
Undecidability
Notes on Automata and Theory of Computation

Chia-Ping Chen

Department of Computer Science and Engineering

National Sun Yat-Sen University

Kaohsiung, Taiwan ROC

Undecidability – p. 1

Beyond RE Set

The RE set appears to be very broad, including all
languages that can be computed mechanically.

Is there any language not recognizable by any TM?

This is a question about the limit of computation.

Undecidability – p. 2

Theorem

The powerset of a (infinite) countable set S is
uncountable.

Suppose S = {s1, s2, . . . }. An element L of 2S can be
represented by a sequence of 0 and 1 where the ith bit
is 0 if si /∈ L and 1 otherwise.

We can prove the theorem by contradiction. Suppose
2S is countable, then we can write L1, L2, . . . for the
elements in 2S. Representing the Li’s as bit
sequences, we can create a table T . Complementing
each bit in the main diagonal of T , we get a bit
sequence that is different from any of the sequences in
T , contradicting that T includes all elements in 2S.

Undecidability – p. 3

Existence of Non-RE Languages

For a finite alphabet Σ, Σ∗ is countable. The set of all
languages defined on Σ, 2Σ

∗

, is uncountable.

The set of TM’s is countable as a TM can be encoded
by a string in {0, 1} (to be shown shortly).

Each TM defines a RE language, so the set of RE
languages is countable.

There are more languages than there are regular
languages. So there are (infinitely many) languages
that are not RE.

Undecidability – p. 4

Within RE Set

A TM M may enter an infinite loop for an input not in its
language. L(M) is RE, but it is not good that we may
not decide for some inputs whether they are in L(M).

For the above reason, we distinguish between those
languages that can be accepted by a TM that always
halts and those that cannot. This leads to the concept
of decidability.

Within the set of recursive languages, we further
distinguish those halt in practical time of computation
by a deterministic TM and those do not. This leads to
the concept of tractability.

Undecidability – p. 5

Encoding TM

To ask (and answer) problems about TMs or RE
languages, one should know it is possible to encode
TMs by strings. One such encoding is described here.

We first enumerate the states, tape symbols and
directions, respectively.

With 0 as separator, a transition δ(p, a) = (q, b,D) can
be represented by 5 strings of 1’s (unary representation
for the enumerations of p, a, q, b,D).

With 00 as separator, entries in the transition function
can be concatenated.

If an input w is specified, then w can be appended with
000 as separator.

Undecidability – p. 6

Universal TM

A universal TM Mu can simulate the computation of
any M on any w.

Mu models a general-purpose computer.

The universal language Lu is defined by

Lu = L(Mu) = {(wi, w) : w ∈ L(Mi)}.

That is, Lu includes (wi, w) if the TM Mi encoded by wi

accepts w.

Lu plays a fundamental role in computation theory.

Undecidability – p. 7

The Diagonalization Language

As we have just shown, it is possible to encode a TM
with a binary string.

We can say that the ith TM Mi is the TM whose code is
wi, the ith binary string (i = 1wi).

L(Mi) = ∅ if wi is not a valid code for TM.

The diagonalization language Ld is defined by

{wi : wi /∈ L(Mi)}.

Ld is the set of strings such that the TM whose code is
w does not accept w.

Undecidability – p. 8

Representing Ld

Consider a (infinite) matrix where element i, j indicates
whether Mi accepts wj (1: accept, 0: not accept).

Each row represents an RE language. For example,
row i is called the characteristic vector for L(Mi).

The ith diagonal value indicates whether Mi accept wi.
The diagonal vector is a characteristic vector.

Ld is represented by the complement of this diagonal
vector.

Undecidability – p. 9

Ld Is Not RE

Ld is not recognized by any TM. It is not RE.

To prove, suppose the contrary is true, so Ld = L(Mi)
for some i. Is wi ∈ Ld?

If wi ∈ Ld, then wi ∈ L(Mi). But then wi is not in Ld

by definition of Ld.
If wi /∈ Ld, then wi /∈ L(Mi). But then wi is in Ld by
definition of Ld.

Both lead to contradiction. So the assumption that Mi

exists cannot be true.

Undecidability – p. 10

Recursive

A language L is said to be recursive if it is accepted by
a TM, say M , that always halts. Such an M is also
called an algorithm.

Note that a RE language, say L = L(M ′), can be
non-recursive since M ′ may enter an infinite loop for
some input w /∈ L(M ′).

An interesting question is whether there exists any RE
language that is not recursive.

We have shown Ld to be non-RE. We will show that
the complement of Ld to be RE but not recursive.

Undecidability – p. 11

Theorems about Complements

If L is recursive, so is its complement L.

If L and L are RE, then L is recursive.

Only one of the four possibilities is true for L and L.

L and L are both recursive.
Neither L nor L is RE.
L is RE but not recursive, L is not RE.
L is RE but not recursive, L is not RE.

Undecidability – p. 12

Ld Is RE But Not Recursive

From Ld being non-RE it follows that Ld is either
non-RE or RE but not recursive.

Note that Ld is the set of strings wi such that Mi

accepts wi.

We can use the universal TM to simulate running Mi

on wi for each i. To make sure that all such wi’s are
enumerated, the simulation is carried out in a
round-robin fashion.

Undecidability – p. 13

Decidability

Languages and problems are really the same thing. A
problem becomes a language if we can represent
instances of the problem by strings.

A problem is said to be decidable if the language is
recursive. It is said to be undecidable if the language is
not recursive.

Dividing problems or languages between decidable
and undecidable is often more important then division
between RE and non-RE. This is because a TM not
guaranteed to halt does not solve a problem for all
instances.

Undecidability – p. 14

Lu Is Not Recursive

We have shown that Lu is RE by constructing a TM,
the universal TM, for it.

Suppose Lu were recursive. Then Lu would be
recursive as well. Let Lu = L(M). From M , we could
construct a TM M ′ for Ld (and that’s a contradiction).

Given w as input, M ′ copies w to be w000w. It then
uses M to run on w000w. M ′ accepts w if M
accepts w000w, and rejects otherwise.
Note wi is accepted by M ′ iff wi is not accepted by
Mi. In other words L(M ′) = Ld.

Since there cannot be TM for Ld, we conclude that Lu

cannot be recursive.

Undecidability – p. 15

Reduction

In the previous proof, we use the method of reduction.
The basic ideas are as follows.

We reduce a problem P1 to another problem P2: if
we could solve P2 then we could solve P1.
But P1 is known to be not solvable (in some sense),
therefore P2 cannot be solved (in the same sense).

If P1 is not RE, then P2 is not RE.
If P1 is not recursive, then P2 is not recursive.

In the above proof, P1 is Ld while P2 is Lu.

Undecidability – p. 16

Le and Lne

Every string is a TM. Define the languages

Le = {wi ∈ {0, 1}∗ : L(Mi) = ∅},

Lne = {wi ∈ {0, 1}∗ : L(Mi) 6= ∅}.

Le is the set of TMs (encodings) that accept the empty
language. Lne is its complement.

We will show that Lne is RE but not recursive, and Le is
not RE.

Undecidability – p. 17

Lne Is RE

Lne is RE as we can construct a TM M for it.

M takes an input string w and interprets it as the code
of a TM, say Mi.

M simulates the running of Mi on strings in a proper
order. If any string is accepted by Mi, then w is
accepted by M .

The code of any TM that accepts something will be
recognized by M .

Undecidability – p. 18

Le Is Not RE

Lne is not recursive since we can reduce Lu to Lne.
That is, if we have an algorithm for Lne, then we have
an algorithm for Lu, which cannot be true!

From a pair (M,w) we construct a TM M ′. M ′

simulates the running of M on w. For any input v, M ′

accepts v if M accepts w, and rejects if M does not
accept w.

If we can decide whether L(M ′) is empty, we can
decide whether M accept w for any (M,w).

It follows that Le is not RE.

Undecidability – p. 19

Property of RE Languages

A property of the RE languages is a set of RE
languages.

Since an RE language is defined by at least one TM, a
property is also equivalent to a set of TMs.

If P is a property, then LP is the set of codes for TMs
Mi such that L(Mi) is in P .

For example, not-accepting any string is a property,
say P , and LP = Le.

A property P is said to be decidable if LP is decidable.

A property is trivial if it is the empty set or it is the set of
all RE languages. Otherwise it is nontrivial.

Undecidability – p. 20

Rice Theorem

Every nontrivial property, say P , of the RE languages
is undecidable. This is proved by reducing Lu to LP .

Suppose ∅ /∈ LP . Suppose L is in LP and L = L(ML).

From a pair (M,w) we construct a TM M ′. A part of M ′

simulates the running of M on w. Only if M accepts w
does ML run on input x.

If M does not accept w, then ML never runs, and
L(M ′) = ∅, so the code of M ′ /∈ LP .
If M accepts w, then M ′ accepts any string in L,
L(M ′) = L, so the code of M ′ ∈ LP .

Being able to decide LP would make Lu decidable.

Undecidability – p. 21

Post Correspondence Problem

Suppose we are given two lists, say A,B of strings
over the same alphabet. A and B must be of the same
length, say k. Let

A = w1, w2, . . . , wk, B = x1, x2, . . . , xk.

A instance of PCP (defined by A,B) has a solution
i1, . . . , im if

wi1 . . . wim = xi1 . . . xim .

Is it possible to decide whether there exists a solution
for any A,B?

Unlike other problems we have been discussing, PCP
appears to be very concrete and realistic.

Undecidability – p. 22

PCP Is Undecidable

PCP is a prime example of undecidable problem. That
is, there is no algorithm to conclude whether a solution
exists, for any given instance.

We prove that by reducing Lu to PCP. We will do this
through another problem called MPCP, the modified
PCP.

Undecidability – p. 23

MPCP

Given two lists of strings A,B

A = w1, w2, . . . , wk, B = x1, x2, . . . , xk,

MPCP asks whether there is a solution, which is a list
of 0 or more integers i1, . . . , im such that

w1wi1 . . . wim = x1xi1 . . . xim .

Note that (w1, x1) is required to start the strings. This is
the main difference from PCP.

Undecidability – p. 24

Reduce MPCP to PCP (1)

From an MPCP instance, we can construct an instance
of PCP such that a solution to the PCP instance
implies a solution to the MPCP instance.

From A = {wk
i=1}, B = {xk

i=1}, let

C = y0, y1, . . . , yk, yk+1, D = z0, z1, . . . , zk, zk+1,

where yi is based on wi with a ∗ after each symbol of
wi and zi is based on xi with a ∗ before each symbol of
xi, and

y0 = ∗y1, z0 = z1

yk+1 = $, zk+1 = ∗$

Undecidability – p. 25

Reduce MPCP to PCP (2)

If there is a solution to the PCP instance with (C,D),
then it must begin with pair (y0, z0) to match the first ∗
in z, and end with k + 1 for a similar reason. That is,

∗y1yi1 . . . yim ∗ $ = z1zi1 . . . zim ∗ $

Stripping the ∗ and $, i1 . . . im is a solution for MPCP
instance with (A,B). That is

w1wi1 . . . wim = x1xi1 . . . xim

So if we had an algorithm for PCP, we would have an
algorithm for MPCP.

Undecidability – p. 26

Reduce Lu to MPCP: Basic Idea

Given a pair (M,w), we construct an instance of
MPCP, say (A,B), such that M accepts w if and only if
MPCP instance (A,B) has a solution.

The basic idea is that (A,B) simulates the computation
of M on w. A partial solution assumes the form

#α1#α3#α3# . . . ,

where α1 is the initial ID and αi ⊢ αi+1.

If a final state is entered, then A can catch up with B.
Otherwise, B is always one ID ahead of A and no
solution is possible.

Undecidability – p. 27

Five Kinds of String Pairs

1. first pair: (#,#q0w#)

2. pairs for copy: (#,#), (X,X) ∀X ∈ Γ

3. pairs for transition function:

δ(q,X) = (p, Y,R) : (qX, Y p)

δ(q,X) = (p, Y, L) : (ZqX, pZY) ∀Z ∈ Γ

δ(q,B) = (p, Y,R) : (q#, Y p#)

δ(q,B) = (p, Y, L) : (Zq#, pZY #) ∀Z ∈ Γ

4. pairs for final state:
(XqY, q), (Xq, q), (qY, q) ∀q ∈ F, X, Y ∈ Γ

5. final pair: (q##,#)

Undecidability – p. 28

An Example

Let M = ({q1, q2, q3}, {0, 1}, {0, 1, B}, δ, q1, B, {q3}), with
δ(qi, 0) δ(qi, 1) δ(qi, B)

q1 (q2, 1, R) (q2, 0, L) (q2, 1, L)

q2 (q3, 0, L) (q1, 0, R) (q2, 0, R)

Consider input 01. It is accepted by M as

q101 ⊢ 1q21 ⊢ 10q1 ⊢ 1q201 ⊢ q3101

Using the pairs we also have a MPCP solution with the
following final common string

#q101#1q21#10q1#1q201#q3101#q301#q31#q3##

Undecidability – p. 29

Proof

A solution for the constructed instance of MPCP exists
iff M accepts w.

If M accepts w, then there is a sequence of IDs
leading to a final state. The MPCP instance (A,B) has
a solution as the string from A catches up with the
string from B by construction.

Suppose there is a solution for MPCP instance (A,B).
It must start with #q0w#. The next string from A is
decided by the unmatched part of B string. Either a
pair for copy is used, or a pair for transition is used if a
state symbol is involved. This ensures that αi ⊢ αi+1.
Since A only catches up with B with a final state, w
must be accepted by M .

Undecidability – p. 30

	Beyond RE Set
	Theorem
	Existence of Non-RE Languages
	Within RE Set
	Encoding TM
	Universal TM
	The Diagonalization Language
	Representing L_d
	L_d Is Not RE
	Recursive
	Theorems about Complements
	$overline {L_d}$ Is RE But Not Recursive
	Decidability
	L_u Is Not Recursive
	Reduction
	L_e and L_{ne}
	L_{ne} Is RE
	L_{e} Is Not RE
	Property of RE Languages
	Rice Theorem
	Post Correspondence Problem
	PCP Is Undecidable
	MPCP
	Reduce MPCP to PCP (1)
	Reduce MPCP to PCP (2)
	Reduce L_u to MPCP: Basic Idea
	Five Kinds of String Pairs
	An Example
	Proof

