Turing Machines*Notes on Automata and Theory of Computation*

Chia-Ping Chen

Department of Computer Science and EngineeringNational Sun Yat-Sen UniversityKaohsiung, Taiwan ROC

Turing Machines – p. 1

Recursively Enumerable Languages

- The set of regular languages is ^a proper subset of theset of context-free languages.
- While context-free grammar appears to be able to model natural languages and programming languages, some very simple languages cannot be characterizedby cfg, e.g.

$\{a^n$ $n_{\small b}$ ${}^nc^n, n \ge 0$, $\{ww, w \in \{a, b\}^*$ $\left. \begin{array}{c} * \ * \end{array} \right\}.$

We introduce the set of **recursively enumerable (RE)**languages. It includes the set of context-freelanguages and contains the above examples.

Automata and Languages

- RE languages are defined by **Turing machines (TM)**. That is, ^a language is RE if it is accepted by ^a Turingmachine.
- **•** To draw analogy, note that regular languages and context-free languages can equivalently be definedwith automata, i.e., the finite automata and thepushdown automata.
- We begin our study beyond context-free languagesand pushdown automata with Turing machines.

Turing Machine

- A TM uses a *tape* as storage.
- The tape is divided into **cells**. ^A cell holds one tape symbol.
- A read-write **head** is above some cell.
- In one **move**, the head reads the symbol beneath it, writes ^a symbol to the current cell, moves left or right, and the machine is in another state.
- Initially, the input is stored on the tape surrounded byblanks, and the head is above the first symbol of input.
- It keeps going until no moves can be made or ^a final state is entered.

Formal Definition

A TM M is defined by

 $M = (Q, \Sigma, \Gamma, \delta, q_0, \Box, F),$

where

- Q is the set of states
- Σ is the input alphabet
- Γ is the **tape alphabet**
- δ is the transition function
- ∈Γ is the **blank symbol**
- q_0 $_{\rm 0}$ is the initial state
- F is the set of final states

Notational Conventions

- input symbol: lower-case letters at the beginning of alphabet e.g., a, b, c
- tape symbol: capital letters near the end of alphabet e.g., X,Y,Z
- string of input symbols: lower-case letters near the endof alphabet, e.g., w, x, y, z
- **•** string of tape symbols: Greek letters, e.g., α, β, γ
- state: $\emph{p, q}$ and nearby letters

Transition Function

● Domain and range of a transition function

 $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}.$

- **In words, based on the current state and tape symbol,** ^a TM does three things: transits state, writes ^a symbol to the current cell, and moves the head left or right.
- A TM is said to **halt** if it reaches ^a configuration for which δ is not defined. This is possible because δ is a partial function in general.
- It helps to look at some examples (Ex. 9.1-2) to get theideas.

Standard Turing Machines

- There are quite a few models of Turing machines. Some of them are equivalent in their descriptivepowers.
- A TM is said to be ^a **standard TM** if it has the following features.
	- The tape is unbounded in *both* directions.
	- It is *deterministic* in the sense that at most one move is defined in δ for any configuration.
	- There is *no* input file or output device. Everything is on the tape.
- We will be talking about standard TMs unless specifiedotherwise.

Instantaneous Description

- The configuration of ^a TM at an instant is completelyspecified by state, tape content, and head position.
- We can denote a configuration by

 α $q\beta$ or X_1X_2 $\frac{1}{2} \ldots X$ $k\!-\!1$ $_1$ qX $\,$ $k \ldots X_n,$

meaning

- the current state is $q,$
- the tape content is X_1X_2 $\lambda_2 \ldots X_n$, i.e., $\alpha \beta$,
- the head is above the cell for $X_k.$
- This notation is called **instantaneous description (ID)**.

Moves

Let $M = (Q, \Sigma, \Gamma, \delta, q_0, \Box, F)$ be a TM. A move from one
ID to the next is denoted by ID to the next is denoted by

$$
\alpha_1 \ p \alpha_2 \ \vdash \ \beta_1 \ q \beta_2.
$$

• The transition function decides moves,

$$
X_1 \dots pX_k X_{k+1} \dots X_n \vdash X_1 \dots Y q X_{k+1} \dots X_n
$$

\n
$$
\Leftrightarrow \delta(p, X_k) = (q, Y, R),
$$

\n
$$
X_1 \dots X_{k-1} p X_k \dots X_n \vdash X_1 \dots q X_{k-1} Y \dots X_n
$$

\n
$$
\Leftrightarrow \delta(p, X_k) = (q, Y, L).
$$

Moves at the Boundaries

- In an instantaneous description, we need not specifythe blank symbols extending to the left and the right.
- However, if the head is above ^a blank cell, then we \bullet need to signal that in ID. In particular,
	- If $\delta(p,X_1)=(q,Y,L)$ and the head is at the left end, then

$$
pX_1X_2\ldots X_n\vdash q\square YX_2\ldots X_n
$$

Similarly, if $\delta(p,X_n)=(q,Y,R)$

$$
X_1X_2...X_{n-1}pX_n \vdash X_1X_2...X_{n-1}Yq \Box
$$

Transition Graph

- The transition function of a TM can be represented by ^a table or ^a graph.
- **In a transition graph, each state is represented by a** vertex. An edge from state p to state q is labelled by one or more items of X, Y, D , where X is the scanned
symbol. Y is the replacing symbol and D is the symbol, Y is the replacing symbol and D is the
direction of move direction of move.
- An edge with multiple labels can be replaced by multiple edges, each with ^a single label.

Halting

We represent a sequence of moves by $\vdash.$ For example, ∗

$$
\alpha_1 \ p\beta_1 \vdash \alpha_2 \ q\beta_2.
$$

- M is said to **halt** if it is in ^a configuration for which the transition function is undefined.
	- A TM can halt in ^a final state: we can make ^a TMhalt whenever ^a final state is entered by making thetransition function undefined in any final state.
	- A TM can also halt in ^a non-final state.

Computation

- A sequence of moves that eventually makes ^a TM halt is called ^a **computation**.
- When ^a TM finishes ^a computation, we know whetheror not the input is accepted. An input is accepted if it leads the TM to ^a final state and halt.
- A TM may never halt for some inputs. In such cases, the TM is said to be in an **infinite loop**, for which we use the following notation

$$
\alpha p\beta \nvdash^* \infty.
$$

By definition, these inputs are not accepted by the TM. Ex. 9.3 is an example for infinite loop.

Language of ^a TM

Let $M = (Q, \Sigma, \Gamma, \delta, q_0, \Box, F)$ be a TM. The language
recognized (accented) by M is defined by recognized (accepted) by M is defined by

$$
L(M) = \{ w \in \Sigma^+ : q_0 w \upharpoonright \alpha \ q_f \beta, q_f \in F, \alpha, \beta \in \Gamma^* \}.
$$

Note

- The final tape content is irrelevant in the definition.
- λ is not in $L(M).$
- By definition, $L(M)$ is recursively enumerable for any M .

Infinite Loop

- By definition, if a string w makes a TM to be in an
infinite learn them it is not in $I(M)$ infinite loop, then it is not in $L(M).$
- There are three cases when running M on w .
	- M halts in a final state. $w \in L(M)$.
	- M halts in a non-final state. $w \notin L(M)$.
	- M does not halt after a very long time. We cannot
decide whether or not $w \in L(M)$ decide whether or not $w\in L(M).$

 It is the last case that makes things interesting. Wemay not be able to decide whether M is just doing an
extremely long computation or it is indeed in an infinit extremely long computation or it is indeed in an infiniteloop.

Algorithm

- A TM M that *halts on any inputs* is said to be an
algorithm **algorithm**.
- For an input, an algorithm either halts in ^a final state or halts in ^a non-final state. The possibility of entering aninfinite loop is eliminated from consideration.
- **Common understanding of an algorithm is a procedure** that solves a problem. Here, if M is an algorithm, it
solves the problem of whether $w \in L(M)$ for any w solves the problem of whether $w\in L(M)$ for any $w.$

Recursive Language

- Given a language $L,$ if there exists an algorithm M \mathbf{u} innut) such that $L = L(M)$ th (which halts on any input) such that $L=L(M),$ then L is said to be **recursive**.
- **•** The set of recursive languages is a subset of the set of RE languages.
	- According to the above definition, ^a recursivelanguage is RE.
	- Is there an RE language that is not recursive?
- We will have ^a more detailed discussion later.

TM for ⁰⁰[∗]

Let $M = \{\{q_0, q_1\}, \{0, 1\}, \{0, 1\}, \delta, q_0, \Box, \{q_1\}\}\,$, with

$$
\delta(q_0, 0) = (q_0, 0, R), \ \delta(q_0, \Box) = (q_1, \Box, R).
$$

 M halts without acceptance whenever 1 is read. It halts with acceptance if \Box is read \bullet halts with acceptance if \square is read.

TM for $\{a^n b^n\}$ and $\{a^n b^n c^n\}$

- $Q = \{q_0, q_1, q_2, q_3, q_4\}, \, \Sigma = \{a, b\}, \, \Gamma = \{a, b, x, y, \Box\},$ $F = \{q_4\}.$
- The idea is to replace a by x and b by y . q_0 signals equal number of x and y and moving right, q_1 signals an unmatched x and moving right, q_2 signals equal number of x and y and moving backwards, q_3 signals no more a cannot be found before first $y.$
- TM for $\{a^nb^nc^n\}$ can be constructed similarly.
- Note that one is cfl but the other is not. That is, TM can recognize some languages that cannot be recognizedby npda.

TM as ^a Transducer

- When a TM M is used as an acceptor, we are not
concerned about the tane content when a comput concerned about the tape content when ^a computationfinishes. We only need to know the state M is in, to
decide whether the innut is in $L(M)$ decide whether the input is in $L(M).$
- A TM can be ^a **transducer**. In this case, we care about the tape content when ^a computation finishes.
- Modern digital computers act more like transducersthan acceptors.
- A TM transducer M of a function $f(w)$ is such that

$$
q_0w \xrightarrow{\ast} \eta g_f f(w), \ q_f \in F.
$$

Computable Functions

A function f with domain D is said to be **computable** or
Turing computable if there exists a TM transduper, M Turing-computable if there exists a TM transducer M such that

$$
q_0w \xrightarrow{\ast} \eta g_f f(w), \ q_f \in F,
$$

for all $w\in D.$

All basic mathematical functions (operations) are Turing-computable, as well as composite functions of basic functions.

Addition

- A TM can be designed to compute $x+y$ for positive integrate x or $\boldsymbol{\mu}$ integers x and y .
- **•** First, we need a representation for positive integers. We use the **unary notation**

$$
w \in \{1\}^+, \ |w(x)| = x.
$$

• The designed TM should carry out the following computation for any x,y

$$
q_0w(x)0w(y) \stackrel{*}{\vdash} q_fw(x+y)0.
$$

See Example 9.9.

Copy

A TM can be designed for the copy function. Using the unary notation the designed TM should carry out thefollowing computation for any w

> q_0w ∗ $\vdash q_fww.$

See Example 9.10.

Test of Condition

We design a TM M that, given positive integers $x,y,$ halts in α if $x > y$ and in α if $x < y$. That is halts in q_y if $x\geq y$ and in q_n η_n if $x < y$. That is,

$$
\begin{cases} q_0w(x)0w(y) \stackrel{*}{\vdash} q_yw(x)0w(y), & \text{if } x \ge y, \\ q_0w(x)0w(y) \stackrel{*}{\vdash} q_nw(x)0w(y), & \text{if } x < y. \end{cases}
$$

Essentially we are matching the 1 's to the left of 0 to the 1 's to the right of $0.$ This is similar to recognizing a^n $n_{\bm{b}}$.

Conditional Statement

Now we can implement ^a conditional statement,

$$
f(x,y) = \begin{cases} x+y, & \text{if } x \ge y, \\ 0, & \text{if } x < y. \end{cases}
$$

- We have a comparer C , an adder A , and an eraser $E.$ x,y are compared, then either added or erased.
- **•** The implementation goes like

$$
\begin{cases} q_{C,0}w(x)0w(y) \stackrel{*}{\vdash} q_{A,0}w(x)0w(y) \stackrel{*}{\vdash} q_{A,f}w(x+y)0, & \text{if } x \ge y, \\ q_{C,0}w(x)0w(y) \stackrel{*}{\vdash} q_{E,0}w(x)0w(y) \stackrel{*}{\vdash} q_{E,f}0, & \text{if } x < y. \end{cases}
$$

Pseudo-code

- In designing or describing ^a computer program, pseudo-codes are useful for outlining the main ideas.
- When using pseudo-codes, we assume that we can translate the description to ^a programming language.
- The same can be said about TM. We assume that wecan implement pseudo-codes by TMs. In particular, function calls can be implemented by TM.

Turing Thesis

- Turing thesis claims that any computation that can be carried out by mechanical means can be performed by^a TM.
- This is not something provable. It is indeed a *definition* for mechanical computation: ^a computation ismechanical iff it can be done by ^a TM.
- According to the Turing thesis, if we can do something with ^a computer program, then we can do it by ^a TM.
- **•** Thus, to show something is computable by TM, we can simply give ^a pseudo-code or block diagram. Thissaves us from the trivial task of constructing TM.

Equivalent Classes of Automata

- Two automata are said to be equivalent if they accept the same language.
- Two classes of automata are said to be equivalent if every automaton of the first class is equivalent to anautomaton in the second class, and vice versa.
	- For example, the classes of dfa's and nfa's areequivalent.
	- If the converse is not sure to be true, we say that the second class is *at least as powerful* as the first.

Multitrack-tape TM

- We want to show that some variants of TM have thesame descriptive powers as standard TM.
- We start with ^a TM with ^a tape of multiple tracks, called^a multitrack-tape TM.
- This is equivalent to a standard TM using the Cartesian product of track alphabets as the tapealphabet. That is,

$$
\Gamma = \Gamma_1 \times \Gamma_2 \times \ldots
$$

So everything that can be done by ^a multitrack-tapeTM can be done by ^a standard TM.

TM with Stay Option

- Instead of always moving left or right, the head canstay in ^a move with the stay option.
- The transition function is modified to be

 $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R, S\}.$

• The class of TMs with stay option is equivalent to the class of standard TMs. A TM M with stay option can
be simulated by a standard TM \widehat{M}_i A may of M be simulated by a standard TM \widehat{M} : A move of M involving S can be simulated by two moves in $\widehat{M},$

$$
\delta_M(p, a) = (q, b, S) \Rightarrow \begin{cases} \delta_{\widehat{M}}(p, a) = (r, b, R) \\ \delta_{\widehat{M}}(r, *) = (q, *, L) \end{cases}
$$

TM with Semi-infinite Tape

- A semi-infinite tape has ^a left boundary. The headabove the tape cannot move further left at theboundary.
- A standard TM M can be simulated by a TM \widehat{M} with
semi-infinite tane. It follows that the class of TMs wit semi-infinite tape. It follows that the class of TMs withsemi-infinite tapes is equivalent to the class of standard TMs.
- The simulating \widehat{M} has a two-track semi-infinite tape.
- The upper (lower) track stores the content of M 's tape to the right (left) of some reference point.

Simulation

The set of states of \widehat{M} is partitioned into two subsets \mathbf{a} of \hat{M} we know which nort of \hat{q}_j s, \hat{p}_j s. From the state of \widehat{M} we know which part of tape M is working on.

$$
\delta_M(q_i, a) = (q_j, c, L) \Rightarrow \begin{cases} \delta_{\widehat{M}}(\hat{q}_i, (a, *)) = (\hat{q}_j, (c, *), L) \\ \delta_{\widehat{M}}(\hat{p}_i, (*, a)) = (\hat{p}_j, (*, c), R) \end{cases}
$$

End markers are used to facilitate the transition between the two regions. For ^a move to the left passing the reference point, we have

$$
\delta_{\widehat{M}}(\hat{q}_j, (\#,\#)) = (\hat{p}_j, (\#,\#), R)
$$

See Figure 10.4 for illustration.

Off-line TM

- A standard TM has no input file. An off-line TM permitsthe use of input files (read-only).
- The transition function depends on the state, tape symbol and the input symbol.
- The class of off-line TM is equivalent to the class of standard TM. A off-line TM M can be simulated by a
standard TM \widehat{M} with a face trank tange standard TM M \widehat{M} with a four-track tape:
	- track $1:$ input content of M
	- track $2\mathrm{:}$ input position of M
	- track $3:$ tape content of M
	- track $4:$ head position of M

Multitape TM

- A multitape TM may have more than one tapes, eachwith its own head.
- **•** The transition function specifies the moves of all tapes

 $\delta:Q\times\Gamma^n$ $^n \rightarrow Q \times \Gamma^n \times \{L,R\}^n$.

- **•** The class of multitape TM is equivalent to the class of standard TM. An n -tape TM can be simulated by a standard TM with a $2n$ -track tape. Each track keeps track of either head position or tape content.
- It is often easier to work with a multitape TM , e.g. to accept $\{a^n$ $n_{\bm{b}}$ $\left\langle n\right\rangle$ (Example 10.1).

Multidimensional TM

- A multidimensional TM has ^a tape extending infinitelyin more than one direction.
- The transition function for a 2-D TM is

$$
\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R, U, D\}.
$$

That is, the head can move left, right, up, or down inone transition.

• The class of multidimensional TMs is equivalent to the class of standard TMs.

Simulation

- We can simulate a multidimensional TM M with a
standard TM \widehat{M} with a two-track tane standard TM M \widehat{M} with a two-track tape.
- We need an address scheme for cells in the multidimensional tape. This is not difficult to do with ^areference point.
- To simulate one move of $M, \, \widehat{M}$ computes the new address of the cell under the head. It then modifies theposition track, and the content track.
- The simulation of 2-D TM by a 2-track TM is illustrated in Figure 10.13.

Nondeterministic TM

A nondeterministic TM permits multiple choices of next move. The value of the transition function is ^a set,

$$
\delta: Q \times \Gamma \to 2^{Q \times \Gamma \times \{L,R\}}.
$$

A string w is accepted by a nondeterministic TM M if
there exists a sequence of candidate moves such the exicte a conjioneo of eandidato movoe ei there exists ^a sequence of candidate moves such that

$$
q_0w \overset{*}{\vdash} x_1q_fx_2, \ q_f \in F.
$$

Following some candidates may lead to ^a non-final halt state or an infinite loop, but they are irrelevant toacceptance.

Parallelized View

- A nondeterministic TM has the ability to replicate itself when necessary.
	- When there are more than one candidate moves are, the TM produces as many replicas as neededand gives each replica the task to follow onecandidate.
	- If any of the replicas ever succeeds in reaching a final state, then the input string is accepted.
- Conceptually, we are exploring the possibilities simultaneously.

Simulation

- A nondeterministic TM M can be simulated by a
(deterministic) TM \widehat{M} with a 2 D tane (deterministic) TM M \widehat{M} with a 2-D tape.
- Every two horizontal tracks represents one replica. One track is used for tape content and the other isused for head position and internal state.
- M looks at an active configuration and updates the tape content as new replicas are created. $\overline{}$
- Note that ^a depth-first search for ^a successful candidate is not ^a good idea.