Undecidability

Notes on Automata and Theory of Computation

Chia-Ping Chen

Department of Computer Science and EngineeringNational Sun Yat-Sen UniversityKaohsiung, Taiwan ROC

Undecidability $- p. 1$

Beyond RE Set

- The RE set appears to be very broad, including all languages that can be computed mechanically.
- Is there any language not recognizable by any TM?
- This is a question about the *limit* of computation.

Theorem

- The powerset of a (infinite) countable set S is uncountable.
- Suppose $S = \{s_1, s_2, \dots\}$. An element L of 2^S can be represented by a sequence of 0 and 1 where the i th bit is 0 if $s_i \notin L$ and 1 otherwise.
- We can prove the theorem by contradiction. Suppose 2^S is countable, then we can write L_1, L_2, \ldots for the elements in 2^S . Representing the L_i 's as bit sequences, we can create a table T . Complementing each bit in the main diagonal of T , we get a bit sequence that is different from any of the sequences in T , contradicting that T includes all elements in $2^S.$

Existence of Non-RE Languages

- For a finite alphabet $\Sigma,$ Σ^* is countable. The set of all languages defined on Σ , 2^{Σ^*} , is *uncountable*.
- **•** The set of TM's is countable as a TM can be encoded by a string in $\{0, 1\}$ (to be shown shortly).
- Each TM defines a RE language, so the set of RE languages is *countable*.
- **•** There are more languages than there are regular languages. So there are (infinitely many) languagesthat are not RE.

Within RE Set

- A TM M may enter an infinite loop for an input not in its
language $\; L(M)$ is RE, but it is not good that we may language. $L(M)$ is RE, but it is not good that we may \mathbf{r} not decide for some inputs whether they are in $L(M).$
- For the above reason, we distinguish between those languages that can be accepted by ^a TM that always halts and those that cannot. This leads to the concept of **decidability**.
- Within the set of recursive languages, we further distinguish those halt in practical time of computation by ^a deterministic TM and those do not. This leads tothe concept of **tractability**.

Encoding TM

- To ask (and answer) problems about TMs or RE languages, one should know it is possible to encodeTMs by strings. One such encoding is described here.
- We first enumerate the states, tape symbols anddirections, respectively.
- With 0 as separator, a transition $\delta(p, a) = (q, b, D)$ can be represented by 5 strings of $1\mathrm{'s}$ (unary representation for the enumerations of p,a,q,b,D .
- With ⁰⁰ as separator, entries in the transition function can be concatenated.
- If an input w is specified, then w can be appended with ∞ 000 as separator.

Universal TM

- A universal TM M_u can simulate the computation of any M on any $w.$
- M_u models a general-purpose computer.
- The universal language L_u $_{u}$ is defined by

 $L_u = L(M_u) = \{(w_i, w) : w \in L(M_i)\}.$

- That is, L_{u} accepts w . $_{u}$ includes $\left (w_{i},w\right)$ if the TM M_{i} encoded by w_{i}
- L_u $_{u}$ plays a fundamental role in computation theory.

The Diagonalization Language

- As we have just shown, it is possible to encode ^a TMwith ^a binary string.
- We can say that the i th TM M_i is the TM whose code is w_i , the i th binary string ($i = 1 w_i$).
- $L(M_i)=\emptyset$ if w_i is not a valid code for TM.
- The diagonalization language L_d $_{d}$ is defined by

 $\{w_i: w_i \notin L(M_i)\}.$

 $L_d\,$ w does not accept $w.$ $_{d}$ is the set of strings such that the TM whose code is

Representing L_d

- Consider a (infinite) matrix where element i,j indicates whether M_i accepts w_j (1: accept, 0: not accept).
- Each row represents an RE language. For example, row i is called the characteristic vector for $L(M_i).$
- The i th diagonal value indicates whether M_i accept w_i . The diagonal vector is ^a characteristic vector.
- $L_d\,$ vector. $_{d}$ is represented by the complement of this diagonal

L_d **Is Not RE**

- L_d is not recognized by any TM. It is not RE.
- To prove, suppose the contrary is true, so $L_d=L(M_i)$ for some $i.$ Is $w_i \in L_d$?
	- If $w_i \in L_d$, then $w_i \in L(M_i)$. But then w_i is not in L_d by definition of L_d .
	- If $w_i \notin L_d$, then $w_i \notin L(M_i)$. But then w_i is in L_d by definition of L_d .

Both lead to contradiction. So the assumption that M_i exists cannot be true.

Recursive

- A language ^L is said to be **recursive** if it is accepted by a TM, say M , that always halts. Such an M is also
called an *algorithm* called an *algorithm*.
- Note that a RE language, say $L = L(M')$, can be non-recursive since M' may enter an infinite loop for some input $w \notin L(M').$
- An interesting question is whether there exists any RElanguage that is not recursive.
- We have shown L_d to be non-RE. We will show that the complement of L_d to be RE but not recursive.

Theorems about Complements

- If L is recursive, so is its complement L .
- If L and L are RE, then L is recursive.
- Only one of the four possibilities is true for L and L .
	- L and L are both recursive.
	- Neither L nor L is RE.
	- L is RE but not recursive, L is not RE.
—
	- L is RE but not recursive, L is not RE.

Ld **Is RE But Not Recursive**

- From L_d being non-RE it follows that L_d is either
pop-PE or PE but not reqursive non-RE or RE but not recursive.
- Note that L_d is the set of strings w_i such that M_i accepts $w_i.$
- We can use the universal TM to simulate running M_i on w_i for each i . To make sure that all such w_i 's are enumerated, the simulation is carried out in ^around-robin fashion.

Decidability

- **•** Languages and problems are really the same thing. A problem becomes ^a language if we can represent instances of the problem by strings.
- A problem is said to be **decidable** if the language is recursive. It is said to be **undecidable** if the language is not recursive.
- Dividing problems or languages between decidable and undecidable is often more important then divisionbetween RE and non-RE. This is because ^a TM not guaranteed to halt does not solve ^a problem for all instances.

Lu **Is Not Recursive**

- We have shown that L_u is RE by constructing a TM, μ the universal TM, for it.
- Suppose L_u were recursive. Then L_u would be recursive as well. Let $L_u=L(M).$ From $M,$ we could
expertue a TM M/ for L, (and that's a contradiction). construct a TM M' for L_d (and that's a contradiction).
	- Given w as input, M' copies w to be $w000w.$ It then uses M to run on $w000w$. M' accepts w if M accepts $w000w$, and rejects otherwise.
	- Note w_i is accepted by M' iff w_i is not accepted by M_i . In other words $L(M')=L_d$.
- Since there cannot be TM for L_d , we conclude that L_u cannot be recursive.

Reduction

- **In the previous proof, we use the method of reduction.** The basic ideas are as follows.
	- We reduce a problem P_1 to another problem P_2 : if we could solve P_1 we could solve P_2 then we could solve $P_1.$
	- But P_1 is known to be not solvable (in some sense), therefore P_2 cannot be solved (in the same sense). If P_1 is not RE, then P_2 is not RE.
If $\overline{P_1}$ is
		- If P_1 is not recursive, then P_2 is not recursive.
- In the above proof, P_1 is L_d while P_2 is L_u .

L_e and L_{ne}

Every string is ^a TM. Define the languages

$$
L_e = \{w_i \in \{0, 1\}^* : L(M_i) = \emptyset\},
$$

$$
L_{ne} = \{w_i \in \{0, 1\}^* : L(M_i) \neq \emptyset\}.
$$

 L_e is the set of TMs (encodings) that accept the empty language. L_{ne} is its complement.

We will show that L_{ne} is RE but not recursive, and L_e is not RE.

L_{ne} **Is RE**

- L_{ne} is RE as we can construct a TM M for it.
- M takes an input string w and interprets it as the code
of a TM say M of a TM, say $M_i.$
- M simulates the running of M_i on strings in a proper
order. If any string is accented by M_i then w is order. If any string is accepted by M_i , then w is
essented by M accepted by $M.$
- The code of any TM that accepts something will be recognized by $M.$

L_e **Is Not RE**

- L_{ne} is not recursive since we can reduce L_u to L_{ne} . That is, if we have an algorithm for $L_{ne},$ then we have an algorithm for L_u , which cannot be true!
- From a pair (M,w) we construct a TM M' . M' simulates the running of M on w . For any input v , M'
accents v if M accents w and rejects if M does not accepts v if M accepts $w,$ and rejects if M does not
accept w accept $w\mathbf{.}$
- If we can decide whether $L(M^{\prime})$ is empty, we can decide whether M accept w for any (M,w) .
- It follows that L_e is not RE.

Property of RE Languages

- A property of the RE languages is ^a set of RElanguages.
- Since an RE language is defined by at least one TM, a property is also equivalent to ^a set of TMs.
- If P is a property, then L_P M_i such that $L(M_i)$ is in $P.$ \overline{P} is the set of codes for TMs
- For example, not-accepting any string is ^a property, say P , and $L_P=L_e$.
- A property P is said to be decidable if L_P \overline{P} is decidable.
- A property is trivial if it is the empty set or it is the set of all RE languages. Otherwise it is nontrivial.

Rice Theorem

- Every nontrivial property, say $P,$ of the RE languages is undecidable. This is proved by reducing L_u to L_P . $_u$ to L_P .
- Suppose $\emptyset\notin L_P$ $_{P}.$ Suppose L is in L_{P} $_P$ and $L=L(M_L)$.
- From a pair (M, w) we construct a TM M' . A part of M' **DDDD** OT 14 OD 20 LI simulates the running of M on w . Only if M accepts w
does M_{τ} run on input x does M_L run on input $x.$
	- If M does not accept w , then M_L never runs, and
I (M') = 0 so the code of M' d I p $L(M')=\emptyset$, so the code of $M'\notin L_P$.
	- If M accepts w, then M' accepts any string in L, $I(M') = I$ so the code of $M' \subset I$ $L(M')=L,$ so the code of $M'\in L_P.$
- Being able to decide L_P \overline{P} would make L_u $_{u}$ decidable.

Post Correspondence Problem

Suppose we are given two lists, say A, B of strings
aver the same alphabet A and B must be at the a over the same alphabet. A and B must be of the same
length, asy h , l at length, say $k.$ Let

$$
A = w_1, w_2, \ldots, w_k, \quad B = x_1, x_2, \ldots, x_k.
$$

A instance of PCP (defined by A,B) has a solution i_1, \ldots, i_m $_m$ if

$$
w_{i_1}\dots w_{i_m}=x_{i_1}\dots x_{i_m}.
$$

- Is it possible to decide whether there exists ^a solutionfor any A,B ?
- Unlike other problems we have been discussing, PCPappears to be very concrete and realistic.

PCP Is Undecidable

- **•** PCP is a prime example of undecidable problem. That is, there is no algorithm to conclude whether ^a solutionexists, for any given instance.
- We prove that by reducing L_u through another problem called MPCP, the modified $_u$ to PCP. We will do this PCP.

MPCP

Given two lists of strings A,B

$$
A = w_1, w_2, \dots, w_k, \quad B = x_1, x_2, \dots, x_k,
$$

MPCP asks whether there is ^a solution, which is ^a list of 0 or more integers i_1, \ldots, i_m such that

$$
w_1w_{i_1}\ldots w_{i_m}=x_1x_{i_1}\ldots x_{i_m}.
$$

Note that (w_1, x_1) is required to start the strings. This is the main difference from PCP.

Reduce MPCP to PCP (1)

- **•** From an MPCP instance, we can construct an instance of PCP such that ^a solution to the PCP instanceimplies ^a solution to the MPCP instance.
- From $A=\,$ $\{w$ $\,k$ $_{i=1}^k\},B$ = $\{x$ $\,k$ $_{i=1}^{k}\},$ let

$$
C=y_0, y_1, \ldots, y_k, y_{k+1}, D=z_0, z_1, \ldots, z_k, z_{k+1},
$$

where y_i is based on w_i with a \ast after each symbol of w_i and z_i is based on x_i with a \ast before each symbol of x_i , and

$$
y_0 = *y_1, z_0 = z_1
$$

 $y_{k+1} = \$$, $z_{k+1} = *\$$

Reduce MPCP to PCP (2)

If there is a solution to the PCP instance with $(C, D),$ $+h \wedge f$ then it must begin with pair (y_0,z_0) to match the first \ast in z , and end with $k + 1$ for a similar reason. That is,

$$
y_1y_{i_1}\ldots y_{i_m}\mathbb{S}=z_1z_{i_1}\ldots z_{i_m}*\mathbb{S}
$$

Stripping the \ast instance with (A, B) . That is $*$ and \$, $i_1 \ldots i_n$ $m \$ $_{m}$ is a solution for MPCP

$$
w_1w_{i_1}\ldots w_{i_m}=x_1x_{i_1}\ldots x_{i_m}
$$

So if we had an algorithm for PCP, we would have an algorithm for MPCP.

Reduce ^L^u **to MPCP: Basic Idea**

- Given a pair $(M,w),$ we construct an instance of MPCP, say (A, B) , such that M accepts w if and only if $\mathsf{MPP}\cap\mathsf{P}$ instance (A,B) has a solution MPCP instance (A, B) has a solution.
- The basic idea is that (A,B) simulates the computation of M on w . A partial solution assumes the form

 $\#\alpha_1\#\alpha_3\#\alpha_3\#$ \mathbf{r} . . . ,

where α_1 is the initial ID and $\alpha_i \vdash \alpha_{i+1}.$

If a final state is entered, then A can catch up with B .
Otherwise, B is always and ID aboad of A and no Otherwise, B is always one ID ahead of A and no
selution is assaible solution is possible.

Five Kinds of String Pairs

- 1. first pair: $(\#, \#q_0w\#)$
- 2. pairs for copy: $(\#, \#), \ (X, X) \ \forall X \in \Gamma$
- 3. pairs for transition function:

 $\delta(q,X) = (p,Y,R): (qX,Yp)$ $\delta(q, X) = (p, Y, L) : (ZqX, pZY) \; \forall Z \in \Gamma$ $\delta(q, B) = (p, Y, R) : (q#, Y p#)$ $\delta(q, B) = (p, Y, L) : (Zq\#, pZY\#) \; \forall Z \in \Gamma$

- 4. pairs for final state: $(XqY, q), (Xq, q), (qY, q) \ \forall q \in F, \ X, Y \in \Gamma$
- 5. final pair: $(q \# \#, \#)$

An Example

Let $M = (\{q_1, q_2, q_3\}, \{0, 1\}, \{0, 1, B\}, \delta, q_1, B, \{q_3\})$, with $\delta(q_i, 0) \quad \left| \quad \delta(q_i, 1) \quad \right| \ \ \delta(q_i, B)$ $q_1\, \left|\right.\, (q_2, 1, R)\, \left|\right.\, (q_2, 0, L)\, \left|\right.\, (q_2, 1, L)$ $\mathcal{L} = \left\{ \begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right\}$ $q_2\, \left[\right.\, (q_3, 0, L)\, \left[\right.\, (q_1, 0, R)\, \left[\right.\, (q_2, 0, R)\, \right]$

Consider input 01 . It is accepted by M as

 $q_101 \vdash 1q_21 \vdash 10q_1 \vdash 1q_201 \vdash q_3101$

Using the pairs we also have ^a MPCP solution with thefollowing final common string

 $\#q_101\#1q_21\#10q_1\#1q_201\#q_3101\#q_301\#q_31\#q_3\#$

Proof

- A solution for the constructed instance of MPCP existsiff M accepts $w.$
- If M accepts w , then there is a sequence of IDs
leading to a final state. The MPCP instance (4 leading to a final state. The MPCP instance (A,B) has a solution as the string from A catches up with the
string from B by construction string from B by construction.
- Suppose there is a solution for MPCP instance (A, B) . It must start with $\#q_0w\#$. The next string from A is
decided by the unmatched part of P string. Either decided by the unmatched part of B string. Either a
naix far cany is used, are naix far transition is used if pair for copy is used, or ^a pair for transition is used if ^astate symbol is involved. This ensures that $\alpha_i \vdash \alpha_{i+1}.$ Since A only catches up with B with a final state, w must be accepted by $M.$