
Pushdown Automata
Notes on Automata and Theory of Computation

Chia-Ping Chen

Department of Computer Science and Engineering

National Sun Yat-Sen University

Kaohsiung, Taiwan ROC

Pushdown Automata – p. 1

Introduction

Regular languages correspond to the class of dfa’s. Is
there a class of automata for context-free languages?

The class of automata for context-free languages
should be able to, among other things, count without
limit (for language such as {anbn : n ≥ 0}) and store
and match a sequence of symbols in the reverse order
(for {wwR : w ∈ Σ∗}). This suggests using stack as
storage.

The class of automata using stack as storage is called
the pushdown automata (pda).

Pushdown Automata – p. 2

Pushdown Automata

A nondeterministic pushdown automaton (npda) is
defined by a septuple (7-tuple)

M = (Q,Σ,Γ, δ, q0, z, F),

Q is a finite set of states
Σ is a finite set called input alphabet
Γ is a finite set called stack alphabet

δ : Q × (Σ ∪ {λ}) × Γ → 2Q×Γ
∗

is the transition
function
q0 ∈ Q is the initial state
z ∈ Γ is the stack start symbol
F ⊆ Q is the set of final states

Pushdown Automata – p. 3

Transition Function

Depending on the current state, the stack symbol on
top, and optionally the input symbol, a pda makes a
state transition and pushes a string of stack symbols
back to the stack.

Let’s note a few things about δ,

δ : Q × (Σ ∪ {λ}) × Γ → 2Q×Γ
∗

.

The value is a finite subset of Q × Γ∗.
A move is possible without using an input symbol.
No move is possible with an empty stack.
The reading of input never goes “backwards”.

Pushdown Automata – p. 4

Examples of δ

Suppose δ(q1, a, b) = {(q2, cd), (q3, λ)} for npda M .
When M is in state q1, the input symbol is a and the top
of stack is b, one of two things can happen:

M transits to state q2 and replace b by cd (c on top
of d).
M transits to state q2 and remove b.

A transition function can be represented by a graph,
where an edge from qi to qj labeled by a, b, y means

(qj , y) ∈ δ(qi, a, b).

Pushdown Automata – p. 5

Instantaneous Description

The relevant information at any instant is the current
state, q, the unread part of input string, w, and the
content of stack, u. The triplet (q, w, u) is called an
instantaneous description (ID) of an npda.

A move (or step) from an ID to another is denoted by
the symbol ⊢,

(q, aw, bx) ⊢ (p, w, yx) ⇔ (p, y) ∈ δ(q, a, b).

A sequence of moves is denoted by
∗

⊢, e.g.,

(q1, w1, x1)
∗

⊢ (q2, w2, x2).

Pushdown Automata – p. 6

Language Accepted by An npda

Let M = (Q,Σ,Γ, δ, q0, z, F) be an npda. The language
accepted by M is the set of strings

L(M) = {w ∈ Σ∗ : (q0, w, z)
∗

⊢ (p, λ, u), p ∈ F, u ∈ Γ∗}

L(M) is the set of input strings that can make M in
a final state at the end of the input string.
The final stack content is irrelevant.

It turns out the set of languages acceptable by npda is
equal to the set of context-free languages.

Pushdown Automata – p. 7

An Example

Consider the language in which each string has an
equal number of a’s and b’s,

L = {w ∈ {a, b}∗ : na(w) = nb(w)}.

The transition graph is drawn in Figure 7.3.

M = ({q0, qf}, {a, b}, {0, 1, z}, δ, q0, z, {qf}).

Initially, the stack contains z. For an input a, either 0 is
pushed or 1 is popped, depending on the top stack
symbol. Similarly, for an input b, either 1 is pushed or 0
is popped. M transits to qf when it finds input empty
and the stack top is z.

Pushdown Automata – p. 8

Another Example

Consider the set L = {wwR : w ∈ {a, b}+}.

The idea for an npda to accept L is to guess the middle
of the input string and matches the front substring and
the rear substring. The front substring is pushed into
the stack, and the rear substring is matched against
the stack content (in the reverse order).

Specifically, we construct an npda

M = ({q0, q1, q2}, {a, b}, {a, b, z}, δ, q0, z, {q2}),

where state q0 signals that the input position is in the
front part, and state q1 signals that the input position is
in the rear.

Pushdown Automata – p. 9

npda for cfg

If L is a context-free language and λ /∈ L, then there
exists an npda M such that

L = L(M).

Here we are given a cfg for L and want to construct an
npda. W.l.o.g., we can assume the grammar is in
Greibach normal form, say G = (V, T, S, P). The idea is
to make the npda simulate the leftmost derivation of G.

The terminal prefix of the sentential form matches
the corresponding prefix of the input string.
The unprocessed part of sentential form is in the
stack.

Pushdown Automata – p. 10

Construction

We construct an npda

M = ({q0, q1, qf}, T, V ∪ {z}, δ, q0, z, {qf}).

The key is δ. Initially, M pushes the start symbol S to
the stack and transits to state q1. That is,

δ(q0, λ, z) = {(q1, Sz)}.

For any rule A → au in P , M reads input a, replace A
by u in stack,

(q1, u) ∈ δ(q1, a, A).

Finally, M moves to qf if the input is empty and the
stack contains only z.

Pushdown Automata – p. 11

Proof L(G) ⊆ L(M)

Consider partial derivation

S
∗

⇒ a1 . . . anAA2 . . . Am ⇒ a1 . . . anbB1 . . . BkA2 . . . Am

By construction of M , if the stack content is AA2 . . . Am

after reading a1 . . . an then it is B1 . . . BkA2 . . . Am after
reading a1 . . . anb.

That is, the stack content matches the variable string in
the sentential form, and the input position matches the
terminal prefix of the sentential form. This can be
formally proved by induction on the number of steps.

Thus, if S
∗

⇒ w, then eventually M will empty the stack
and end up in qf using w as input.

Pushdown Automata – p. 12

Proof L(M) ⊆ L(G)

Suppose (q0, w, z)
∗

⊢ (qf , λ, z) and w = a1 . . . an. After
the initial move, let the first step be

(q1, a1 . . . an, Sz) ⊢ (q1, a2 . . . an, u1z).

Then there exists a rule S → a1u1, and S ⇒ a1u1.

Let u1 = Au2. Let the next move be

(q1, a2 . . . an, Au2z) ⊢ (q1, a3 . . . an, u3u2z).

Then there exists a rule A → a2u3, and S
∗

⇒ a1a2u3u2.

At any point, the stack content is identical with the
unmatched part of the sentential form, so eventually

S
∗

⇒ a1 . . . an = w
Pushdown Automata – p. 13

cfg for npda

If L = L(M) for an npda M , then L is context-free. That
is, there exists a cfg G such that L(G) = L.

First, we state without proof that for any npda there
exists an equivalent one (accepting the same
language) with the following properties.

It has a single final state qf that is entered if and
only if the stack is empty.
Each move either increases or decreases the stack
by a single symbol. That is,

δ(qi, a, A) contains objects like (qj , λ) or (qj , BC).

We are given one such npda (δ) and we want to
construct a grammar.

Pushdown Automata – p. 14

Basic Idea

Here we want the sentential form to represent stack
content.

The grammar we construct uses variables of the form
(qiAqj). We require the following relation between
grammar and npda.
(qiAqj)

∗

⇒ v if and only if the npda erases A from the
stack while reading v and going from qi to qj.
Here “erasing” means bringing up the variable under A
in stack.

Pushdown Automata – p. 15

Construction

For δ(qi, a, A) = (qj , λ), we add to the production

(qiAqj) → a.

For δ(qi, a, A) = (qj , BC), we add to the production

(qiAqk) → a(qjBql)(qlCqk),

where ql, qk take on all values in Q. That is, to erase A
from stack, we first replace A by BC and subsequently
erase B and C.

The start symbol is (q0zqf).

Pushdown Automata – p. 16

Proof

We show that for all qi, qj ∈ Q, u, v ∈ Σ∗, A ∈ Γ, X ∈ Γ∗,

(qi, uv,AX)
∗

⊢ (qj , v,X) ⇔ (qiAqj)
∗

⇒ u,

which implies (q0, w, z)
∗

⊢ (qf , λ, λ) ⇔ (q0zqf)
∗

⇒ w.

Suppose |u| = n. Then there are n − 1 increments and
n decrements of stack size. For each of these
increment/decrement we have a corresponding rule.
Stringing these rules together we have (qiAqj)

∗

⇒ u.

Pushdown Automata – p. 17

Deterministic Case

A deterministic pushdown acceptor (dpda) never has a
choice for its move. We require for dpda that

δ(q, a, b) contains at most one element.
If δ(q, λ, b) is non-empty, then δ(q, c, b) is empty for
all c ∈ Σ,

Note that for dpda we allow λ-transition or no move,
unlike the case of dfa.

dpda and npda are not equal in their descriptive
powers. There are languages that can be accepted by
npda but not by any dpda. This is also different from
the case of dfa and nfa.

Pushdown Automata – p. 18

Deterministic cfg

A language L is said to be a deterministic context-free
language if there exists a dpda M such that L = L(M).
For example, {anbn : n ≥ 0} is a deterministic cfg.

The other familiar example {wwR : w ∈ Σ∗} is known to
be non-deterministic.

A context-free language L can be shown, indirectly, to
be non-deterministic by assuming it to be deterministic
and reaching a contradiction.

Pushdown Automata – p. 19

{anbn : n ≥ 0} ∪ {anb2n : n ≥ 0}

This language is a cfl but not dcfl.

It is a cfl since L = L1 ∪L2 and both L1 = {anbn : n ≥ 0}

and L2 = {anb2n : n ≥ 0} are cfls.

Consider L̂ = L ∪ {anbncn : n ≥ 0}. It can be shown by
pumping lemma for cfg that L̂ cannot be a cfl.

Suppose L is dcfl. Then we can construct an npda M̂

for L̂ from a dpda M for L, as depicted in Figure 7.4.
That’s a contradiction.

Pushdown Automata – p. 20

Grammars for Compiler Design

The decision whether a string is in the language of a
dpda can be made quickly as there is no backtracking
involved.

In order to decide if a string is in a context-free
grammar, if there were some way to pinpoint the next
rule to use in the derivation, then the parsing process
would also be very fast.

The material introduced here is important for the study
of compilers, but not directly related to later subjects in
this course.

Pushdown Automata – p. 21

LL Grammar

Recall that in the s-grammar, the parsing is linear-time.
There is only one candidate rule to use when we look
at the first variable in sentential form and the first
symbol in the unmatched part of input string.

s-grammar is a special case of the class of LL
grammars. LL means we are scanning the symbols
from left-to-right and we are constructing the leftmost
derivation.

More generally, with a LL(k) grammar, we can identify
the correct rule given the next k symbols in the input.
Apparently the parsing can be done very quickly.

Pushdown Automata – p. 22

Pumping Lemma

Let L be an infinite context-free language. Then there
exists some positive integer m such that any w ∈ L
with |w| ≥ m can be decomposed as

w = uvxyz,

with
|vxy| ≤ m, |vy| ≥ 1,

such that

uvixyiz ∈ L for i = 0, 1, 2,

This is known as the pumping lemma for context-free
languages.

Pushdown Automata – p. 23

Proof

Assume the grammar is in the Chomsky normal form,
so there is no λ-production.

Consider a very big derivation tree where the depth is
more than the number of variables in V . Then at least
one of the variables, say A, is repeated in the longest
path from root.

Suppose the terminal string under the last appearance
of A is x. Let the partial derivation tree under the first
appearance A be vxy, so uAz is a sentential form in the
derivation of w. Then clearly uvixyiz is in the language.

Pushdown Automata – p. 24

Closure Properties

The set of context-free languages is closed under
union, concatenation, and star closure.

The set of context-free languages is not closed under
intersection and complementation.

Pushdown Automata – p. 25

Proof

Suppose that L1, L2 are context-free languages.
U = L1 ∪ L2, C = L1 · L2, and S = L∗

1. The variable sets
are disjoint.

The grammar for U is to add a new start variable SU

and a rule SU → S1|S2.

The grammar for C is to add a new start variable SC

and a rule SC → S1S2.

The grammar for S is to add a new start variable SU

and a rule SS → S1SS |λ.

Counter-examples can be given to prove the
non-closedness of intersection and complementation.

Pushdown Automata – p. 26

Regular Intersection

Let L1 be context-free and L2 be regular. Then L1 ∩ L2

is context-free.

To prove, we construct an npda given the npda M1 for
L1 and dfa M2 for L2, which simulates simultaneous
execution of M1 and M2.

Pushdown Automata – p. 27

Decidable Properties

There exists an algorithm for deciding whether
L(G) = ∅. Recall that an algorithm has to answer
correctly for every instance of the problem.

We remove the useless symbols and rules. S is
useless iff L(G) is empty.

There exists an algorithm for deciding whether L(G) is
infinite.

Remove useless variables, rules, unit productions and
λ-productions. L(G) is infinite iff there is a cycle in the
dependency graph, where an edge from A to B means
there is a rule

A → xBy.

Pushdown Automata – p. 28

	Introduction
	Pushdown Automata
	Transition Function
	Examples of $delta $
	Instantaneous Description
	Language Accepted by An npda
	An Example
	Another Example
	npda for cfg
	Construction
	Proof $L(G)
subseteq L(M)$
	Proof $L(M)
subseteq L(G)$
	cfg for npda
	Basic Idea
	Construction
	Proof
	Deterministic Case
	Deterministic cfg
	${a^nb^n: n ge 0} cup {a^nb^{2n}: n ge 0}$
	Grammars for Compiler Design
	LL Grammar
	Pumping Lemma
	Proof
	Closure Properties
	Proof
	Regular Intersection
	Decidable Properties

