
Turing Machines
Notes on Automata and Theory of Computation

Chia-Ping Chen

Department of Computer Science and Engineering

National Sun Yat-Sen University

Kaohsiung, Taiwan ROC

Turing Machines – p. 1

Recursively Enumerable Languages

The set of regular languages is a proper subset of the
set of context-free languages.

While context-free grammar appears to be able to
model natural languages and programming languages,
some very simple languages cannot be characterized
by cfg, e.g.

{anbncn, n ≥ 0}, {ww,w ∈ {a, b}∗}.

We introduce the set of recursively enumerable (RE)
languages. It includes the set of context-free
languages and contains the above examples.

Turing Machines – p. 2

Automata and Languages

RE languages are defined by Turing machines (TM).
That is, a language is RE if it is accepted by a Turing
machine.

To draw analogy, note that regular languages and
context-free languages can equivalently be defined
with automata, i.e., the finite automata and the
pushdown automata.

We begin our study beyond context-free languages
and pushdown automata with Turing machines.

Turing Machines – p. 3

Turing Machine

A TM uses a tape as storage.

The tape is divided into cells. A cell holds one tape
symbol.

A read-write head is above some cell.

In one move, the head reads the symbol beneath it,
writes a symbol to the current cell, moves left or right,
and the machine is in another state.

Initially, the input is stored on the tape surrounded by
blanks, and the head is above the first symbol of input.

It keeps going until no moves can be made or a final
state is entered.

Turing Machines – p. 4

Formal Definition

A TM M is defined by

M = (Q,Σ,Γ, δ, q0,�, F),

where
Q is the set of states
Σ is the input alphabet
Γ is the tape alphabet
δ is the transition function
� ∈ Γ is the blank symbol
q0 is the initial state
F is the set of final states

Turing Machines – p. 5

Notational Conventions

input symbol: lower-case letters at the beginning of
alphabet e.g., a, b, c

tape symbol: capital letters near the end of alphabet
e.g., X,Y, Z

string of input symbols: lower-case letters near the end
of alphabet, e.g., w, x, y, z

string of tape symbols: Greek letters, e.g., α, β, γ

state: p, q and nearby letters

Turing Machines – p. 6

Transition Function

Domain and range of a transition function

δ : Q × Γ → Q × Γ × {L,R}.

In words, based on the current state and tape symbol,
a TM does three things: transits state, writes a symbol
to the current cell, and moves the head left or right.

A TM is said to halt if it reaches a configuration for
which δ is not defined. This is possible because δ is a
partial function in general.

It helps to look at some examples (Ex. 9.1-2) to get the
ideas.

Turing Machines – p. 7

Standard Turing Machines

There are quite a few models of Turing machines.
Some of them are equivalent in their descriptive
powers.

A TM is said to be a standard TM if it has the following
features.

The tape is unbounded in both directions.
It is deterministic in the sense that at most one
move is defined in δ for any configuration.
There is no input file or output device. Everything is
on the tape.

We will be talking about standard TMs unless specified
otherwise.

Turing Machines – p. 8

Instantaneous Description

The configuration of a TM at an instant is completely
specified by state, tape content, and head position.

We can denote a configuration by

α qβ or X1X2 . . . Xk−1 qXk . . . Xn,

meaning
the current state is q,
the tape content is X1X2 . . . Xn, i.e., αβ,
the head is above the cell for Xk.

This notation is called instantaneous description (ID).

Turing Machines – p. 9

Moves

Let M = (Q,Σ,Γ, δ, q0,�, F) be a TM. A move from one
ID to the next is denoted by

α1 pα2 ⊢ β1 qβ2.

The transition function decides moves,

X1 . . . pXkXk+1 . . . Xn ⊢ X1 . . . Y qXk+1 . . . Xn

⇔ δ(p,Xk) = (q, Y,R),

X1 . . . Xk−1 pXk . . . Xn ⊢ X1 . . . qXk−1Y . . . Xn

⇔ δ(p,Xk) = (q, Y, L).

Turing Machines – p. 10

Moves at the Boundaries

In an instantaneous description, we need not specify
the blank symbols extending to the left and the right.

However, if the head is above a blank cell, then we
need to signal that in ID. In particular,

If δ(p,X1) = (q, Y, L) and the head is at the left end,
then

pX1X2 . . . Xn ⊢ q�Y X2 . . . Xn

Similarly, if δ(p,Xn) = (q, Y,R)

X1X2 . . . Xn−1 pXn ⊢ X1X2 . . . Xn−1Y q�

Turing Machines – p. 11

Transition Graph

The transition function of a TM can be represented by
a table or a graph.

In a transition graph, each state is represented by a
vertex. An edge from state p to state q is labelled by
one or more items of X,Y,D, where X is the scanned
symbol, Y is the replacing symbol and D is the
direction of move.

An edge with multiple labels can be replaced by
multiple edges, each with a single label.

Turing Machines – p. 12

Halting

We represent a sequence of moves by
∗
⊢. For example,

α1 pβ1

∗
⊢ α2 qβ2.

M is said to halt if it is in a configuration for which the
transition function is undefined.

A TM can halt in a final state: we can make a TM
halt whenever a final state is entered by making the
transition function undefined in any final state.
A TM can also halt in a non-final state.

Turing Machines – p. 13

Computation

A sequence of moves that eventually makes a TM halt
is called a computation.

When a TM finishes a computation, we know whether
or not the input is accepted. An input is accepted if it
leads the TM to a final state and halt.

A TM may never halt for some inputs. In such cases,
the TM is said to be in an infinite loop, for which we
use the following notation

α pβ
∗
⊢ ∞.

By definition, these inputs are not accepted by the TM.
Ex. 9.3 is an example for infinite loop.

Turing Machines – p. 14

Language of a TM

Let M = (Q,Σ,Γ, δ, q0,�, F) be a TM. The language
recognized (accepted) by M is defined by

L(M) = {w ∈ Σ+ : q0w
∗
⊢ α qfβ, qf ∈ F, α, β ∈ Γ∗}.

Note
The final tape content is irrelevant in the definition.
λ is not in L(M).

By definition, L(M) is recursively enumerable for any
M .

Turing Machines – p. 15

Infinite Loop

By definition, if a string w makes a TM to be in an
infinite loop, then it is not in L(M).

There are three cases when running M on w.
M halts in a final state. w ∈ L(M).
M halts in a non-final state. w /∈ L(M).
M does not halt after a very long time. We cannot
decide whether or not w ∈ L(M).

It is the last case that makes things interesting. We
may not be able to decide whether M is just doing an
extremely long computation or it is indeed in an infinite
loop.

Turing Machines – p. 16

Algorithm

A TM M that halts on any inputs is said to be an
algorithm .

For an input, an algorithm either halts in a final state or
halts in a non-final state. The possibility of entering an
infinite loop is eliminated from consideration.

Common understanding of an algorithm is a procedure
that solves a problem. Here, if M is an algorithm, it
solves the problem of whether w ∈ L(M) for any w.

Turing Machines – p. 17

Recursive Language

Given a language L, if there exists an algorithm M
(which halts on any input) such that L = L(M), then L
is said to be recursive.

The set of recursive languages is a subset of the set of
RE languages.

According to the above definition, a recursive
language is RE.
Is there an RE language that is not recursive?

We will have a more detailed discussion later.

Turing Machines – p. 18

TM for 00
∗

Let M = {{q0, q1}, {0, 1}, {0, 1}, δ, q0,�, {q1}}, with

δ(q0, 0) = (q0, 0, R), δ(q0,�) = (q1,�, R).

M halts without acceptance whenever 1 is read. It
halts with acceptance if � is read.

Turing Machines – p. 19

TM for {anbn} and {anbncn}

Q = {q0, q1, q2, q3, q4}, Σ = {a, b}, Γ = {a, b, x, y,�},
F = {q4}.

The idea is to replace a by x and b by y. q0 signals
equal number of x and y and moving right, q1 signals
an unmatched x and moving right, q2 signals equal
number of x and y and moving backwards, q3 signals
no more a cannot be found before first y.

TM for {anbncn} can be constructed similarly.

Note that one is cfl but the other is not. That is, TM can
recognize some languages that cannot be recognized
by npda.

Turing Machines – p. 20

TM as a Transducer

When a TM M is used as an acceptor, we are not
concerned about the tape content when a computation
finishes. We only need to know the state M is in, to
decide whether the input is in L(M).

A TM can be a transducer. In this case, we care about
the tape content when a computation finishes.

Modern digital computers act more like transducers
than acceptors.

A TM transducer M of a function f(w) is such that

q0w
∗
⊢M qff(w), qf ∈ F.

Turing Machines – p. 21

Computable Functions

A function f with domain D is said to be computableor
Turing-computable if there exists a TM transducer M
such that

q0w
∗
⊢M qff(w), qf ∈ F,

for all w ∈ D.

All basic mathematical functions (operations) are
Turing-computable, as well as composite functions of
basic functions.

Turing Machines – p. 22

Addition

A TM can be designed to compute x + y for positive
integers x and y.

First, we need a representation for positive integers.
We use the unary notation

w ∈ {1}+, |w(x)| = x.

The designed TM should carry out the following
computation for any x, y

q0w(x)0w(y)
∗
⊢ qfw(x + y)0.

See Example 9.9.

Turing Machines – p. 23

Copy

A TM can be designed for the copy function. Using the
unary notation the designed TM should carry out the
following computation for any w

q0w
∗
⊢ qfww.

See Example 9.10.

Turing Machines – p. 24

Test of Condition

We design a TM M that, given positive integers x, y,
halts in qy if x ≥ y and in qn if x < y. That is,

q0w(x)0w(y)

∗
⊢ qyw(x)0w(y), if x ≥ y,

q0w(x)0w(y)
∗
⊢ qnw(x)0w(y), if x < y.

Essentially we are matching the 1’s to the left of 0 to the
1’s to the right of 0. This is similar to recognizing anbn.

Turing Machines – p. 25

Conditional Statement

Now we can implement a conditional statement,

f(x, y) =

{
x + y, if x ≥ y,

0, if x < y.

We have a comparer C, an adder A, and an eraser E.
x, y are compared, then either added or erased.

The implementation goes like

qC,0w(x)0w(y)

∗
⊢ qA,0w(x)0w(y)

∗
⊢ qA,fw(x + y)0, if x ≥ y,

qC,0w(x)0w(y)
∗
⊢ qE,0w(x)0w(y)

∗
⊢ qE,f0, if x < y.

Turing Machines – p. 26

Pseudo-code

In designing or describing a computer program,
pseudo-codes are useful for outlining the main ideas.

When using pseudo-codes, we assume that we can
translate the description to a programming language.

The same can be said about TM. We assume that we
can implement pseudo-codes by TMs. In particular,
function calls can be implemented by TM.

Turing Machines – p. 27

Turing Thesis

Turing thesis claims that any computation that can be
carried out by mechanical means can be performed by
a TM.

This is not something provable. It is indeed a definition
for mechanical computation: a computation is
mechanical iff it can be done by a TM.

According to the Turing thesis, if we can do something
with a computer program, then we can do it by a TM.

Thus, to show something is computable by TM, we can
simply give a pseudo-code or block diagram. This
saves us from the trivial task of constructing TM.

Turing Machines – p. 28

Equivalent Classes of Automata

Two automata are said to be equivalent if they accept
the same language.

Two classes of automata are said to be equivalent if
every automaton of the first class is equivalent to an
automaton in the second class, and vice versa.

For example, the classes of dfa’s and nfa’s are
equivalent.
If the converse is not sure to be true, we say that
the second class is at least as powerful as the first.

Turing Machines – p. 29

Multitrack-tape TM

We want to show that some variants of TM have the
same descriptive powers as standard TM.

We start with a TM with a tape of multiple tracks, called
a multitrack-tape TM.

This is equivalent to a standard TM using the
Cartesian product of track alphabets as the tape
alphabet. That is,

Γ = Γ1 × Γ2 × . . .

So everything that can be done by a multitrack-tape
TM can be done by a standard TM.

Turing Machines – p. 30

TM with Stay Option

Instead of always moving left or right, the head can
stay in a move with the stay option.

The transition function is modified to be

δ : Q × Γ → Q × Γ × {L,R, S}.

The class of TMs with stay option is equivalent to the
class of standard TMs. A TM M with stay option can
be simulated by a standard TM M̂ : A move of M

involving S can be simulated by two moves in M̂ ,

δM (p, a) = (q, b, S) ⇒

{
δcM

(p, a) = (r, b, R)

δcM
(r, ∗) = (q, ∗, L)

Turing Machines – p. 31

TM with Semi-infinite Tape

A semi-infinite tape has a left boundary. The head
above the tape cannot move further left at the
boundary.

A standard TM M can be simulated by a TM M̂ with
semi-infinite tape. It follows that the class of TMs with
semi-infinite tapes is equivalent to the class of
standard TMs.

The simulating M̂ has a two-track semi-infinite tape.

The upper (lower) track stores the content of M ’s tape
to the right (left) of some reference point.

Turing Machines – p. 32

Simulation

The set of states of M̂ is partitioned into two subsets
q̂js, p̂js. From the state of M̂ we know which part of
tape M is working on.

δM (qi, a) = (qj , c, L) ⇒

{
δcM

(q̂i, (a, ∗)) = (q̂j , (c, ∗), L)

δcM
(p̂i, (∗, a)) = (p̂j , (∗, c), R)

End markers are used to facilitate the transition
between the two regions. For a move to the left
passing the reference point, we have

δcM
(q̂j , (#,#)) = (p̂j , (#,#), R)

See Figure 10.4 for illustration.

Turing Machines – p. 33

Off-line TM

A standard TM has no input file. An off-line TM permits
the use of input files (read-only).

The transition function depends on the state, tape
symbol and the input symbol.

The class of off-line TM is equivalent to the class of
standard TM. A off-line TM M can be simulated by a
standard TM M̂ with a four-track tape:

track 1: input content of M

track 2: input position of M

track 3: tape content of M

track 4: head position of M

Turing Machines – p. 34

Multitape TM

A multitape TM may have more than one tapes, each
with its own head.

The transition function specifies the moves of all tapes

δ : Q × Γn → Q × Γn × {L,R}n.

The class of multitape TM is equivalent to the class of
standard TM. An n-tape TM can be simulated by a
standard TM with a 2n-track tape. Each track keeps
track of either head position or tape content.

It is often easier to work with a multitape TM, e.g. to
accept {anbn} (Example 10.1).

Turing Machines – p. 35

Multidimensional TM

A multidimensional TM has a tape extending infinitely
in more than one direction.

The transition function for a 2-D TM is

δ : Q × Γ → Q × Γ × {L,R,U,D}.

That is, the head can move left, right, up, or down in
one transition.

The class of multidimensional TMs is equivalent to the
class of standard TMs.

Turing Machines – p. 36

Simulation

We can simulate a multidimensional TM M with a
standard TM M̂ with a two-track tape.

We need an address scheme for cells in the
multidimensional tape. This is not difficult to do with a
reference point.

To simulate one move of M , M̂ computes the new
address of the cell under the head. It then modifies the
position track, and the content track.

The simulation of 2-D TM by a 2-track TM is illustrated
in Figure 10.13.

Turing Machines – p. 37

Nondeterministic TM

A nondeterministic TM permits multiple choices of next
move. The value of the transition function is a set,

δ : Q × Γ → 2Q×Γ×{L,R}.

A string w is accepted by a nondeterministic TM M if
there exists a sequence of candidate moves such that

q0w
∗
⊢ x1qfx2, qf ∈ F.

Following some candidates may lead to a non-final halt
state or an infinite loop, but they are irrelevant to
acceptance.

Turing Machines – p. 38

Parallelized View

A nondeterministic TM has the ability to replicate itself
when necessary.

When there are more than one candidate moves
are, the TM produces as many replicas as needed
and gives each replica the task to follow one
candidate.
If any of the replicas ever succeeds in reaching a
final state, then the input string is accepted.

Conceptually, we are exploring the possibilities
simultaneously.

Turing Machines – p. 39

Simulation

A nondeterministic TM M can be simulated by a
(deterministic) TM M̂ with a 2-D tape.

Every two horizontal tracks represents one replica.
One track is used for tape content and the other is
used for head position and internal state.

M̂ looks at an active configuration and updates the
tape content as new replicas are created.

Note that a depth-first search for a successful
candidate is not a good idea.

Turing Machines – p. 40

	Recursively Enumerable Languages
	Automata and Languages
	Turing Machine
	Formal Definition
	Notational Conventions
	Transition Function
	Standard Turing Machines
	Instantaneous Description
	Moves
	Moves at the Boundaries
	Transition Graph
	Halting
	Computation
	Language of a TM
	Infinite Loop
	Algorithm
	Recursive Language
	TM for 00^*
	TM for ${a^nb^n}$ and ${a^nb^nc^n}$
	TM as a Transducer
	Computable Functions
	Addition
	Copy
	Test of Condition
	Conditional Statement
	Pseudo-code
	Turing Thesis
	Equivalent Classes of Automata
	Multitrack-tape TM
	TM with Stay Option
	TM with Semi-infinite Tape
	Simulation
	Off-line TM
	Multitape TM
	Multidimensional TM
	Simulation
	Nondeterministic TM
	Parallelized View
	Simulation

