
Intractable Problems
Notes on Automata and Theory of Computation

Chia-Ping Chen

Department of Computer Science and Engineering

National Sun Yat-Sen University

Kaohsiung, Taiwan ROC

Intractable Problems – p. 1

Introduction

Whether there exists a TM for a language draws a line
between RE and non-RE languages.

Whether there exists an always-halting TM for a
language draws a line between recursive and
non-recursive languages.

Being recursive may not be good enough as the time
to finish computation may be unbearably long.

The time complexity of an algorithm M is the maximum
number of moves T (n) (worst-case) needed for M to
halt on an input of size n.

T (n) draws a line between tractable and intractable
problems.

Intractable Problems – p. 2

Polynomial-Time Algorithm

An algorithm is said to be polynomial-time if T (n) is a
polynomial function of the input size n.

If an algorithm is not polynomial-time, then it is
sometimes referred to as being exponential.

Note that the term non-polynomial is more exact than
the term exponential, as there exist functions that are
between polynomial and exponential.

p(n) = o(f(n)); f(n) = o(en).

Intractable Problems – p. 3

P and Intractable Problems

A problem Q is said to be in class P if there exists a
polynomial-time deterministic algorithm that solves Q.

Note that to solve a problem an algorithm must answer
correctly for any instance of the problem.

Since DTMs model real computers, any instance of a
problem in P can be answered by a computer in
polynomial time.

A problem not in P is intractable, as its time complexity
is more time than any polynomial function.

T (n) > nk, ∀k ∈ Z+

Intractable Problems – p. 4

Kruskal’s Algorithm

Consider the problem of finding a minimum-weight
spanning tree (MWST) for a weighted graph.

Kruskal’s algorithm:
Initialization: each node is a component by itself.
All edges are in set U . C is empty.
Iteration: retrieve the lowest-weight edge l from U .
If it connects two components, merge them and put
l in C.
Termination: when only a single component
remains. Use C to construct the MWST.

Intractable Problems – p. 5

Time-Complexity Analysis

Suppose there are m nodes and e edges.

In each epoch of iteration,
O(e) to find the minimum-weight edge l in U

O(m) to find the components for l

O(m) to merge the components

The algorithm finishes in e epochs, since the total
number of components reduce by 1 for each epoch.

The time complexity is O(e(e + 2m)), polynomial in m, e.

Intractable Problems – p. 6

Encoding for MWST Problem

We can turn the MWST problem to an equivalent
yes-no question: Is there a spanning tree with weight
less than W?

An encoding scheme for a weighted graph and W .

100, 101000(1, 10, 1111)(1, 11, 1010)(10, 11, 1100)(10, 100, 10100)

where m = 4, W = 40, and (1, 10, 1111) represents an
edge of weight 15 from node 1 to node 2. Most bits are
used in the representation of edges.

For an input string of length n, e = O(n/ log m). In
addition m = O(e) for a connected graph. So

T (n) = O(e(e + 2m)) = O(e2) = O(n2).

Intractable Problems – p. 7

Non-deterministic TM and NP

The exact functional form of T (n) depends on the TM
used in the computation. However, as far as being
polynomial or not is concerned, the various
deterministic models are the same.

The real distinction, for the matter of intractability, is
between deterministic and non-deterministic TMs.

A problem R is in the class NP, if R can be solved (any
instance of R can be answered correctly) by an NTM in
some polynomial time.

Intractable Problems – p. 8

Traveling Salesman Problem

A salesman of city C is planning a tour to visit every
city in a list with minimum cost, without visiting any city
twice except for C.

A set of edges that connects all nodes in a graph into a
simple cycle is called a Hamilton circuit. TSP is related
to the problem of Hamilton circuit.

We are given a weighted graph and we ask if there
exists a Hamilton circuit with weight less than W .

TSP is NP. With a non-deterministic TM, we can
guessed an order (permutation) of the nodes and
check if the cost is below W .

Intractable Problems – p. 9

P and NP

By definition,
P ⊆ NP.

An open question in computation theory is

P
?
= NP.

It is strongly believed that

P 6= NP.

In other words, there are problems in NP that cannot
be solved in polynomial time by a deterministic TM.

Intractable Problems – p. 10

Polynomial-Time Reduction

The method of reduction can be used in the
development of theory of intractability.

Here we reduce a problem Q1 to Q2 to show that Q2 is
at least as intractable as Q1.

Specifically, if Q1 is not in P, and every instance of Q1

reduces in polynomial time to an instance of Q2 with
the same answer, then Q2 cannot be in P.

Note that the reduction algorithm must be deterministic
and polynomial-time.

Intractable Problems – p. 11

NP-Complete

A problem Q is said to be NP-complete if
Q ∈ NP.
Every Q′ ∈ NP is polynomial-time reducible to Q.

If one solves an NP-complete problem, say Q, then
every problem in NP can be solved within a polynomial
time of solving Q.

Put in another way, an NP-complete problem has the
highest time complexity in NP.

If (as we believe) P 6= NP, all NP-complete problems
are in NP − P. Showing a problem to be NP-complete
is showing it to be intractable.

Intractable Problems – p. 12

NP-Complete and P

If some NP-complete problem is in P, then

P = NP.

This follows since all problems in NP can be solved
within a polynomial time.

If some NP-complete problem is not in P, then

P 6= NP.

This follows from the definition of NP-completeness.

Intractable Problems – p. 13

NP-Hard

A problem Q may appear to be so hard that we are not
sure whether Q is in NP.

We may be able to find an NP-complete problem Q1

that reduces to Q. Then Q is not simpler than any
NP-complete problems.

A problem like Q is said to be NP-hard.

Formally, if every Q1 ∈ NP is polynomial-time reducible
to Q, then Q is NP-hard.

Intractable Problems – p. 14

Co-NP

A language L is in Co-NP if its complement L is in NP.

If L is in NP, then by definition L is in Co-NP.

If P = NP, then

P = NP = Co-NP.

If L is in P, then L is also in P, and therefore in NP.
So L is in Co-NP.
If L is in Co-NP, then L is in NP = P. So L is in P.

Intractable Problems – p. 15

An NP-Complete Problem

In the theory of undecidability, the universal language
Lu plays a fundamental role. To show a problem Q to
be undecidable, we reduce Lu to Q. Indeed, we reduce
Lu to MPCP to PCP to show PCP is undecidable.

A fundamental problem that is NP-complete is the SAT
problem: Can a given Boolean expression be true for
some assignment of variable values?

Once we establish SAT to be NP-complete, we can
reduce SAT to a problem Q to show Q is NP-complete.

Intractable Problems – p. 16

SAT Problem

A Boolean expression is built from
1. Boolean variables
2. binary operators ∧ and ∨ for AND and OR
3. unary operator ¬ for NOT
4. parentheses

A truth assignment for E assigns either true (1) or false
(0) to each variable in E.

The value of a Boolean expression is either 0 or 1.

A Boolean expression E is satisfiable if some truth
assignment makes E true.

Intractable Problems – p. 17

Representing SAT Instances

We use the following code
The operators and parentheses are represented by
themselves.
Rename the variables x1, x2, A variable xi is
represented by x followed by a binary string for i.

Note that the length of code is approximately the same
as the number of positions in the expression, counting
each occurrence of variable as one position. If the
number of positions is m, then the length of code is
approximately m log m.

Intractable Problems – p. 18

Cook’s Theorem

SAT is NP-complete.

Two things need to be proved. First, we need to show
that SAT is in NP.

We construct an NTM N for SAT. N guesses the truth
assignment T . If E(T) = 1, then accept.

The second requirement is to show every problem in
NP reduces to SAT with a polynomial time. We show
the reduction explicitly.

Intractable Problems – p. 19

Notation of Proof

Suppose L is in NP and an NTM M accepts L in
polynomial time p(n).

Without loss of generality, we can assume that M
never writes a blank or moves left of its initial position.

If M accepts w with |w| = n, then there exists a
computation

α0 ⊢ α1 ⊢ · · · ⊢ αk, k ≤ p(n).

α0 is initial ID.
αk contains a final state.
Each αi consists of non-blanks only. It extends
from the initial head position to the right.

Intractable Problems – p. 20

Idea of Proof

Each αi can be written as a sequence of symbols
Xi0 . . . Xip(n)+1. There is no need to consider Xip(n)+2.

To describe ID’s in terms of Boolean variables, we use
indicator variable yijA for Xij = A.

We are going to construct a Boolean expression that is
satisfiable iff M accepts w in p(n) moves.

In addition, the satisfying truth assignment will be the
one that tells the truth about the ID’s. yijA is true in the
satisfying truth assignment iff Xij = A.

Intractable Problems – p. 21

Representing ID’s

We represent an ID to position p(n) even that may
include a tail of blanks.

Assume all computations continue for exactly p(n)
moves. We allow α ⊢ α if a computation finishes early.

A polynomial-time computation is then represented by
a matrix.

The number of cells is a polynomial.
The number of variables that represent each cell is
bounded.

Intractable Problems – p. 22

Construct Boolean Expression

Denote EMw as the target expression we want to
construct based on the computation of an NTM M on
w.

Overall
EMw = S ∧ N ∧ F,

where S,N, F are expressions that ensures that M
starts, moves and finishes right.

Intractable Problems – p. 23

Starts Right

The initial ID is q0w followed by blanks.

Let w = a1 . . . an. Let

S = y00q0
∧ y01a1

∧ y02a2
· · · ∧ y0nan

∧ y0n+1B · · · ∧ y0p(n)B

S would be true only for the intended initial ID.

Intractable Problems – p. 24

Finishes Right

There is an accepting state in the final ID.

Let f1 . . . fk be the final states. Define

Fj = yp(n)jf1
∨ yp(n)jf2

∨ · · · ∨ yp(n)jfk
,

which indicates whether the symbol in position j of ID
p(n), Xp(n)j, is an accepting state.

Let
F = F0 ∨ F1 ∨ · · · ∨ Fp(n).

F would be true as long as there is an accepting state
in the last row.

Intractable Problems – p. 25

Next Move Is Right

This is the most complicated part.

We construct N such that

N = N0 ∧ N1 ∧ · · · ∧ Np(n)

where

Ni = (Ai0 ∨ Bi0) ∧ (Ai1 ∨ Bi1) ∧ · · · ∧ (Aip(n) ∨ Bip(n))

It will be shown that Aij and Bij together take care of
correctness of position j in going from αi to αi+1.

Observe that Xi+1j is determined by Xij−1, Xij , Xij+1.

Intractable Problems – p. 26

Aij

Aij ensures that if Xij is a state then the positions
j, j ± 1 are correct.

Consider Xij−1XijXij+1 and Xi+1j−1Xi+1jXi+1j+1.

If Xij is a state, then Xi+1j−1Xi+1jXi+1j+1 and
XijXij+1 are related by the transition function: If
(p, C, L) ∈ δ(q, A), then α DqA β ⊢ α pDC β, so we want
a clause

yij−1D ∧ yijq ∧ yij+1A ∧ yi+1j−1p ∧ yi+1jD ∧ yi+1j+1C

Similarly for (p, C,R) ∈ δ(q, A).

Aij is the OR of all valid terms.

Intractable Problems – p. 27

Bij

Let q1 . . . qm be the states of M , and Z1 . . . Zr be the
tape symbols.

Bij = (yij−1q1
∨ yij−1q2

· · · ∨ yij−1qm
) ∨

(yij+1q1
∨ yij+1q2

· · · ∨ yij+1qm
) ∨

((yijZ1
∨ yijZ2

∨ · · · ∨ yijZr
) ∧

((yijZ1
∧ yi+1jZ1

) ∨ (yijZ2
∧ yi+1jZ2

) · · · ∨ (yijZr
∧ yi+1jZr

)))

Bij is true if one of the positions j ± 1 is a state. The
correctness of Xi+1j will be taken care of by Aij±1.

Bij is also true if none of the positions j, j ± 1 is a state
and Xi+1j = Xij.

Intractable Problems – p. 28

Conclusion of Cook’s

Note that the size of EMw is polynomial in |w|.
S has p(n) variables.
F has p(n) + 1 Fj ’s, and each Fj has k variables.
N has p(n) Ni’s, and each Ni has p(n) + 1
(Aij ∨ Bij)’s. Each Bij has m + m + r + 2r variables
and each Aij has mr ∗ 6 variables.

Since k,m, r are constants for given M , the size of
EMw is in the order of (p(n))2. Writing EMw is thus
polynomial time.

Intractable Problems – p. 29

Restricted SAT Problems

We are going to use SAT to show that some
well-known problems, e.g. TSP, are NP-complete.

We first consider restricted versions of SAT, called
CSAT, k-SAT and 3SAT. We show SAT problem
reduces to these problems in polynomial time.

These problems reduce to the well-known problems,
such as IS (independent set), NC (node cover), DHC
(directed Hamilton circuit), HC.

The reduction involves constructing specific graphs for
certain SAT problems.

Intractable Problems – p. 30

Conjunctive Normal Forms

A literal is either a variable or a negated variable.

A clause is the OR of one or more literals.

We often use ¯ for negation (¬), + for OR (∨) and
product for AND (∧).

(x + ȳ)(yz) ⇒ (x ∨ ¬y) ∧ (y ∧ z)

A Boolean expression is said to be in conjunctive
normal form, or CNF, if it is the AND of clauses.

Specifically, it is in k-CNF if it is the product of clauses,
each of which is the sum of k distinct literals.

Intractable Problems – p. 31

CSAT and 3SAT

CSAT: Given a Boolean expression in CNF, is it
satisfiable?

3SAT: Given a Boolean expression in 3-CNF, is it
satisfiable?

Both problems are NP-complete.
We first reduce SAT to CSAT in polynomial time.
We then reduce CSAT to 3SAT.

Intractable Problems – p. 32

Converting to CNF

Two Boolean expressions are equivalent if they have
the same value for any truth assignment to their
variables.

In reducing SAT to CSAT, given instance E of SAT, our
goal is to construct an instance F in CSAT such that E
is satisfiable iff F is. It is not necessary that E and F
are equivalent.

There are two steps in this conversion.
1. Construct E′ that is equivalent to E.
2. Construct F that is satisfiable iff E′ is.

Intractable Problems – p. 33

Construction of E ′

For any E in SAT, we can construct an equivalent E′

such that the negation is on literals only. Furthermore,
the length of E′ is linear in the number of symbols in E,
and E′ can be constructed in polynomial time.

This can be proved by mathematical induction with the
help of DeMorgan’s laws.

¬(E ∧ F) ⇒ ¬(E) ∨ ¬(F)

¬(E ∨ F) ⇒ ¬(E) ∧ ¬(F)

¬(¬(E)) ⇒ E

Try an example would be convincing.

Intractable Problems – p. 34

Construction of F

If E′ as previously defined is of length n (the number of
positions), then there is an F such that

F is in CNF, with at most n clauses.
F can be constructed from E′ in time cn2.
A truth assignment T ′ for E′ makes E′ true iff an
extension S of T ′ makes F true.

The tricky part of proof is the inductive case where
E′ = E′

1 ∨ E′

2. Note F1 ∨ F2 is not in CNF. Let
F1 = g1 ∧ · · · ∧ gp and F2 = h1 ∧ · · · ∧ hq. Introduce a
variable y and define F in CNF

F = (y + g1) ∧ · · · ∧ (y + gp)
∧

(ȳ + h1) ∧ · · · ∧ (ȳ + hq)

Intractable Problems – p. 35

Proof

Suppose T ′ makes E′ true. Then an extension S of T ′

including y makes F true:
Either E′

1 or E′

2 is true.
If E′

1 is true, then an extension S1 of T ′

1 makes F1

true (by inductive assumption). Then assigning
y = 0 makes F true.
Similarly for the case E′

2 is true.

Suppose S satisfies F . Then there exists a T ′ where S
is an extension of T ′ satisfies E′ .

If y = 0, F1 must be true. S1 exists and T ′

1 for E′

1

exists by inductive assumption.
Similarly for the case y = 1.

Intractable Problems – p. 36

CSAT to 3SAT

We can convert an expression E = e1 ∧ · · · ∧ em in CNF
to one in 3-CNF as follows.

If ei = (x) is single, replace ei by

x → (x + u + v)(x + u + v̄)(x + ū + v)(x + ū + v̄)

If ei = (x + y) contains two literals, replace ei by

x + y → (x + y + z̄)(x + y + z)

If ei = (x1 + · · · + xm), replace ei by

(x1+x2+y1)(x3+y1+y2)(x4+y2+y3) . . . (xm−1+xm+ym−3)

Intractable Problems – p. 37

More NP-Complete Problems

With 3SAT, we now show that some problems in graphs
are NP-complete.

Description for NP-complete problems.
name
input
output
reduce from

Example
CSAT
a Boolean expression in CNF
Yes, if satisfiable
SAT

Intractable Problems – p. 38

Independent Set Problem

An independent set of a graph G = (V,E) is a subset I
of V such that no nodes in I is connected by an edge.

The independent set problem is described by
IS
a graph G and a lower bound k

Yes, if G has an independent set of k nodes
3SAT

We need to construct an instance (G, k) of IS based on
an instance E of 3SAT.

Intractable Problems – p. 39

Reducing 3SAT to IS

Given an E in 3-CNF with m clauses, we construct a
graph G such that

For a clause in E we create a clique of three
nodes, with each node representing a literal.
There is an edge between the node for a literal and
the node for its complement.

An independent set of size m in G indicates E is
satisfiable by setting the literals of the nodes in the IS
true.

One node in each clique is chosen.
A literal and its complement cannot be chosen
simultaneously.

Intractable Problems – p. 40

Node-Cover Problem

A node cover of a graph G = (V,E) is a subset C of V
such that each edge in E has at least one of its end
nodes in C.

The node-cover problem is described by
NC
a graph G and a lower bound k

Yes, if G has a node cover of k or fewer nodes
IS

Note that the complement of a node cover is an
independent set. The reduction of an instance of IS to
an instance in NC is merely the change k in IS to n − k
in NC. A graph has a node cover of n − k nodes iff it
has an independent set of k nodes.

Intractable Problems – p. 41

Directed Hamilton Circuit

A Hamilton circuit in a directed graph G = (V,E) is a
directed simple cycle that connects all nodes.

The directed Hamilton circuit problem is described by
DHC
a directed graph G

Yes, if G has a directed Hamilton circuit
3SAT

Intractable Problems – p. 42

Reducing 3SAT to DHC

Suppose E is a k-clause 3-CNF with n variables.
For each variable xi we construct a subgraph Hi,
which is shown in Figure 10.9(a). ai, di are the
entry/exit nodes. bij , cij are nodes designed to
indicate whether xi = 1 or 0.
For each clause ej we will have a subgraph Ij ,
which is shown in Figure 10.9(c). Note a cycle
must enter and leave in the same column.
Hi and Ij are connected as shown in Fig 10.10:
For xi in ej we pick an unused cip for rj and bip+1 for
uj . Likewise, for xi in ej we pick an unused bip for rj

and cip+1 for uj .

A DHC in G indicates E is satisfiable by setting the
variables of the Hi’s accordingly.

Intractable Problems – p. 43

Hamilton Circuit Problem

A Hamilton circuit in an undirected graph G = (V,E) is
a simple cycle that connects all nodes.

The Hamilton circuit problem is described by
HC
an undirected graph G

Yes, if G has a Hamilton circuit
DHC

The reduction goes as follows. Given an instance G for
DHC, we construct an instance G′ of HC. Each node v
in G corresponds to 3 nodes v0, v1, v2 in G′, where
v0, v1 and v1, v2 are connected. For a directed edge
(u,w) in G, we have undirected edges (u2, w0) in G′.

Intractable Problems – p. 44

Traveling Salesman Problem

Description
TSP
an undirected graph G with weights on the edges,
and a limit k

Yes, if there is a Hamilton circuit such that the sum
of edges is less or equal to k

HC

The reduction goes as follows. Given an instance G for
HC we construct an instance G′ of TSP that is exactly
like G except that we assign the weight on every edge
to be 1. Solving G′ of TSP for k = n solves G of HC.

Intractable Problems – p. 45

Randomized TM

Sometimes we need random numbers in an algorithm.
For example, in quick sort, the pivot can be chosen
randomly.

How do we implement randomization with a TM?

Answer: we can use an extra tape which stores
random bits, with each bit being 1 with probability 1/2.
It is equivalent to flipping a fair coin at every move.

A randomized TM is given in Figure 11.7. qUV DE
means the TM enters state q, writes symbols U, V , and
moves in the directions D,E for the input tape and
random tape.

Intractable Problems – p. 46

Monte-Carlo TM

For a randomized TM, acceptance and the run time
becomes random.

The language L of a Monte-Carlo TM M is defined by
Every w is in L is accepted by M with probability at
least 1/2.
If w is not in L, then M does not accept w with
probability 1.

In one simulation, if x is accepted by M , then x ∈ L. If
x is not accepted by M , the x may or may not be in L.

In other words, there is a chance for false rejection for
w ∈ L but not a chance for false acceptance for w /∈ L .

Intractable Problems – p. 47

Class RP

A language L is in class RP (Random Polynomial) if
L is accepted by a MC TM M .
There is a polynomial T (n) such that for any input
w of size n, M halts in no more than T (n) steps for
any simulation.

M is also called a polynomial-time MC algorithm.

Intractable Problems – p. 48

Las-Vegas TM

A randomized TM that always halts and gives the
correct answer is called a Las-Vegas TM.

That is, for an LV TM M , the acceptance event does
not depend on the random tape content. There is no
chance of error.

w ∈ L(M) is accepted by M with probability 1.
w /∈ L(M) is rejected by M with probability 1.

Intractable Problems – p. 49

Class ZPP

The expected time of M to halt on input w depends on
w.

We define another class of languages by the expected
time of computation.

A language L is in class ZPP (Zero-error, Probabilistic,
Polynomial) if

L is accepted by a LV TM M .
There is a polynomial T (n) such that for any input
w of size n, the expected time for M to halt on w is
no more than T (n).

Intractable Problems – p. 50

P ⊆ ZPP

It can be shown that

P ⊆ ZPP ⊆ RP ⊆ NP

If L is in P, then L is accepted by a deterministic TM
M . M is a special case of randomized TM which treats
random bits 0 and 1 equally. So L is in ZPP.

Intractable Problems – p. 51

ZPP ⊆ RP

If L is in ZPP, then L is accepted by a LV TM M with
expected time T (n).

We can construct a TM N from M : N simulates the
computation of M for 2T (n) steps. If M accepts, then
N accepts.

If w ∈ L, then N accepts with probability at least
1/2.
If w /∈ L, then N accepts with probability 0.

N is a MC TM for L that halts in 2T (n) steps. So L is in
RP.

Intractable Problems – p. 52

RP ⊆ NP

Suppose L in RP, then there is a polynomial-time MC
TM M for L.

We can construct an NTM N from M . Whenever a
random bit of M is scanned for the first time, N
chooses one of two alternatives corresponding to bit 0
or 1 nondeterministically and writes the bit on its tape.
Then N simulates the running of M .

If w ∈ L, then w is accepted by M , and also by N . If
w /∈ L, then w is not accepted by M , and also not by N .

Intractable Problems – p. 53

	Introduction
	Polynomial-Time Algorithm
	$mathcal {P}$ and Intractable Problems
	Kruskal's Algorithm
	Time-Complexity Analysis
	Encoding for MWST Problem
	Non-deterministic TM and $mathcal {NP}$
	Traveling Salesman Problem
	$mathcal {P}$ and $mathcal {NP}$
	Polynomial-Time Reduction
	$mathcal {NP}$-Complete
	$mathcal {NP}$-Complete and $mathcal {P}$
	$mathcal {NP}$-Hard
	Co-$mathcal {NP}$
	An $mathcal {NP}$-Complete Problem
	SAT Problem
	Representing SAT Instances
	Cook's Theorem
	Notation of Proof
	Idea of Proof
	Representing ID's
	Construct Boolean Expression
	Starts Right
	Finishes Right
	Next Move Is Right
	A_{ij}
	B_{ij}
	Conclusion of Cook's
	Restricted SAT Problems
	Conjunctive Normal Forms
	CSAT and 3SAT
	Converting to CNF
	Construction of E'
	Construction of F
	Proof
	CSAT to 3SAT
	More $mathcal {NP}$-Complete Problems
	Independent Set Problem
	Reducing 3SAT to IS
	Node-Cover Problem
	Directed Hamilton Circuit
	Reducing 3SAT to DHC
	Hamilton Circuit Problem
	Traveling Salesman Problem
	Randomized TM
	Monte-Carlo TM
	Class $mathcal {RP}$
	Las-Vegas TM
	Class $mathcal {ZPP}$
	$mathcal {P} subseteq mathcal {ZPP}$
	$mathcal {ZPP} subseteq mathcal {RP}$
	$mathcal {RP} subseteq mathcal {NP}$

