Discrete-Time Signals and Systems *Discrete-Time Signal Processing*

Chia-Ping Chen

Department of Computer Science and Engineering National Sun Yat-Sen University Kaohsiung, Taiwan ROC

Discrete-Time Signals and Systems – p. 1

Outline

- discrete-time signals
- discrete-time systems
- linear time-invariant systems
- Inear difference equations
- frequency-domain representation of signals and systems
- Fourier transform: representation of sequences
- Fourier transform theorems

Discrete-Time Signals

a discrete-time signal = a sequence of numbers

$$x = \{x[n]\}, \ -\infty < n < \infty$$

• For instance, x[n] often arises from periodic sampling of a continuous-time signal,

$$x[n] = x_a(nT), \ -\infty < n < \infty.$$

T: sampling period
¹/_T = f_s: sampling frequency

Basic Sequences

impulse sequence, aka unit sample sequence

$$\delta[n] = \begin{cases} 1, & n = 0 \\ 0, & \text{otherwise} \end{cases}$$

unit step sequence

$$u[n] = \begin{cases} 1, & n \ge 0\\ 0, & n < 0 \end{cases}$$

sinusoidal sequence

$$x[n] = A\cos(\omega n + \phi)$$

Basic Sequence Operations

- shift or delay: $y[n] = x[n n_0]$ is a shifted or delayed version of x[n] by n_0
- sum: the sum of two sequences x[n], y[n] is another sequence

$$z[n] = x[n] + y[n]$$

product: the product of two sequences x[n], y[n] is another sequence

$$z[n] = x[n] \ y[n]$$

• scaling x[n] by a factor of α

$$z[n] = \alpha x[n]$$

Decomposition of a Sequence

- Any discrete-time signal can be represented as a sum of delayed and scaled impulse sequences.
- Specifically

$$x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k].$$

Note we can also write

$$x[n] = \sum_{k=-\infty}^{\infty} x[n-k]\delta[k].$$

Impulse and Unit Step Sequences

For the unit step sequence

$$u[n] = \sum_{k=-\infty}^{\infty} u[k]\delta[n-k] = \sum_{k=0}^{\infty} \delta[n-k]$$
$$= \sum_{k=-\infty}^{\infty} u[n-k]\delta[k] = \sum_{k=-\infty}^{n} \delta[k]$$
$$= \delta[n] + \delta[n-1] + \dots$$

It follows that

$$\delta[n] = u[n] - u[n-1].$$

Exponential Sequences

An exponential sequence is given by

$$x[n] = C\alpha^n.$$

• We can combine with the unit step function such that x[n] = 0 for n < 0, i.e.,

$$x[n] = C\alpha^n u[n].$$

 \bullet C and α are complex numbers, so we can write

$$C = A e^{j\phi}, \ \alpha = |\alpha| e^{j\omega_0},$$

where A, ϕ, ω_0 are real numbers.

Sinusoidal Sequences

A sinusoidal sequence has the form

$$x[n] = A\cos(\omega_0 n + \phi),$$

where A, ω_0 and ϕ are real.

Note the real and imaginary parts of an exponential sequence are

$$x[n] = C\alpha^{n} = Ae^{j\phi} |\alpha|^{n} e^{j\omega_{0}n}$$
$$= A|\alpha|^{n} e^{j\omega_{0}n+\phi}$$
$$= A|\alpha|^{n} \cos(\omega_{0}n+\phi) + jA|\alpha|^{n} \sin(\omega_{0}n+\phi)$$

Complex Exponential Sequences

By definition, a complex exponential is an exponential sequence with $|\alpha| = 1$, i.e.,

$$x[n] = A\cos(\omega_0 n + \phi) + jA\sin(\omega_0 n + \phi)$$

- ω_0 is called frequency
- ϕ is called phase
- The real and imaginary parts are both sinusoidal sequences. Note that

$$\omega_0, \ \omega_r = \omega_0 + 2\pi r, \ r \in \mathbb{Z}$$

are indistinguishable frequencies, since they give identical complex exponential sequences.

Periodicity

For a given sinusoidal sequence $x[n] = A\cos(\omega_0 n + \phi)$ to be periodic, it is *required* that

 $2\pi k = \omega_0 \Delta n$, for some integers $k, \Delta n$.

- Therefore, a sinusoidal sequence is *not* always periodic in the index n.
- Note this contrasts the continuous-time case, where $x(t) = A\cos(\omega_0 t + \phi)$ is always periodic with period $\frac{2\pi}{\omega_0}$.
- Increasing the frequency may increase the period!

$$x_1[n] = \cos(\frac{\pi}{4}n), \ x_2[n] = \cos(\frac{3\pi}{8}n)$$

Periodic Frequencies

• A discrete-time sinusoidal sequence is *N*-periodic if $\omega = \frac{2\pi k}{N}, \ k \in Z$, since

$$A\cos(\omega(n+N) + \phi) = A\cos(\omega n + \phi).$$

For a given N, there are N distinguishable frequencies for periodic sinusoidal sequences,

$$\omega_k = \frac{2\pi}{N}k, \ k = 0, 1, \dots, N-1.$$

Any sequence periodic with N is a linear combination of sinusoidal sequences of these frequencies.

High and Low Frequencies

- The oscillation of a sinusoidal sequence $x[n] = cos(\omega n)$ does not always increase with ω !
 - x[n] does oscillate more and more rapidly as ω increases from 0 to π
 - oscillation slows down as ω increases from π to 2π

$$\cos(\omega n) = \cos(-\omega n) = \cos((2\pi - \omega)n).$$

Solution For discrete-time signals, the frequencies near $\omega = 2\pi k$ are the low frequencies, while the frequencies near $\omega = \pi + 2\pi k$ are the high frequencies.

Discrete-Time Systems

• A discrete-time system is a transformation T that maps an input sequence $\{x[n]\}$ to an output sequence $\{y[n]\}$

$$y[n] = T\{x[n]\}.$$

• T is characterized by the exact mathematical formula relating y[n] and x[n].

Examples

ideal delay

$$y[n] = x[n - n_d]$$

moving average

$$y[n] = \frac{1}{M_1 + M_2 + 1} \sum_{k=-M_1}^{M_2} x[n-k]$$

Memoryless Systems

- A system is said to be memoryless if the value of y[n] at n depends only on the value of x[n] at n.
- For example,

$$y[n] = (x[n])^2$$

It does not depend on any earlier value of x[n].

Linear Systems

A system is said to be linear if

$$T\{x_1[n] + x_2[n]\} = T\{x_1[n]\}) + T(\{x_2[n]\})$$
$$T\{ax[n]\} = aT\{x[n]\}$$

For example, the accumulator defined by

$$y[n] = \sum_{k=-\infty}^{n} x[k]$$

is linear.

Time-Invariant Systems

A system is said to be time-invariant if

$$y_{n_d}[n] = T\{x[n - n_d]\} = y[n - n_d].$$

For example, the accumulator is time-invariant, since

$$T\{x[n-n_d]\} = \sum_{k=-\infty}^n x[k-n_d] = \sum_{k'=-\infty}^{n-n_d} x[k'] = y[n-n_d].$$

Example: Compressor

A compressor is defined by

$$y[n] = x[Mn], -\infty < n < \infty, M \in Z^+$$

It "compacts" every other M samples of x[n].

• To see that this system is *not* time-invariant, note

$$T\{x[n - n_d]\} = x[Mn - n_d] \neq y[n - n_d] = x[M(n - n_d)].$$

A counterexample can be established by

$$x[n] = \delta[n], M = 2, n_d = 1$$

$$\Rightarrow y[n] = \delta[2n] = \delta[n] \& T\{\delta[n-1]\} = 0 \neq y[n-1] = \delta[n-1]$$

Causal Systems

- A system is said to be causal if the output value at any n_0 only depends on the input values at $n \le n_0$.
- In other words, the system is non-anticipative.
- Which of the systems are causal
 - accumulator?
 - moving average?

Example: Forward Difference

• A forward difference system is defined by

$$y[n] = x[n+1] - x[n].$$

A backward difference system is defined by

$$y[n] = x[n] - x[n-1].$$

Which is causal? Which is not?

Stability

A system is said to be stable if a bounded input sequence produces a bounded output sequence.

$$|x[n]| \le B_x < \infty \Rightarrow |y[n]| \le B_y < \infty$$

- **BIBO**
- Which of the systems are stable
 - accumulator?
 - moving average?

Linear Time-Invariant Systems

- important, important, important
- A linear time-invariant (LTI) system is characterized by its impulse response function.
- basic ideas
 - any input sequence is a linear combination of shifted impulse sequences (general property)
 - the output of a shifted impulse is a shifted impulse response (time-invariance)
 - the output of any input sequence is the same linear combination of shifted impulse response (linearity)

Impulse Response

The impulse response function is the output sequence when the input is the impulse sequence,

$$h[n] = T\{\delta[n]\}.$$

Suppose a system is LTI. For any input sequence x[n], the output is

$$y[n] = T\{x[n]\} = T\left\{\sum_{m} x[m]\delta[n-m]\right\}$$
$$= \sum_{m} x[m]T\{\delta[n-m]\} = \sum_{m} x[m]h[n-m].$$

Convolution

The operation between two sequences

$$x[n] * h[n] = \sum_{m} x[m]h[n-m]$$

is called the **convolution** of x[n] and h[n], which results in another sequence.

- The summation in an operation of convolution is called convolution sum.
- In the derivation, the perspective is to express the resultant sequence as a sum of sequences, i.e., h[n-m].

Evaluation of Convolution

- We now show how to compute x[n] * h[n] at a specific time index n.
- Given n, the convolution sum is the "inner product" of two sequences x[k] and h[n-k] both indexed by k.
 - x[k] is just x[n]
 - h[n-k] = h[-k+n] is h[k] reflected (with respect to time origin) and then shifted to the right by n.

Example

Let the impulse response and input sequence be

$$x[n] = a^{n}u[n]; \quad h[n] = u[n] - u[n - N] = \begin{cases} 1, & 0 \le n \le N - 1\\ 0, & \text{otherwise}, \end{cases}$$

The output is

$$y[n] = x[n] * h[n] = \sum_{k} x[k]h[n-k]$$

=
$$\begin{cases} 0, & n < 0, \\ \frac{1-a^{n+1}}{1-a}, & 0 \le n \le N-1 \\ a^{n-N+1}\left(\frac{1-a^{N}}{1-a}\right), & n > N-1. \end{cases}$$

Convolution Properties

commutative

$$x[n]*h[n] = \sum_{m} x[m]h[n-m] = \sum_{m'} x[n-m']h[m'] = h[n]*x[n].$$

Jinearity

$$x[n] * (h[n] + g[n]) = \sum_{m} x[m](h[n - m] + g[n - m])$$
$$= x[n] * h[n] + x[n] * g[n].$$

Connection of Systems

cascade connection: the response to an impulse sequence is

 $h[n] = h_1[n] * h_2[n].$

parallel connection: the response to an impulse sequence is

 $h[n] = h_1[n] + h_2[n].$

LTI Causal Systems

From an LTI system, with impulse response h[n], to be causal, since

$$y[n] = \sum_{k} h[k]x[n-k],$$

it must hold that

$$h[k] = 0, \ k < 0.$$

• A sequence x[n] is said to be causal if

$$x[n] = 0, \quad n < 0.$$

Examples of Impulse Response

ideal delay

$$h[n] = \delta[n - n_d]$$

moving average

$$h[n] = \frac{1}{M_1 + M_2 + 1} \sum_{k=-M_1}^{M_2} \delta[n-k]$$

accumulator

$$h[n] = u[n]$$

More Examples

forward difference

$$h[n] = \delta[n+1] - \delta[n]$$

backward difference

$$h[n] = \delta[n] - \delta[n-1]$$

Equivalent Systems

The cascade system of a forward difference and a one-sample delay is equivalent to a backward difference system

$$h[n] = (\delta[n+1] - \delta[n]) * \delta[n-1]$$
$$= \delta[n] - \delta[n-1]$$

The cascade system of a backward difference and a accumulator is equivalent to an identity system

$$h[n] = u[n] * (\delta[n] - \delta[n-1]) = u[n] - u[n-1]$$

= $\delta[n].$

Inverse Systems

- The last example is an example of inverse system.
- More generally, the impulse response functions of a system and its inverse system satisfies

$$h[n] * h_i[n] = h_i[n] * h[n] = \delta[n].$$

- Given h[n], it is difficult to solve for $h_i[n]$ directly.
- With z-transform, this problem becomes much easier!

Linear Difference Equations

- a class of system representations
- The input and output sequences are related by a linear constant-coefficient difference equation (LCCDE)

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{m=0}^{M} b_m x[n-m].$$

 \checkmark N is said to be the order of this difference equation.

Accumulator as LCCDE

The accumulator can be represented by an LCCDE

$$y[n] - y[n-1] = \sum_{k=-\infty}^{n} x[k] - \sum_{k=-\infty}^{n-1} x[k] = x[n],$$

corresponding to $N = 1, a_0 = 1, a_1 = -1, M = 0, b_0 = 1$.

• One can also see a recursive representation for y[n]

$$y[n] = x[n] + y[n-1].$$

offering another picture of a system
Causal Moving Average as LCCDE

Recall that

$$y[n] = \frac{1}{M_2 + 1} \sum_{m=0}^{M_2} x[n-m].$$

- an LCCDE with $N = 0, a_0 = 1, M = M_2, b_m = 1/(M_2 + 1)$
- We can express the impulse response as

$$h[n] = \frac{1}{M_2 + 1} (\delta[n] - \delta[n - M_2 - 1]) * u[n].$$

Note how a causal moving average is equivalent to attenuation, ideal delay and accumulator.

More on Causal Moving Average

If we define

$$x_1[n] = \frac{1}{M_2 + 1} (x[n] - x[n - M_2 - 1]),$$

we have

$$y[n] - y[n-1] = x_1[n] = \frac{1}{M_2 + 1}(x[n] - x[n - M_2 - 1]).$$

 Note we have another LCCDE for the same system! Specifically,

$$N = 1, a_0 = 1, a_1 = -1, M = M_2 + 1, b_0 = b_{M_2 + 1} = 1/(M_2 + 1).$$

Recursive Computation of Solution

- Suppose an LCCDE is given for a system. With input sequence x[n] and initial conditions $y[-1], \ldots, y[-N]$, y[n] can be computed recursively as follows.
 - For n > 0, starting from n = 0 and recursively,

$$y[n] = -\sum_{k=1}^{N} \frac{a_k}{a_0} y[n-k] + \sum_{m=0}^{M} \frac{b_m}{a_0} x[n-m].$$

• For n < -N, starting from l = 1 and recursively,

$$y[-N-l] = -\sum_{k=0}^{N-1} \frac{a_k}{a_N} y[-k-l] + \sum_{m=0}^{M} \frac{b_m}{a_N} x[-m-l].$$

Example

$$\begin{cases} y[n] = ay[n-1] + x[n]; \\ y[-1] = c; \ x[n] = K\delta[n]; \end{cases}$$

• For $n \ge 0$, from y[-1] = c and recursion,

$$y[0] = ac + K, \ y[1] = a(ac + K), \dots, \ y[n] = a^{n+1}c + a^n K$$

• For n < -1, from y[-1] = c and recursion,

$$y[-2] = a^{-1}(y[-1] - x[-1]) = a^{-1}c,$$

$$y[-3] = a^{-1}(y[-2] - x[-2]) = a^{-2}c,$$

$$\vdots$$

$$y[n] = a^{n+1}c$$

Consistent Conditions

- In the current example, the system is not linear and not time-invariant.
 - not linear: K = 0, then x[n] = 0 but $y[n] \neq 0$
 - not time invariant: $x'[n] = K\delta[n n_0]$, then

$$y'[n] = a^{n+1}c + Ka^{n-n_0}u[n-n_0] \neq y[n-n_0].$$

- not causal: $y[-1] = c \neq 0$
- We have a system described by LCCDE but is not LTI!
- If a system described by LCCDE is required to be LTI and causal, then the solution is unique!
- It must have initial-rest conditions: the first non-zero output point cannot precede the first non-zero input.

FIR Filters

- **•** FIR: finite impulse response
- In an LCCDE, if N = 0, then

$$y[n] = \sum_{m=0}^{M} \frac{b_m}{a_0} x[n-m].$$

• Let
$$x[n] = \delta[n]$$
, then

$$y[n] = h[n] = \sum_{m=0}^{M} \left(\frac{b_m}{a_0}\right) \delta[n-m] = \begin{cases} \left(\frac{b_m}{a_0}\right), & 0 \le m \le M\\ 0, & \text{otherwise} \end{cases}$$

This is FIR.

Frequency-Domain Representation

- A discrete-time signal may be represented in a number of different ways.
 - A periodic sequence can be represented as a sum of sinusoidal sequences of certain frequencies.
- For LTI systems, sinusoidal and complex exponential sequences are of particular importance.
- They are the eigenfunctions of LTI systems, as we show below.

Eigenvector of LTI System

If a complex exponential $x[n] = e^{j\omega n}$ is input to an LTI system, with impulse response h[n], the output is

$$y[n] = x[n] * h[n] = \sum_{m} h[m] e^{j\omega(n-m)} = e^{j\omega n} \sum_{m} h[m] e^{-j\omega m} = x[n] H(e^{j\omega}).$$

- The output is a multiple of the input!
- The key idea is to see a sequence as a vector, and see a system as a linear transformation.
- Clearly $e^{j\omega n}$ is an eigenvector with eigenvalue

$$H(e^{j\omega}) = \sum h[m]e^{-j\omega m}.$$

Frequency Response

- $H(e^{j\omega})$ is called the frequency response of the system.
- In general, $H(e^{j\omega})$ is complex

$$H(e^{j\omega}) = H_R(e^{j\omega}) + jH_I(e^{j\omega}) = |H(e^{j\omega})|e^{j\arg(H(e^{j\omega}))}$$

|H(e^{jω})| is called magnitude response
 arg(H(e^{jω})) is called phase response

Fundamental Relationship

The Fourier transform of a discrete-time signal x[n] is defined by

$$X(e^{j\omega}) = \sum_{n} x[n]e^{-j\omega n}.$$

We have just shown that, for an LTI system, the frequency response and the impulse response are related by the Fourier transform!

$$H(e^{j\omega}) = \sum_{m} h[m]e^{-j\omega m}$$

Example: Ideal Delay

ideal delay

• via Fourier transform of h[n]

$$H(e^{j\omega}) = \sum_{n} \delta[n - n_d] e^{-j\omega n} = e^{-j\omega n_d}$$

• via direct computation: $x[n] = e^{j\omega n}$,

$$y[n] = x[n - n_d] = e^{j\omega(n - n_d)} = e^{j\omega n}e^{-j\omega n_d} = x[n]H(e^{j\omega})$$

$$\Rightarrow H(e^{j\omega}) = e^{-j\omega n_d}$$

The magnitude and phase of $H(e^{j\omega})$ is 1 and $-\omega n_d$ respectively.

Decomposition

Suppose x[n] is a linear combination of $e^{j\omega_k n}$ of different ω_k 's

$$x[n] = \sum_{k} \alpha_k e^{j\omega_k n}.$$

The output of an LTI system is, by the principle of superposition,

$$y[n] = \sum_{k} \alpha_k e^{j\omega_k n} H(e^{j\omega_k}).$$

For any input sequence, we just need to figure out the linear combination to compute the output.

Example

• Let x[n] be a sinusoidal sequence

$$x[n] = A\cos(\omega_0 n + \phi).$$

decomposition by complex exponential sequences

$$A\cos(\omega_0 n + \phi) = \frac{A}{2}e^{j\phi}e^{j\omega_0 n} + \frac{A}{2}e^{-j\phi}e^{-j\omega_0 n}.$$

The output is

$$y[n] = \frac{A}{2}e^{j\phi}H(e^{j\omega_0 n})e^{j\omega_0 n} + \frac{A}{2}e^{-j\phi}H(e^{-j\omega_0 n})e^{-j\omega_0 n}$$

Properties of Frequency Response

• For any LTI system, the frequency response is always periodic, with period 2π , since

$$H(e^{j(\omega+2\pi)}) = \sum_{n} h[n]e^{-j(\omega+2\pi)n} = \sum_{n} h[n]e^{-j\omega n} = H(e^{j\omega})$$

- This is to be expected as $\{e^{j\omega n}\}$ and $\{e^{j(\omega+2\pi)n}\}$ are identical sequences.
- We only need to specify $H(e^{j\omega})$ over one period, say $[0, 2\pi]$ or $[-\pi, \pi]$.

Frequency Selective Filters

ideal low-pass filters

$$H_{\rm lp}(e^{j\omega}) = \begin{cases} 1, & |\omega| \le \omega_c \\ 0, & \omega_c < |\omega| \le \pi \end{cases}$$

ideal high-pass filters

$$H_{\mathsf{hp}}(e^{j\omega}) = \begin{cases} 0, & |\omega| \le \omega_c \\ 1, & \omega_c < |\omega| \le \pi \end{cases}$$

ideal band-pass filters are similarly defined with cut-off frequencies ω_a, ω_b .

Moving-Average System

Recall that

$$h[n] = \begin{cases} \frac{1}{M_1 + M_2 + 1}, & -M_1 \le n \le M_2\\ 0, & \text{otherwise} \end{cases}$$

The frequency response is

$$H(e^{j\omega}) = \frac{1}{M_1 + M_2 + 1} \sum_{n = -M_1}^{M_2} e^{-j\omega n}$$
$$= \frac{1}{M_1 + M_2 + 1} \frac{\sin[\omega(M_1 + M_2 + 1)/2]}{\sin(\omega/2)} e^{-j\omega(M_2 - M_1)/2}.$$

(cf 2.19) The low-frequency part is more emphasized.

Causal Complex Exponentials

 A complex exponential that extends to both sides of infinity seems impractical. Instead, consider a suddenly applied exponential

$$x[n] = e^{j\omega n} u[n].$$

For a causal LTI system, the output is

$$y[n] = \sum h[k]x[n-k] = \begin{cases} 0, & n < 0\\ \sum_{k=0}^{n} \left(h[k]e^{-j\omega k}\right)e^{j\omega n}, & n \ge 0 \end{cases}$$

State-State and Transient

• For $n \ge 0$, we write

$$y[n] = \left(\sum_{k=0}^{n} h[k]e^{-j\omega k}\right) e^{j\omega n} = H(e^{j\omega})e^{j\omega n} - \left(\sum_{k=n+1}^{\infty} h[k]e^{-j\omega k}\right) e^{j\omega n}$$
$$= y_{SS}[n] + y_t[n].$$

• $y_{SS}[n]$ is called the state-state response, given by

$$y_{SS}[n] = H(e^{j\omega})e^{j\omega n}$$

• $y_t[n]$ is called the transient response, given by

$$y_t[n] = -\left(\sum_{k=n+1}^{\infty} h[k]e^{-j\omega k}\right)e^{j\omega n}$$

Stable System

- Under certain conditions, $y_t[n]$ vanishes as $n \to \infty$.
- Specifically,

$$|y_t[n]| = \left| \left(\sum_{k=n+1}^{\infty} h[k] e^{-j\omega k} \right) e^{j\omega n} \right| \le \sum_{k=n+1}^{\infty} |h[k]|$$

If the system is stable, i.e.,

$$\sum_{k=0}^{\infty} |h[k]| < \infty \implies \sum_{k=n+1}^{\infty} |h[k]| \to 0,$$

So $y_t[n] \to 0$.

Representations of a Sequence

An LTI system is characterized by its frequency response, the Fourier transform of the impulse response

$$h[n] \leftrightarrow H(e^{j\omega}).$$

Likewise, a sequence x[n] can be represented by its Fourier transform $X(e^{j\omega})$

$$X(e^{j\omega}) = \sum x[n]e^{-j\omega n}.$$

Indeed, from $X(e^{j\omega})$ we can reconstruct x[n]

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega.$$

Analysis and Synthesis

Fourier integral = synthesis: x[n] as a superposition of (infinitesimal) complex exponentials

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

also known as the inverse Fourier transform

• Fourier transform = analysis: for the the weights of complex exponentials in x[n]

$$X(e^{j\omega}) = \sum x[n]e^{-j\omega n}$$

Proof of Inverse

Plugging in the analysis formula into the rhs of the synthesis formula, we have

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\sum_{m} x[m] e^{-j\omega m} \right) e^{j\omega n} d\omega = \sum_{m} x[m] \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j\omega(n-m)} d\omega \right)$$

Note that

$$\int_{-\pi}^{\pi} e^{j\omega(n-m)} d\omega = \begin{cases} 2\pi, & n=m\\ 0, & n\neq m \end{cases}$$

So the integral yields x[n].

Convergence

- The infinite sum for the analysis formula has to converge for $X(e^{j\omega})$ to be defined.
- What x[n] has a convergent $X(e^{j\omega})$?
- A sufficient condition is that x[n] is absolutely summable, i.e.,

$$\sum_{n} |x[n]| < \infty \Rightarrow |X(e^{j\omega})| \le \sum |x[n]| \le \infty$$

A stable sequence, by definition, is absolutely summable, so it has a Fourier transform.

Square Summable Sequence

Consider the ideal low-pass filter

$$H_{\rm lp}(e^{j\omega}) = \begin{cases} 1, & |\omega| < \omega_c \\ 0, & \omega_c < |\omega| < \pi \end{cases},$$

the impulse response is

$$h[n] = \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} e^{j\omega n} d\omega = \frac{1}{2\pi j n} e^{j\omega n} |_{-\omega_c}^{\omega_c} = \frac{\sin \omega_c n}{\pi n}.$$

- not absolutely summable, but square summable
- an example of Fourier transform representation for a sequence not absolutely summable

Constant Sequence

 A constant sequence is neither absolutely summable nor square summable,

$$x[n] = 1.$$

Yet, we can define the Fourier transform to be

$$X(e^{j\omega}) = \sum_{r} 2\pi\delta(\omega + 2\pi r).$$

This is justified by the fact that substituting $X(e^{j\omega})$ into the synthesis formula yields x[n].

Complex Exponential

- The FT of a constant sequence is a periodic (2π) impulse train.
- Solution What if we shift the impulse by ω_0 , i.e.,

$$X(e^{j\omega}) = \sum_{r} 2\pi\delta(\omega - \omega_0 + 2\pi r)?$$

• It is the FT of $e^{j\omega_0 n}$ since

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} 2\pi \delta(\omega - \omega_0) e^{j\omega n} d\omega = e^{j\omega_0 n}$$

Sum of Discrete-Frequency Components

 Suppose a sequence is a sum of discrete-frequency exponential components,

$$x[n] = \sum_{k} a_k e^{j\omega_k n}.$$

Then the Fourier transform representation is

$$X(e^{j\omega}) = \sum_{r} \sum_{k} 2\pi a_k \delta(\omega - \omega_k + 2\pi r).$$

Symmetric/Antisymmetric Sequences

conjugate-symmetric sequence

$$x[n] = x^*[-n].$$

conjugate-antisymmetric sequence

$$x[n] = -x^*[-n].$$

Any sequence x[n] is a sum of conjugate-symmetric and conjugate-antisymmetric sequences,

$$x[n] = \frac{1}{2}(x[n] + x^*[-n]) + \frac{1}{2}(x[n] - x^*[-n]) = x_s[n] + x_a[n]$$

Real Sequences

A real sequence is even if

$$x[n] = x[-n].$$

A real sequence is odd if

$$x[n] = -x[-n].$$

Any real sequence x[n] is a sum of even and odd sequences,

$$x[n] = \frac{1}{2}(x[n] + x[-n]) + \frac{1}{2}(x[n] - x[-n]) = x_e[n] + x_o[n]$$

Regarding Fourier Transform

• $X(e^{j\omega})$ can be written

$$X(e^{j\omega}) = \frac{1}{2}(X(e^{j\omega}) + X^*(e^{-j\omega})) + \frac{1}{2}(X(e^{j\omega}) - X^*(e^{-j\omega}))$$

The first part is conjugate-symmetric, since

$$\begin{aligned} X_s(e^{j\omega}) &= \frac{1}{2} (X(e^{j\omega}) + X^*(e^{-j\omega})) \\ \Rightarrow \ X_s^*(e^{-j\omega}) &= \frac{1}{2} (X(e^{-j\omega}) + X^*(e^{j\omega}))^* \\ &= \frac{1}{2} (X(e^{j\omega}) + X^*(e^{-j\omega})) = X_s(e^{j\omega}). \end{aligned}$$

The second part is conjugate-antisymmetric, so

$$X(e^{j\omega}) = X_s(e^{j\omega}) + X_a(e^{j\omega})$$

Symmetry Properties: General x[n]

● Suppose $x[n] \leftrightarrow X(e^{j\omega})$.

$$x^*[n] \leftrightarrow X^*(e^{-j\omega})$$
$$x^*[-n] \leftrightarrow X^*(e^{j\omega})$$
$$\mathsf{Re}\{x[n]\} \leftrightarrow X_s(e^{j\omega})$$
$$j\mathsf{Im}\{x[n]\} \leftrightarrow X_a(e^{j\omega})$$

exemplar proof

$$y[n] = x^*[n] \Rightarrow Y(e^{j\omega}) = \sum_n x^*[n]e^{-j\omega n} = \sum_n (x[n]e^{-j(-\omega)n})^* = X^*(e^{-j\omega})$$
$$z[n] = x^*[-n] \Rightarrow Z(e^{j\omega}) = \sum_n x^*[-n]e^{-j\omega n} = \sum_n (x[-n]e^{-j\omega(-n)})^* = X^*(e^{j\omega})$$
$$w[n] = Re\{x[n]\} = \frac{1}{2}(x[n] + x^*[n]) \Rightarrow W(e^{j\omega}) = \frac{1}{2}(X(e^{j\omega}) + X^*(e^{-j\omega})) = X_s(e^{j\omega})$$

Symmetry Properties: Real x[n]

- We have seen that the FT of the real part of x[n] is the conjugate-symmetric part of $X(e^{j\omega})$, and the FT of the imaginary part of x[n] is the conjugate-antisymmetric part of $X(e^{j\omega})$.
- Suppose x[n] is real.

$$X(e^{j\omega}) = X^*(e^{-j\omega})$$

$$\Rightarrow X_R(e^{j\omega}) = X_R(e^{-j\omega})$$

$$X_I(e^{j\omega}) = -X_I(e^{-j\omega})$$

$$|X(e^{j\omega})| = |X(e^{-j\omega})|$$

$$< X(e^{j\omega}) = - < X(e^{-j\omega})$$

Example

• Let $x[n] = a^n u[n], |a| < 1$. The Fourier transform is

$$X(e^{j\omega}) = \sum_{n=0}^{\infty} a^n e^{-j\omega n} = \frac{1}{1 - ae^{-j\omega}}$$

$$\Rightarrow \quad X(e^{j\omega}) = X^*(e^{-j\omega})$$

$$X_R(e^{j\omega}) = X_R^*(e^{-j\omega}) = \frac{1 - a\cos\omega}{1 + a^2 - 2a\cos\omega}$$

$$X_I(e^{j\omega}) = -X_I(e^{-j\omega}) = \frac{-a\sin\omega}{1 + a^2 - 2a\cos\omega}$$

$$|X(e^{j\omega})| = |X(e^{-j\omega})|$$

$$< X(e^{j\omega}) = - < X(e^{-j\omega}) = \tan^{-1}\left(\frac{-a\sin\omega}{1 - a\cos\omega}\right)$$

Fourier Transform Theorems

Jinearity

$$ax[n] + by[n] \leftrightarrow aX(e^{j\omega}) + bY(e^{j\omega})$$

time shift

$$x[n-n_d] \leftrightarrow e^{-j\omega n_d} X(e^{j\omega})$$

frequency modulation

$$e^{j\omega_0 n} x[n] \leftrightarrow X(e^{j(\omega-\omega_0)})$$

time reversal

$$x[-n] \leftrightarrow X(e^{-j\omega})$$

Fourier Transform Theorems

frequency differentiation

$$nx[n] \leftrightarrow j \frac{dX(e^{j\omega})}{d\omega}$$

convolution

$$x[n] * h[n] \leftrightarrow X(e^{j\omega})H(e^{j\omega})$$

multiplication (windowing)

$$x[n]w[n] \leftrightarrow \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) W(e^{j(\omega-\theta)}) d\theta.$$

The integral is a frequency-domain convolution.

Parseval's Theorem

• The convolution of x[n] and $y[n] = x^*[-n]$ has a FT of

$$X(e^{j\omega})Y(e^{j\omega}) = X(e^{j\omega})X^*(e^{j\omega}).$$

• Evaluating z[n] = x[n] * y[n] at n = 0, we have

$$z[0] = \sum_{k} x[k]y[0-k] = \sum_{k} x[k]x^{*}[k] = \sum_{k} |x[k]|^{2}.$$

Representing z[n] by the synthesis formula, at evaluating at n = 0, we have

$$z[0] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) X^*(e^{j\omega}) e^{j\omega 0} d\omega$$
Energy and Spectrum

The energy of a sequence is the sum of squares of each term. The previous slide shows that

$$E = \sum_{n} |x[n]|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(e^{j\omega})|^2 d\omega \ (= z[0]).$$

- We are essentially decompose energy in two ways: time-wise and frequency-wise.
- For this reason, $|X(e^{j\omega})|^2$ is called energy density spectrum.

Spectral Relationship

- Suppose we have an LTI system, with frequency response $H(e^{j\omega})$.
- Suppose we have an input x[n], with output y[n].
- Now, from the synthesis formula, we have

$$\begin{split} x[n] &= \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega \\ \Rightarrow y[n] &= \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) H(e^{j\omega}) e^{j\omega n} d\omega = \frac{1}{2\pi} \int_{-\pi}^{\pi} Y(e^{j\omega}) e^{j\omega} d\omega. \end{split}$$

It follows that

$$Y(e^{j\omega}) = X(e^{j\omega})H(e^{j\omega}).$$