a grammar. This is traditionally specified by the **Backus-Naur form** (BNF), which is essentially same as cfg but with ^a different system of notation.
- It is easy to look at an example of BNF to see how it corresponds to ^a cfg.

Syntax and Semantics

- Those aspects of a programming language that can be modeled by ^a cfg are called **syntax**.
- Even if ^a program is syntactically correct, it may not beacceptable. For example, type clashes may not bepermitted in ^a programming language.
- The **semantics** of ^a programming language models aspects other than those modeled by the syntax. It isrelated to the interpretation or meaning of objects.
- It is an ongoing research to find effective methods to model programming language semantics.

Transforming Grammars

- **In our definition of cfg's, there is no restriction on the** form of the right side of ^a rule.
- Such flexibility is in fact *not* necessary. That is, given a cfg, we can transform it to an equivalent cfg whoserules conform to certain restrictions.
- Specifically, ^a **normal form** is ^a restricted class of cfg but which is broad enough to cover *all* context-free languages (except perhaps $\{\lambda\}$).
- We will introduce the Greibach and the Chomsky normal forms.

A Technical Note

- The empty string λ often requires special attention, so we will assume that the languages are λ -free in the following discussion.
- **•** This is based on the following facts.
	- If L is a λ -free context-free language, then $L\cup\{\lambda\}$ is context-free as well.
	- In addition, suppose L is context-free, then there exists a cfg for $L - \{\lambda\}$.

Substitution Rule

Suppose variables $A\neq B$ and there is a rule

 $A\rightarrow x_1Bx_2.$

Then one can substitute this rule by

 $A\rightarrow x_1y_1x_2$ $\begin{array}{c|c} 2 & x \end{array}$ $_{1}y_{2}x_{2}$ $_2$ \vert \dots \vert x $_{1}y_{n}x_{2}.$

where $B\to y_1$ ir si the left side. $\begin{array}{c|c} 1 & y \end{array}$ 2 $_2$ $| \dots | y$ $\, n \,$ $_n$ is the set of rules with B as

In other words, *B* can be replaced by all strings it
derives in ensisten derives in one step.

Proof

Suppose $w\in L(G)$ so

$$
S \stackrel{*}{\Rightarrow}_G w.
$$

If the sequence of derivations does not include that rule, then the same sequence exists for \widehat{G} $\sqrt{ }$, so $w \in L(\widehat{G})$. If it does include that rule, then B eventually has to be replaced. It can be assumed that B is
replaced immediately, and then abviously there replaced immediately, and then obviously there is ^arule in \widehat{G} leading to the next sentential form. Therefore $w \in L(\widehat{G})$.

Useless Production

A variable A is said to be useful iff there exists w such
thet that

$$
S \stackrel{*}{\Rightarrow} xAy \stackrel{*}{\Rightarrow} w,
$$

where $x,y\in (V\cap T)^*$. Otherwise it is useless.

- A variable may be useless because
	- it cannot be reached from S
	- it cannot derive ^a terminal string
- A production rule is useless if it involves any uselessvariables. They can be removed from P without changing $L(G).$

Dependency Graph

- To decide if a variable can be reached from $S,$ we can use ^a **dependency grap^h** as follows.
- **In this graph, each vertex corresponds to a variable.** There is an edge from C to D iff there exists a rule of
the ferm the form

$$
C \to xDy.
$$

As a result, a variable A is useless if there is no path
from A is this denondency sreph from S to A in this dependency graph.

Theorem

- Let G be a cfg. Then there exists an equivalent cfg \widehat{G}
which has as useless veriables ar preductions which has no useless variables or productions.
- We first construct G_1 that involves only variables that can derive terminal strings.
	- 1. Set $V_1 = \emptyset$. Repeat until no variables are added to $V_1 = \emptyset$. Repeat until no variables are added to V_1 . Add A to V_1 if there exists a rule $A \rightarrow \alpha$ where
all symbols of α are in $V_1 \sqcup T$ all symbols of α are in $V_1\cup T.$
	- 2. Take P_1 as those rules in P that involves only symbols in $V_1 \cup T$.
- We then remove variables in V_1 not reachable from S
by constructing the aforementioned dependency grap by constructing the aforementioned dependency graph.

λ**-Production**

A ^λ**-production** is

 $A \rightarrow \lambda.$

A variable ^A is said to be **nullable** if it is possible that

$A \stackrel{*}{\Rightarrow} \lambda.$

A λ -production can be removed. Example 6.4 gives an example.

Theorem

- Let G be a cfg and $\lambda \notin L(G).$ Then there exists an equivalent cfg \widehat{G} without λ -production.
- We first find the set of nullable variables V_N .
	- 1. For all A with $A \to \lambda$, add A to V_N .
2. Penest until no veriables are adde
	- 2. Repeat until no variables are added to V_N . For any $R \in V$ if there eviate a rule R $B\in V,$ if there exists a rule $B\to \alpha$ where all
symbols of α are in V_{M} then add B to V_{M} symbols of α are in V_N , then add B to $V_N.$
- For a production rule $A \to x_1 \dots x_m$ in P , put this rule,
as well as those with nullable variables replaced by λ as well as those with nullable variables replaced by λ 's in all possible combinations, in \widehat{P} .

Unit-Production

A **unit-production** is

$$
A \to B, \ A, B \in V.
$$

- Let G be a cfg without λ -productions. Then there exists an equivalent cfg \widehat{G} without unit-production.
	- We first add all non-unit production rules of P to $\widehat{P}.$
	- Then we find all $A\neq B$ such that $A\stackrel{*}{\Rightarrow}$ ${\hat \Rightarrow}$ $B,$ and add to \widehat{P}

$$
A \to y_1 | \dots | y_n,
$$

where $B\to y_1|\ldots|y_n$ the B on the left side. \widehat{p}_n is the set of all rules in \widehat{P} with

Theorem

- Let L $(\lambda \notin L)$ be a context-free language. Then there exists a cfg G for L , where G does not have
	- useless production rules
	- \blacktriangleright λ -productions
	- unit-productions.

Chomsky Normal Form

A cfg is said to be in **Chomsky normal form** if all production rules are of the form

```
A \rightarrow BC, or A \rightarrow a.
```
where $a\in T$ and $B,C\in V$ \mathbf{v}

- The right side is either a single terminal symbol or a string of two variables.
- (Theorem 6.6) Let L $(\lambda \notin L)$ be a context-free language. Then there exists ^a cfg in Chomsky normal form for $L.$

Greibach Normal Form

A cfg is said to be in **Greibach normal form** if all production rules are of the form

$$
A \to ax,
$$

where $a\in T$ and $x\in V^*$.

- A right side has to be ^a terminal symbol followed by ^avariable string of an arbitrary length.
- (Theorem 6.7) Let L $(\lambda \notin L)$ be a context-free language. Then there exists ^a cfg in Greibach normal form for $L.$

Membership Algorithm

The membership problem for cfg is

```
Given G and w, decide if w\in L(G).
```
- An algorithm to answer correctly for all instances of G and w is called a membership algorithm for cfg.
- Does there exist a membership algorithm for cfg? We claimed that there is one with complexity $O(|w|^3).$ Th is the CYK algorithm, after Cocke, Younger and $^3)$. This Kasami.

CYK Algorithm

- The idea of CYK is to solve one big problem by solving ^a sequence of smaller ones.
- Assume we have ^a grammar in Chomsky normal formand a string $w=a_1\dots a_n.$

Define the set of variables

$$
V_{ij} = \{A \in V : A \stackrel{*}{\Rightarrow} w_{ij} = a_i \dots a_j\}.
$$

• Note
$$
w \in L(G) \Leftrightarrow S \in V_{1n}
$$
.

Details

- To decide V_{ij} , observe that $A\in V_{ii}$ iff $A\rightarrow a_i$. So V_{ii} for
all i can be decided trivially \bullet all i can be decided trivially.
- For $j>i$, $A\overset{*}{\Rightarrow} w_{ij}$ iff $A\rightarrow BC,~B\overset{*}{\Rightarrow} w_{ik}$, and $C \overset{*}{\Rightarrow} w_{k+1j}$. That is

$$
V_{ij} = \bigcup_{k \in \{i, \dots, j-1\}} \{A : A \to BC, B \in V_{ik}, C \in V_{k+1j}\}.
$$

- The order of computation is thus
	- Compute $V_{11}, V_{22}, \ldots, V_{nn}$.
	- Compute $V_{12}, V_{23}, \ldots, V_{n-1n}.$
	- Compute $V_{13}, V_{24}, \ldots, V_{n-2n}$, and so on.