Undecidability

Notes on Automata and Theory of Computation

Chia-Ping Chen

Department of Computer Science and Engineering National Sun Yat-Sen University Kaohsiung, Taiwan ROC

Undecidability - p. 1

Beyond RE Set

- The RE set appears to be very broad, including all languages that can be computed mechanically.
- Is there any language not recognizable by any TM?
- This is a question about the *limit* of computation.

Theorem

- The powerset of a (infinite) countable set S is uncountable.
- Suppose $S = \{s_1, s_2, ...\}$. An element L of 2^S can be represented by a sequence of 0 and 1 where the *i*th bit is 0 if $s_i \notin L$ and 1 otherwise.
- We can prove the theorem by contradiction. Suppose 2^S is countable, then we can write L_1, L_2, \ldots for the elements in 2^S . Representing the L_i 's as bit sequences, we can create a table T. Complementing each bit in the main diagonal of T, we get a bit sequence that is different from any of the sequences in T, contradicting that T includes all elements in 2^S .

Existence of Non-RE Languages

- For a finite alphabet Σ , Σ^* is countable. The set of all languages defined on Σ , 2^{Σ^*} , is *uncountable*.
- The set of TM's is countable as a TM can be encoded by a string in $\{0, 1\}$ (to be shown shortly).
- Each TM defines a RE language, so the set of RE languages is *countable*.
- There are more languages than there are regular languages. So there are (infinitely many) languages that are not RE.

Within RE Set

- A TM M may enter an infinite loop for an input not in its language. L(M) is RE, but it is not good that we may not decide for some inputs whether they are in L(M).
- For the above reason, we distinguish between those languages that can be accepted by a TM that always halts and those that cannot. This leads to the concept of decidability.
- Within the set of recursive languages, we further distinguish those halt in practical time of computation by a deterministic TM and those do not. This leads to the concept of tractability.

Encoding TM

- To ask (and answer) problems about TMs or RE languages, one should know it is possible to encode TMs by strings. One such encoding is described here.
- We first enumerate the states, tape symbols and directions, respectively.
- ✓ With 0 as separator, a transition $\delta(p, a) = (q, b, D)$ can be represented by 5 strings of 1's (unary representation for the enumerations of p, a, q, b, D).
- With 00 as separator, entries in the transition function can be concatenated.
- If an input w is specified, then w can be appended with 000 as separator.

Universal TM

- A universal TM M_u can simulate the computation of any M on any w.
- \blacksquare M_u models a general-purpose computer.
- The universal language L_u is defined by

 $L_u = L(M_u) = \{ (w_i, w) : w \in L(M_i) \}.$

- That is, L_u includes (w_i, w) if the TM M_i encoded by w_i accepts w.
- \square L_u plays a fundamental role in computation theory.

The Diagonalization Language

- As we have just shown, it is possible to encode a TM with a binary string.
- We can say that the *i*th TM M_i is the TM whose code is w_i , the *i*th binary string ($i = 1w_i$).
- $L(M_i) = \emptyset$ if w_i is not a valid code for TM.
- The diagonalization language L_d is defined by

 $\{w_i: w_i \notin L(M_i)\}.$

 L_d is the set of strings such that the TM whose code is w does not accept w.

Representing L_d

- Consider a (infinite) matrix where element i, j indicates whether M_i accepts w_j (1: accept, 0: not accept).
- Each row represents an RE language. For example, row *i* is called the characteristic vector for $L(M_i)$.
- The *i*th diagonal value indicates whether M_i accept w_i . The diagonal vector is a characteristic vector.
- L_d is represented by the complement of this diagonal vector.

L_d Is Not RE

- \square L_d is not recognized by any TM. It is not RE.
- To prove, suppose the contrary is true, so $L_d = L(M_i)$ for some *i*. Is $w_i \in L_d$?
 - If $w_i \in L_d$, then $w_i \in L(M_i)$. But then w_i is not in L_d by definition of L_d .
 - If $w_i \notin L_d$, then $w_i \notin L(M_i)$. But then w_i is in L_d by definition of L_d .

Both lead to contradiction. So the assumption that M_i exists cannot be true.

Recursive

- A language L is said to be recursive if it is accepted by a TM, say M, that always halts. Such an M is also called an *algorithm*.
- Solution Note that a RE language, say L = L(M'), can be non-recursive since M' may enter an infinite loop for some input $w \notin L(M')$.
- An interesting question is whether there exists any RE language that is not recursive.
- Solution We have shown L_d to be non-RE. We will show that the complement of L_d to be RE but not recursive.

Theorems about Complements

- If *L* is recursive, so is its complement \overline{L} .
- If L and \overline{L} are RE, then L is recursive.
- Only one of the four possibilities is true for L and \overline{L} .
 - L and \overline{L} are both recursive.
 - Neither L nor \overline{L} is RE.
 - L is RE but not recursive, \overline{L} is not RE.
 - \overline{L} is RE but not recursive, L is not RE.

$\overline{L_d}$ Is RE But Not Recursive

- From L_d being non-RE it follows that $\overline{L_d}$ is either non-RE or RE but not recursive.
- Note that $\overline{L_d}$ is the set of strings w_i such that M_i accepts w_i .
- We can use the universal TM to simulate running M_i on w_i for each i. To make sure that all such w_i's are enumerated, the simulation is carried out in a round-robin fashion.

Decidability

- Languages and problems are really the same thing. A problem becomes a language if we can represent instances of the problem by strings.
- A problem is said to be decidable if the language is recursive. It is said to be undecidable if the language is not recursive.
- Dividing problems or languages between decidable and undecidable is often more important then division between RE and non-RE. This is because a TM not guaranteed to halt does not solve a problem for all instances.

L_u Is Not Recursive

- We have shown that L_u is RE by constructing a TM, the universal TM, for it.
- Suppose L_u were recursive. Then $\overline{L_u}$ would be recursive as well. Let $\overline{L_u} = L(M)$. From M, we could construct a TM M' for L_d (and that's a contradiction).
 - Given w as input, M' copies w to be w000w. It then uses M to run on w000w. M' accepts w if M accepts w000w, and rejects otherwise.
 - Note w_i is accepted by M' iff w_i is not accepted by M_i . In other words $L(M') = L_d$.
- Since there cannot be TM for L_d , we conclude that L_u cannot be recursive.

Reduction

- In the previous proof, we use the method of reduction. The basic ideas are as follows.
 - We reduce a problem P_1 to another problem P_2 : if we could solve P_2 then we could solve P_1 .
 - But P₁ is known to be not solvable (in some sense), therefore P₂ cannot be solved (in the same sense).
 If P is not PE, then P is not PE
 - If P_1 is not RE, then P_2 is not RE.
 - If P_1 is not recursive, then P_2 is not recursive.
- In the above proof, P_1 is L_d while P_2 is $\overline{L_u}$.

L_e and L_{ne}

Every string is a TM. Define the languages

$$L_e = \{ w_i \in \{0, 1\}^* : L(M_i) = \emptyset \},\$$
$$L_{ne} = \{ w_i \in \{0, 1\}^* : L(M_i) \neq \emptyset \}.$$

 L_e is the set of TMs (encodings) that accept the empty language. L_{ne} is its complement.

• We will show that L_{ne} is RE but not recursive, and L_e is not RE.

L_{ne} Is RE

- L_{ne} is RE as we can construct a TM M for it.
- *M* takes an input string w and interprets it as the code of a TM, say M_i .
- *M* simulates the running of M_i on strings in a proper order. If any string is accepted by M_i , then *w* is accepted by *M*.
- The code of any TM that accepts something will be recognized by M.

L_e **Is Not RE**

- L_{ne} is not recursive since we can reduce L_u to L_{ne} . That is, if we have an algorithm for L_{ne} , then we have an algorithm for L_u , which cannot be true!
- From a pair (M, w) we construct a TM M'. M' simulates the running of M on w. For any input v, M' accepts v if M accepts w, and rejects if M does not accept w.
- If we can decide whether L(M') is empty, we can decide whether M accept w for any (M, w).
- It follows that L_e is not RE.

Property of RE Languages

- A property of the RE languages is a set of RE languages.
- Since an RE language is defined by at least one TM, a property is also equivalent to a set of TMs.
- If *P* is a property, then L_P is the set of codes for TMs M_i such that $L(M_i)$ is in *P*.
- For example, not-accepting any string is a property, say P, and $L_P = L_e$.
- A property P is said to be decidable if L_P is decidable.
- A property is trivial if it is the empty set or it is the set of all RE languages. Otherwise it is nontrivial.

Rice Theorem

- Every nontrivial property, say P, of the RE languages is undecidable. This is proved by reducing L_u to L_P .
- Suppose $\emptyset \notin L_P$. Suppose *L* is in L_P and $L = L(M_L)$.
- From a pair (M, w) we construct a TM M'. A part of M' simulates the running of M on w. Only if M accepts w does M_L run on input x.
 - If M does not accept w, then M_L never runs, and $L(M') = \emptyset$, so the code of $M' \notin L_P$.
 - If *M* accepts *w*, then *M'* accepts any string in *L*, L(M') = L, so the code of $M' \in L_P$.
- Being able to decide L_P would make L_u decidable.

Post Correspondence Problem

Suppose we are given two lists, say A, B of strings over the same alphabet. A and B must be of the same length, say k. Let

$$A = w_1, w_2, \dots, w_k, \quad B = x_1, x_2, \dots, x_k.$$

• A instance of PCP (defined by A, B) has a solution i_1, \ldots, i_m if

$$w_{i_1}\ldots w_{i_m}=x_{i_1}\ldots x_{i_m}.$$

- Is it possible to decide whether there exists a solution for any A, B?
- Unlike other problems we have been discussing, PCP appears to be very concrete and realistic.

PCP Is Undecidable

- PCP is a prime example of undecidable problem. That is, there is no algorithm to conclude whether a solution exists, for any given instance.
- We prove that by reducing L_u to PCP. We will do this through another problem called MPCP, the modified PCP.

MPCP

• Given two lists of strings A, B

$$A = w_1, w_2, \dots, w_k, \quad B = x_1, x_2, \dots, x_k,$$

MPCP asks whether there is a solution, which is a list of 0 or more integers i_1, \ldots, i_m such that

$$w_1w_{i_1}\ldots w_{i_m}=x_1x_{i_1}\ldots x_{i_m}.$$

Note that (w_1, x_1) is required to start the strings. This is the main difference from PCP.

Reduce MPCP to PCP (1)

- From an MPCP instance, we can construct an instance of PCP such that a solution to the PCP instance implies a solution to the MPCP instance.
- From $A = \{w_{i=1}^k\}, B = \{x_{i=1}^k\}$, let

$$C = y_0, y_1, \dots, y_k, y_{k+1}, D = z_0, z_1, \dots, z_k, z_{k+1},$$

where y_i is based on w_i with a * after each symbol of w_i and z_i is based on x_i with a * before each symbol of x_i , and

$$y_0 = *y_1, z_0 = z_1$$

 $y_{k+1} = \$, z_{k+1} = *\$$

Reduce MPCP to PCP (2)

If there is a solution to the PCP instance with (C, D), then it must begin with pair (y_0, z_0) to match the first *in z, and end with k + 1 for a similar reason. That is,

$$*y_1y_{i_1}\ldots y_{i_m}*\$ = z_1z_{i_1}\ldots z_{i_m}*\$$$

Stripping the * and , $i_1 \dots i_m$ is a solution for MPCP instance with (A, B). That is

$$w_1w_{i_1}\ldots w_{i_m}=x_1x_{i_1}\ldots x_{i_m}$$

So if we had an algorithm for PCP, we would have an algorithm for MPCP.

Reduce L_u **to MPCP: Basic Idea**

- Given a pair (M, w), we construct an instance of MPCP, say (A, B), such that M accepts w if and only if MPCP instance (A, B) has a solution.
- The basic idea is that (A, B) simulates the computation of M on w. A partial solution assumes the form

 $\#\alpha_1 \#\alpha_3 \#\alpha_3 \#\ldots,$

where α_1 is the initial ID and $\alpha_i \vdash \alpha_{i+1}$.

If a final state is entered, then A can catch up with B. Otherwise, B is always one ID ahead of A and no solution is possible.

Five Kinds of String Pairs

- **1.** first pair: $(\#, \#q_0w\#)$
- 2. pairs for copy: $(\#, \#), (X, X) \forall X \in \Gamma$
- 3. pairs for transition function:

$$\begin{split} \delta(q,X) &= (p,Y,R) : (qX,Yp) \\ \delta(q,X) &= (p,Y,L) : (ZqX,pZY) \; \forall Z \in \Gamma \\ \delta(q,B) &= (p,Y,R) : (q\#,Yp\#) \\ \delta(q,B) &= (p,Y,L) : (Zq\#,pZY\#) \; \forall Z \in \Gamma \end{split}$$

- 4. pairs for final state: $(XqY,q), (Xq,q), (qY,q) \ \forall q \in F, \ X,Y \in \Gamma$
- 5. final pair: (q##, #)

An Example

• Let $M = (\{q_1, q_2, q_3\}, \{0, 1\}, \{0, 1, B\}, \delta, q_1, B, \{q_3\})$, with $\frac{\delta(q_i, 0)}{q_1} \frac{\delta(q_i, 1)}{(q_2, 1, R)} \frac{\delta(q_i, 1)}{(q_2, 0, L)} \frac{\delta(q_i, B)}{(q_2, 1, L)}$ $\frac{\delta(q_1, 0)}{(q_2, 0, L)} \frac{\delta(q_2, 0, L)}{(q_2, 0, R)} \frac{\delta(q_2, 0, R)}{(q_2, 0, R)}$

• Consider input 01. It is accepted by M as

 $q_101 \vdash 1q_21 \vdash 10q_1 \vdash 1q_201 \vdash q_3101$

Using the pairs we also have a MPCP solution with the following final common string

 $\#q_101\#1q_21\#10q_1\#1q_201\#q_3101\#q_301\#q_31\#q_3\#\#$

Proof

- A solution for the constructed instance of MPCP exists iff M accepts w.
- If M accepts w, then there is a sequence of IDs leading to a final state. The MPCP instance (A, B) has a solution as the string from A catches up with the string from B by construction.
- Suppose there is a solution for MPCP instance (A, B). It must start with $\#q_0w\#$. The next string from A is decided by the unmatched part of B string. Either a pair for copy is used, or a pair for transition is used if a state symbol is involved. This ensures that $\alpha_i \vdash \alpha_{i+1}$. Since A only catches up with B with a final state, w must be accepted by M.