
Basics - II

Contents

◮ Discrete-time signals
◮ Discrete-time systems
◮ Representations of systems
◮ Fourier analysis
◮ Sampling
◮ Random signal

Impulse Response

◮ The impulse response function of a system is the output when the input is the
impulse sequence, i.e.,

h[n] = T{δ[n]}. (1)
◮ What are the impulse responses of the accumulator and the moving average?

Linear Time-Invariant Systems

◮ A discrete-time system T is called linear time-invariant (LTI) if it is linear and
time-invariant.

◮ LTI systems are the most important kind in DSP!

LTI and Convolution

◮ Suppose T is LTI. Using the linearity and time-invariance of T , we have

y [n] = T{x [n]} = T

{

∑

m

x [m]δ[n −m]

}

=
∑

m

x [m]T{δ[n −m]}

=
∑

m

x [m]h[n −m].
(2)

◮ The output is the convolution of the input sequence and the system’s impulse
response!

Stability of LTI Systems

◮ An LTI system T with impulse response h[n] is stable if and only if
∑

n

|h[n]| <∞. (3)

◮ We prove the “only if” part. Suppose T is stable. Consider the input

x [n] =

{

h∗[−n]
|h[−n]|, h[−n] 6= 0

0, h[−k ] = 0.
(4)

The output has to be bounded. In particular,

|y [0]| ≤ B ⇒ |
∑

n

x [−n]h[n]| ≤ |
∑

n

h∗[n]
|h[n]|

h[n]| =
∑

n

|h[n]| ≤ B (5)

Causality of LTI Systems

◮ An LTI system with impulse response h[n] is causal if and only if

h[n] = 0, for n < 0. (6)

◮ This can be easily seen by

y [n] =
∑

h[k ]x [n − k ] =
∑

k≥0

h[k ]x [n − k ]. (7)

◮ A sequence x [n] is said to be causal if

x [n] = 0, for n < 0. (8)

Examples of Impulse Response

◮ ideal delay
h[n] = δ[n − nd ] (9)

◮ moving average

h[n] =
1

M1 + M2 + 1

M2
∑

k=−M1

δ[n − k ] (10)

◮ accumulator

h[n] =
n
∑

k=−∞

δ[k ] = u[n] (11)

◮ forward difference
h[n] = δ[n + 1]− δ[n] (12)

◮ backward difference
h[n] = δ[n]− δ[n − 1] (13)

Connection of Systems

◮ Suppose we have two LTI systems T1,T2, with impulse responses h1[n], h2[n]
respectively.

◮ There are two fundamental ways to connect two LTI systems
◮ cascade

h[n] = h1[n] ∗ h2[n]. (14)
◮ parallel

h[n] = h1[n] + h2[n]. (15)

Examples

◮ The cascade of a forward difference system and a one-sample delay

h[n] = (δ[n + 1]− δ[n]) ∗ δ[n − 1] = δ[n]− δ[n − 1] (16)

◮ The cascade of a backward difference system and an accumulator

h[n] = u[n] ∗ (δ[n]− δ[n − 1]) = u[n]− u[n − 1] = δ[n]. (17)

Inverse Systems

◮ The last example illustrates the idea of inverse system.
◮ Generally, the impulse responses of a system and its inverse system satisfies

h[n] ∗ hi[n] = hi[n] ∗ h[n] = δ[n]. (18)

◮ Given h[n], it is difficult to solve for hi[n] directly.
◮ The same problem will become much easier after we introduce the

z-transform!

Linear Difference Equations

◮ A linear constant-coefficient difference equation (LCCDE) characterizes the
input-output relation of a system

N
∑

k=0

aky [n − k ] =
M
∑

m=0

bmx [n −m]. (19)

◮ N is called the order of this difference equation.
◮ Some of the systems have been defined by LCCDEs. Others can be

converted to LCCDEs.

Example

accumulator
◮ The accumulator can be re-written as

y [n]− y [n − 1] =
n
∑

k=−∞

x [k ]−
n−1
∑

k=−∞

x [k ] = x [n]. (20)

◮ It is an LCCDE with

N = 1, a0 = 1, a1 = −1, M = 0, b0 = 1. (21)

◮ One can also see a recursive representation for y [n]

y [n] = x [n] + y [n − 1]. (22)

causal moving average
◮ The causal MA system is defined by

y [n] =
1

M2 + 1

M2
∑

m=0

x [n −m], (23)

◮ It is an LCCDE with

N = 0, a0 = 1, M = M2, bm = 1/(M2 + 1). (24)

LCCDE Is not Unique

◮ For the same causal moving average system, we have

y [n]− y [n − 1] =
1

M2 + 1
(x [n]− x [n −M2 − 1]). (25)

◮ The LCCDE is different! Specifically,

N = 1, a0 = 1, a1 = −1, M = M2 + 1, b0 = −bM2+1 =
1

M2 + 1
. (26)

FIR and IIR

◮ If N = 0 in an LCCDE,

y [n] =
M
∑

m=0

bm

a0
x [n −m]. (27)

◮ The impulse response is of finite length

y [n] = h[n] =
M
∑

m=0

(

bm

a0

)

δ[n −m] =







(

bm
a0

)

, 0 ≤ m ≤ M

0, otherwise
(28)

◮ Such a system is called finite impulse response (FIR).
◮ A system is called infinite impulse response (IIR) if it is not FIR.

Eigenvector of LTI System

◮ A signal x [n] is an eigenvector of a system T if the output y [n] is a mulitple of
the input x [n].

◮ The multiplier T{x [n]} = λx [n] is called the eigenvalue for x [n].
◮ We will show that the complex exponential sequences are the eigenvectors of

any LTI systems.
◮ If ejωn is input to an LTI system with impulse response h[n], the output is

y [n] = x [n] ∗ h[n] =
∑

m

h[m]ejω(n−m) =

(

∑

m

h[m]e−jωm

)

ejωn

= H(ejω)x [n].

(29)

◮ Therefore, ejωn is an eigenvector with the eigenvalue of

H(ejω) =
∑

m

h[m]e−jωm. (30)

Frequency Response

◮ H(ejω) is called frequency response of the system.
◮ In general, H(ejω) is complex, and we can write it in the polar form

H(ejω) = HR(ejω) + jHI(ejω) = |H(ejω)|ej arg(H(ejω)) (31)

◮ |H(ejω)| is called the magnitude response
◮ arg(H(ejω)) is called the phase response

Discrete-Time Fourier Transform

◮ The discrete-time Fourier transform (DTFT) of a sequence x [n] is defined by

X (ejω) =
∑

n

x [n]e−jωn. (32)

◮ X (ejω) is called to as the spectrum of x [n].
◮ We have shown that the impulse response and the frequency response of an

LTI system are related by

H(ejω) =
∑

m

h[m]e−jωm. (33)

which is the DTFT of h[n].

Frequency Response of Ideal Delay

◮ The ideal delay system has an impluse response of

h[n] = δ[n − nd ], (34)

◮ The frequency response is the DTFT of h[n],

H(ejω) =
∑

n

δ[n − nd ]e−jωn = e−jωnd. (35)

◮ The magnitude and phase responses of H(ejω) are 1 and −ωnd, respectively.

Spectral Components

◮ A broad class of signals can be represented as a linear combination of
complex exponentials

x [n] =
∑

k

αkejωkn, where ωk =
2π
N

k . (36)

◮ From the principle of superposition, the output of an LTI system with x [n] as
input is simply

y [n] =
∑

k

αkejωknH(ejωk). (37)

High Frequency and Low Frequency

◮ We can see that H(ejω) is always periodic with period 2π.
◮ Thus, we only need to specify H(ejω) in a range of length 2π.
◮ The frequencies near ω = 0 are the “low frequencies”, and those near ω = ±π

are the “high frequencies”.

Response of a Sinusoidal Input

◮ Consider the sinusoidal input to an LTI

x [n] = A cos(ω0n + φ) =
A
2

ejφejω0n +
A
2

e−jφe−jω0n

⇒ y [n] = H(ejω0)
A
2

ejφejω0n + H(e−jω0)
A
2

e−jφe−jω0n.
(38)

◮ If h[n] is real, H(e−jω0) = H∗(ejω0), and we have

y [n] = A|H(ejω0)| cos(ω0n + φ + θ), where θ = arg H(ejω0) (39)

◮ For the ideal delay system, as expected,

y [n] = A cos(ω0(n − nd) + φ) = x [n − nd ]. (40)

Example: Moving Average

◮ The impulse response is

h[n] =
1

M1 + M2 + 1

M2
∑

k=−M1

δ[n − k ] (41)

◮ The frequency response is

H(ejω) =
1

M1 + M2 + 1

M2
∑

k=−M1

e−jωk

=
1

M1 + M2 + 1
sin[ω(M1 + M2 + 1)/2]

sin(ω/2)
e−jω(M2−M1)/2

(42)

◮ See Figure 2.19.

Inverse Discrete-Time Fourier Transformation

◮ x [n] can be reconstructed from X (ejω), which is called the inverse DTFT

x [n] =
1

2π

∫ π

−π

X (ejω)ejωndω. (43)

◮ (43) can be proved by noting that
1

2π

∫ π

−π

ejω(n−n′)dω = δ[n − n′]. (44)

Analysis and Synthesis

◮ Analysis (DTFT)
X (ejω) =

∑

x [n]e−jωn. (45)

◮ Synthesis (inverse DTFT)

x [n] =
1

2π

∫ π

−π

X (ejω)ejωndω. (46)

Properties of DTFT

◮ Linearity
◮ Time shifting

x [n − nd ]←→ e−jωndX (ejω) (47)
◮ Frequency shifting

ejω0nx [n]←→ X (ej(ω−ω0)) (48)
◮ Time reversal

x [−n]←→ X (e−jω) (49)
◮ Differentiation

nx [n]←→ j
dX (ejω)

dω
(50)

◮ Parseval’s theorem
∑

|x [n]|2 =
1

2π

∫ π

−π

|X (ejω)|2dω (51)

◮ Convolution theorem

h[n] ∗ x [n]←→ H(ejω)X (ejω) (52)

◮ Modulation theorem

h[n]x [n]←→
1

2π

∫ π

−π

X (ejθ)H(ej(ω−θ))dθ (53)
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