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Discrete-Time Signals

a discrete-time signal = a sequenceof numbers

x = {x[n]}, −∞ < n < ∞.

For instance, x[n] often arises from periodic sampling
of a continuous-time signal,

x[n] = xa(nT ), −∞ < n < ∞.

T : sampling period
1
T

= fs: sampling frequency
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Basic Sequences

impulse sequence, aka unit sample sequence

δ[n] =







1, n = 0

0, otherwise

unit step sequence

u[n] =







1, n ≥ 0

0, n < 0

sinusoidal sequence

x[n] = A cos(ωn + φ)
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Basic Sequence Operations

shift or delay: y[n] = x[n − n0] is a shifted or delayed
version of x[n] by n0

sum: the sum of two sequences x[n], y[n] is another
sequence

z[n] = x[n] + y[n]

product: the product of two sequences x[n], y[n] is
another sequence

z[n] = x[n] y[n]

scalingx[n] by a factor of α

z[n] = αx[n]
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Decomposition of a Sequence

Any discrete-time signal can be represented as a sum
of delayedand scaledimpulse sequences.

Specifically

x[n] =
∞
∑

k=−∞

x[k]δ[n − k].

Note we can also write

x[n] =
∞
∑

k=−∞

x[n − k]δ[k].
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Impulse and Unit Step Sequences

For the unit step sequence

u[n] =
∞
∑

k=−∞

u[k]δ[n − k] =
∞
∑

k=0

δ[n − k]

=

∞
∑

k=−∞

u[n − k]δ[k] =

n
∑

k=−∞

δ[k]

= δ[n] + δ[n − 1] + . . .

It follows that

δ[n] = u[n] − u[n − 1].
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Exponential Sequences

An exponential sequenceis given by

x[n] = Cαn.

We can combine with the unit step function such that
x[n] = 0 for n < 0, i.e.,

x[n] = Cαnu[n].

C and α are complex numbers, so we can write

C = Aejφ, α = |α|ejω0 ,

where A, φ, ω0 are real numbers.
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Sinusoidal Sequences

A sinusoidal sequence has the form

x[n] = A cos(ω0n + φ),

where A,ω0 and φ are real.

Note the real and imaginary parts of an exponential
sequence are

x[n] = Cαn = Aejφ|α|nejω0n

= A|α|nejω0n+φ

= A|α|n cos(ω0n + φ) + jA|α|n sin(ω0n + φ)

Discrete-Time Signals and Systems – p. 9



Complex Exponential Sequences

By definition, a complex exponentialis an exponential
sequence with |α| = 1, i.e.,

x[n] = A cos(ω0n + φ) + jA sin(ω0n + φ)

ω0 is called frequency
φ is called phase

The real and imaginary parts are both sinusoidal
sequences. Note that

ω0, ωr = ω0 + 2πr, r ∈ Z

are indistinguishable frequencies, since they give
identical complex exponential sequences.
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Periodicity

For a given sinusoidal sequence x[n] = A cos(ω0n + φ)

to be periodic, it is required that

2πk = ω0∆n, for some integers k,∆n.

Therefore, a sinusoidal sequence is not always
periodic in the index n.

Note this contrasts the continuous-time case, where
x(t) = A cos(ω0t + φ) is always periodic with period 2π

ω0
.

Increasing the frequency may increase the period!

x1[n] = cos(
π

4
n), x2[n] = cos(

3π

8
n)
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Periodic Frequencies

A discrete-time sinusoidal sequence is N -periodic if
ω = 2πk

N
, k ∈ Z, since

A cos(ω(n + N) + φ) = A cos(ωn + φ).

For a given N , there are N distinguishable frequencies
for periodic sinusoidal sequences,

ωk =
2π

N
k, k = 0, 1, . . . , N − 1.

Any sequence periodic with N is a linear combination
of sinusoidal sequences of these frequencies.
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High and Low Frequencies

The oscillation of a sinusoidal sequence x[n] = cos(ωn)
does not always increase with ω!

x[n] does oscillate more and more rapidly as ω
increases from 0 to π

oscillation slows down as ω increases from π to 2π

cos(ωn) = cos(−ωn) = cos((2π − ω)n).

For discrete-time signals, the frequencies near ω = 2πk
are the low frequencies, while the frequencies near
ω = π + 2πk are the high frequencies.
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Discrete-Time Systems

A discrete-time system is a transformation T that maps
an input sequence {x[n]} to an output sequence {y[n]}

y[n] = T{x[n]}.

T is characterized by the exact mathematical formula
relating y[n] and x[n].
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Examples

ideal delay

y[n] = x[n − nd]

moving average

y[n] =
1

M1 + M2 + 1

M2
∑

k=−M1

x[n − k]
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Memoryless Systems

A system is said to be memorylessif the value of y[n] at
n depends only on the value of x[n] at n.

For example,

y[n] = (x[n])2.

It does not depend on any earlier value of x[n].
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Linear Systems

A system is said to be linear if

T{x1[n] + x2[n]} = T{x1[n]}) + T ({x2[n]}

T{ax[n]} = aT{x[n]}

For example, the accumulator defined by

y[n] =
n
∑

k=−∞

x[k]

is linear.
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Time-Invariant Systems

A system is said to be time-invariant if

ynd
[n] = T{x[n − nd]} = y[n − nd].

For example, the accumulator is time-invariant, since

T{x[n − nd]} =

n
∑

k=−∞

x[k − nd] =

n−nd
∑

k′=−∞

x[k′] = y[n − nd].
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Example: Compressor

A compressoris defined by

y[n] = x[Mn], −∞ < n < ∞, M ∈ Z+.

It “compacts” every other M samples of x[n].

To see that this system is not time-invariant, note

T{x[n − nd]} = x[Mn − nd] 6= y[n − nd] = x[M(n − nd)].

A counterexample can be established by

x[n] = δ[n],M = 2, nd = 1

⇒y[n] = δ[2n] = δ[n] & T{δ[n − 1]} = 0 6= y[n − 1] = δ[n − 1]
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Causal Systems

A system is said to be causalif the output value at any
n0 only depends on the input values at n ≤ n0.

In other words, the system is non-anticipative.

Which of the systems are causal
accumulator?
moving average?

Discrete-Time Signals and Systems – p. 20



Example: Forward Difference

A forward difference system is defined by

y[n] = x[n + 1] − x[n].

A backward difference system is defined by

y[n] = x[n] − x[n − 1].

Which is causal? Which is not?
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Stability

A system is said to be stable if a bounded input
sequence produces a bounded output sequence.

|x[n]| ≤ Bx < ∞ ⇒ |y[n]| ≤ By < ∞

BIBO

Which of the systems are stable
accumulator?
moving average?
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Linear Time-Invariant Systems

important, important, important

A linear time-invariant (LTI) system is characterized by
its impulse response function.

basic ideas
any input sequence is a linear combination of
shifted impulse sequences (general property)
the output of a shifted impulse is a shifted impulse
response (time-invariance)
the output of any input sequence is the same linear
combination of shifted impulse response (linearity )
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Impulse Response

The impulse response functionis the output sequence
when the input is the impulse sequence,

h[n] = T{δ[n]}.

Suppose a system is LTI. For any input sequence x[n],
the output is

y[n] = T{x[n]} = T

{

∑

m

x[m]δ[n − m]

}

=
∑

m

x[m]T{δ[n − m]} =
∑

m

x[m]h[n − m].
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Convolution

The operation between two sequences

x[n] ∗ h[n] =
∑

m

x[m]h[n − m]

is called the convolution of x[n] and h[n], which results
in another sequence.

The summation in an operation of convolution is called
convolution sum.

In the derivation, the perspective is to express the
resultant sequence as a sum of sequences, i.e.,
h[n − m].
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Evaluation of Convolution

We now show how to compute x[n] ∗ h[n] at a specific
time index n.

Given n, the convolution sum is the “inner product” of
two sequences x[k] and h[n − k] both indexed by k.

x[k] is just x[n]

h[n − k] = h[−k + n] is h[k] reflected (with respect to
time origin) and then shifted to the right by n.
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Example

Let the impulse response and input sequence be

x[n] = anu[n]; h[n] = u[n] − u[n − N ] =







1, 0 ≤ n ≤ N − 1

0, otherwise,

The output is

y[n] = x[n] ∗ h[n] =
∑

k

x[k]h[n − k]

=



















0, n < 0,

1−an+1

1−a
, 0 ≤ n ≤ N − 1

an−N+1
(

1−aN

1−a

)

, n > N − 1.
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Convolution Properties

commutative

x[n]∗h[n] =
∑

m

x[m]h[n−m] =
∑

m′

x[n−m′]h[m′] = h[n]∗x[n].

linearity

x[n] ∗ (h[n] + g[n]) =
∑

m

x[m](h[n − m] + g[n − m])

= x[n] ∗ h[n] + x[n] ∗ g[n].
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Connection of Systems

cascade connection: the response to an impulse
sequence is

h[n] = h1[n] ∗ h2[n].

parallel connection: the response to an impulse
sequence is

h[n] = h1[n] + h2[n].
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LTI Causal Systems

From an LTI system, with impulse response h[n], to be
causal, since

y[n] =
∑

k

h[k]x[n − k],

it must hold that

h[k] = 0, k < 0.

A sequence x[n] is said to be causalif

x[n] = 0, n < 0.
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Examples of Impulse Response

ideal delay

h[n] = δ[n − nd]

moving average

h[n] =
1

M1 + M2 + 1

M2
∑

k=−M1

δ[n − k]

accumulator

h[n] = u[n]
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More Examples

forward difference

h[n] = δ[n + 1] − δ[n]

backward difference

h[n] = δ[n] − δ[n − 1]
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Equivalent Systems

The cascade system of a forward difference and a
one-sample delay is equivalent to a backward
difference system

h[n] = (δ[n + 1] − δ[n]) ∗ δ[n − 1]

= δ[n] − δ[n − 1]

The cascade system of a backward difference and a
accumulator is equivalent to an identity system

h[n] = u[n] ∗ (δ[n] − δ[n − 1]) = u[n] − u[n − 1]

= δ[n].
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Inverse Systems

The last example is an example of inverse system.

More generally, the impulse response functions of a
system and its inverse system satisfies

h[n] ∗ hi[n] = hi[n] ∗ h[n] = δ[n].

Given h[n], it is difficult to solve for hi[n] directly.

With z-transform, this problem becomes much easier!
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Linear Difference Equations

a class of system representations

The input and output sequences are related by a linear
constant-coefficient difference equation (LCCDE)

N
∑

k=0

aky[n − k] =
M
∑

m=0

bmx[n − m].

N is said to be the order of this difference equation.
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Accumulator as LCCDE

The accumulator can be represented by an LCCDE

y[n] − y[n − 1] =

n
∑

k=−∞

x[k] −

n−1
∑

k=−∞

x[k] = x[n],

corresponding to N = 1, a0 = 1, a1 = −1,M = 0, b0 = 1.

One can also see a recursive representationfor y[n]

y[n] = x[n] + y[n − 1].

offering another picture of a system
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Causal Moving Average as LCCDE

Recall that

y[n] =
1

M2 + 1

M2
∑

m=0

x[n − m].

an LCCDE with N = 0, a0 = 1,M = M2, bm = 1/(M2 + 1)

We can express the impulse response as

h[n] =
1

M2 + 1
(δ[n] − δ[n − M2 − 1]) ∗ u[n].

Note how a causal moving average is equivalent to
attenuation, ideal delay and accumulator.
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More on Causal Moving Average

If we define

x1[n] =
1

M2 + 1
(x[n] − x[n − M2 − 1]),

we have

y[n] − y[n − 1] = x1[n] =
1

M2 + 1
(x[n] − x[n − M2 − 1]).

Note we have another LCCDE for the same system!
Specifically,

N = 1, a0 = 1, a1 = −1, M = M2+1, b0 = bM2+1 = 1/(M2+1).
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Recursive Computation of Solution

Suppose an LCCDE is given for a system. With input
sequence x[n] and initial conditions y[−1], . . . , y[−N ],
y[n] can be computed recursively as follows.

For n > 0, starting from n = 0 and recursively,

y[n] = −

N
∑

k=1

ak

a0
y[n − k] +

M
∑

m=0

bm

a0
x[n − m].

For n < −N , starting from l = 1 and recursively,

y[−N − l] = −
N−1
∑

k=0

ak

aN

y[−k − l] +
M
∑

m=0

bm

aN

x[−m − l].
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Example







y[n] = ay[n − 1] + x[n];

y[−1] = c; x[n] = Kδ[n];

For n ≥ 0, from y[−1] = c and recursion,

y[0] = ac + K, y[1] = a(ac + K), . . . , y[n] = an+1c + anK

For n < −1, from y[−1] = c and recursion,

y[−2] = a−1(y[−1] − x[−1]) = a−1c,

y[−3] = a−1(y[−2] − x[−2]) = a−2c,

...

y[n] = an+1c
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Consistent Conditions

In the current example, the system is not linear and not
time-invariant.

not linear: K = 0, then x[n] = 0 but y[n] 6= 0

not time invariant: x′[n] = Kδ[n − n0], then

y′[n] = an+1c + Kan−n0u[n − n0] 6= y[n − n0].

not causal: y[−1] = c 6= 0

We have a system described by LCCDE but is not LTI!

If a system described by LCCDE is required to be LTI
and causal, then the solution is unique!

It must have initial-rest conditions: the first non-zero
output point cannot precede the first non-zero input.
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FIR Filters

FIR: finite impulse response

In an LCCDE, if N = 0, then

y[n] =

M
∑

m=0

bm

a0
x[n − m].

Let x[n] = δ[n], then

y[n] = h[n] =
M
∑

m=0

(

bm

a0

)

δ[n−m] =







(

bm

a0

)

, 0 ≤ m ≤ M

0, otherwise

This is FIR.

Discrete-Time Signals and Systems – p. 42



Frequency-Domain Representation

A discrete-time signal may be represented in a number
of different ways.

A periodic sequence can be represented as a sum
of sinusoidal sequences of certain frequencies.

For LTI systems, sinusoidaland complex exponential
sequences are of particular importance.

They are the eigenfunctionsof LTI systems, as we
show below.
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Eigenvector of LTI System

If a complex exponential x[n] = ejωn is input to an LTI
system, with impulse response h[n], the output is

y[n] = x[n]∗h[n] =
∑

m

h[m]ejω(n−m) = ejωn
∑

m

h[m]e−jωm = x[n]H(ejω).

The output is a multiple of the input!

The key idea is to see a sequence as a vector, and see
a system as a linear transformation .

Clearly ejωn is an eigenvectorwith eigenvalue

H(ejω) =
∑

m

h[m]e−jωm.
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Frequency Response

H(ejω) is called the frequency responseof the system.

In general, H(ejω) is complex

H(ejω) = HR(ejω) + jHI(e
jω) = |H(ejω)|ej arg(H(ejω))

|H(ejω)| is called magnitude response

arg(H(ejω)) is called phase response
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Fundamental Relationship

The Fourier transform of a discrete-time signal x[n] is
defined by

X(ejω) =
∑

n

x[n]e−jωn.

We have just shown that, for an LTI system, the
frequency response and the impulse response are
related by the Fourier transform!

H(ejω) =
∑

m

h[m]e−jωm.
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Example: Ideal Delay

ideal delay

via Fourier transform of h[n]

H(ejω) =
∑

n

δ[n − nd]e
−jωn = e−jωnd.

via direct computation: x[n] = ejωn,

y[n] = x[n − nd] = ejω(n−nd) = ejωne−jωnd = x[n]H(ejω)

⇒ H(ejω) = e−jωnd

The magnitude and phase of H(ejω) is 1 and −ωnd

respectively.
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Decomposition

Suppose x[n] is a linear combination of ejωkn of
different ωk’s

x[n] =
∑

k

αke
jωkn.

The output of an LTI system is, by the principle of
superposition,

y[n] =
∑

k

αke
jωknH(ejωk).

For any input sequence, we just need to figure out the
linear combination to compute the output.
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Example

Let x[n] be a sinusoidal sequence

x[n] = A cos(ω0n + φ).

decomposition by complex exponential sequences

A cos(ω0n + φ) =
A

2
ejφejω0n +

A

2
e−jφe−jω0n.

The output is

y[n] =
A

2
ejφH(ejω0n)ejω0n +

A

2
e−jφH(e−jω0n)e−jω0n
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Properties of Frequency Response

For any LTI system, the frequency response is always
periodic, with period 2π, since

H(ej(ω+2π)) =
∑

n

h[n]e−j(ω+2π)n =
∑

n

h[n]e−jωn = H(ejω)

This is to be expected as {ejωn} and {ej(ω+2π)n} are
identical sequences.

We only need to specify H(ejω) over one period, say
[0, 2π] or [−π, π].
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Frequency Selective Filters

ideal low-pass filters

Hlp(e
jω) =







1, |ω| ≤ ωc

0, ωc < |ω| ≤ π

ideal high-pass filters

Hhp(e
jω) =







0, |ω| ≤ ωc

1, ωc < |ω| ≤ π

ideal band-pass filtersare similarly defined with cut-off
frequencies ωa, ωb.
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Moving-Average System

Recall that

h[n] =







1
M1+M2+1

, −M1 ≤ n ≤ M2

0, otherwise
.

The frequency response is

H(ejω) =
1

M1 + M2 + 1

M2
∑

n=−M1

e−jωn

=
1

M1 + M2 + 1

sin[ω(M1 + M2 + 1)/2]

sin(ω/2)
e−jω(M2−M1)/2.

(cf 2.19) The low-frequency part is more emphasized.
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Causal Complex Exponentials

A complex exponential that extends to both sides of
infinity seems impractical. Instead, consider a
suddenly applied exponential

x[n] = ejωnu[n].

For a causal LTI system, the output is

y[n] =
∑

h[k]x[n − k] =







0, n < 0
∑n

k=0

(

h[k]e−jωk
)

ejωn, n ≥ 0
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State-State and Transient

For n ≥ 0, we write

y[n] =

 

n
X

k=0

h[k]e−jωk

!

ejωn = H(ejω)ejωn −

0

@

∞
X

k=n+1

h[k]e−jωk

1

A ejωn

= ySS [n] + yt[n].

ySS[n] is called the state-state response, given by

ySS[n] = H(ejω)ejωn.

yt[n] is called the transient response, given by

yt[n] = −

(

∞
∑

k=n+1

h[k]e−jωk

)

ejωn.
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Stable System

Under certain conditions, yt[n] vanishes as n → ∞.

Specifically,

|yt[n]| =

∣

∣

∣

∣

∣

(

∞
∑

k=n+1

h[k]e−jωk

)

ejωn

∣

∣

∣

∣

∣

≤
∞
∑

k=n+1

|h[k]|

If the system is stable, i.e.,

∞
∑

k=0

|h[k]| < ∞ ⇒
∞
∑

k=n+1

|h[k]| → 0,

So yt[n] → 0.
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Representations of a Sequence

An LTI system is characterized by its frequency
response, the Fourier transform of the impulse
response

h[n] ↔ H(ejω).

Likewise, a sequence x[n] can be represented by its
Fourier transform X(ejω)

X(ejω) =
∑

x[n]e−jωn.

Indeed, from X(ejω) we can reconstruct x[n]

x[n] =
1

2π

∫ π

−π

X(ejω)ejωndω.
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Analysis and Synthesis

Fourier integral = synthesis: x[n] as a superposition of
(infinitesimal) complex exponentials

x[n] =
1

2π

∫ π

−π

X(ejω)ejωndω

also known as the inverse Fourier transform

Fourier transform = analysis: for the the weights of
complex exponentials in x[n]

X(ejω) =
∑

x[n]e−jωn
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Proof of Inverse

Plugging in the analysis formula into the rhs of the
synthesis formula, we have

1

2π

∫ π

−π

(

∑

m

x[m]e−jωm

)

ejωndω =
∑

m

x[m]

(

1

2π

∫ π

−π

ejω(n−m)dω

)

Note that

∫ π

−π

ejω(n−m)dω =







2π, n = m

0, n 6= m
.

So the integral yields x[n].
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Convergence

The infinite sum for the analysis formula has to
converge for X(ejω) to be defined.

What x[n] has a convergent X(ejω)?

A sufficient condition is that x[n] is absolutely
summable, i.e.,

∑

n

|x[n]| < ∞ ⇒ |X(ejω)| ≤
∑

|x[n]| ≤ ∞

A stablesequence, by definition, is absolutely
summable, so it has a Fourier transform.
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Square Summable Sequence

Consider the ideal low-pass filter

Hlp(e
jω) =







1, |ω| < ωc

0, ωc < |ω| < π
,

the impulse response is

h[n] =
1

2π

∫ ωc

−ωc

ejωndω =
1

2πjn
ejωn|ωc

−ωc
=

sin ωcn

πn
.

not absolutely summable, but square summable

an example of Fourier transform representation for a
sequence not absolutely summable
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Constant Sequence

A constant sequence is neither absolutely summable
nor square summable,

x[n] = 1.

Yet, we can define the Fourier transform to be

X(ejω) =
∑

r

2πδ(ω + 2πr).

This is justified by the fact that substituting X(ejω) into
the synthesis formula yields x[n].
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Complex Exponential

The FT of a constant sequence is a periodic (2π)
impulse train.

What if we shift the impulse by ω0, i.e.,

X(ejω) =
∑

r

2πδ(ω − ω0 + 2πr)?

It is the FT of ejω0n since

1

2π

∫ π

−π

X(ejω)ejωndω

=
1

2π

∫ π

−π

2πδ(ω − ω0)e
jωndω = ejω0n.
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Sum of Discrete-Frequency Components

Suppose a sequence is a sum of discrete-frequency
exponential components,

x[n] =
∑

k

ake
jωkn.

Then the Fourier transform representation is

X(ejω) =
∑

r

∑

k

2πakδ(ω − ωk + 2πr).
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Symmetric/Antisymmetric Sequences

conjugate-symmetricsequence

x[n] = x∗[−n].

conjugate-antisymmetricsequence

x[n] = −x∗[−n].

Any sequence x[n] is a sum of conjugate-symmetric
and conjugate-antisymmetric sequences,

x[n] =
1

2
(x[n] + x∗[−n]) +

1

2
(x[n]− x∗[−n]) = xs[n] + xa[n]
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Real Sequences

A real sequence is evenif

x[n] = x[−n].

A real sequence is odd if

x[n] = −x[−n].

Any real sequence x[n] is a sum of even and odd
sequences,

x[n] =
1

2
(x[n] + x[−n]) +

1

2
(x[n] − x[−n]) = xe[n] + xo[n]
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Regarding Fourier Transform

X(ejω) can be written

X(ejω) =
1

2
(X(ejω) + X∗(e−jω)) +

1

2
(X(ejω) − X∗(e−jω))

The first part is conjugate-symmetric, since

Xs(e
jω) =

1

2
(X(ejω) + X∗(e−jω))

⇒ X∗

s (e−jω) =
1

2
(X(e−jω) + X∗(ejω))∗

=
1

2
(X(ejω) + X∗(e−jω)) = Xs(e

jω).

The second part is conjugate-antisymmetric, so

X(ejω) = Xs(e
jω) + Xa(e

jω)
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Symmetry Properties: Generalx[n]

Suppose x[n] ↔ X(ejω).

x∗[n] ↔ X∗(e−jω)

x∗[−n] ↔ X∗(ejω)

Re{x[n]} ↔ Xs(e
jω)

jIm{x[n]} ↔ Xa(e
jω)

exemplar proof

y[n] = x∗[n] ⇒ Y (ejω) =
X

n

x∗[n]e−jωn =
X

n

(x[n]e−j(−ω)n)∗ = X∗(e−jω)

z[n] = x∗[−n] ⇒ Z(ejω) =
X

n

x∗[−n]e−jωn =
X

n

(x[−n]e−jω(−n))∗ = X∗(ejω)

w[n] = Re{x[n]} =
1

2
(x[n] + x∗[n]) ⇒ W (ejω) =

1

2
(X(ejω) + X∗(e−jω)) = Xs(ejω)
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Symmetry Properties: Realx[n]

We have seen that the FT of the real part of x[n] is the
conjugate-symmetric part of X(ejω), and the FT of the
imaginary part of x[n] is the conjugate-antisymmetric
part of X(ejω).

Suppose x[n] is real.

X(ejω) = X∗(e−jω)

⇒ XR(ejω) = XR(e−jω)

XI(e
jω) = −XI(e

−jω)

|X(ejω)| = |X(e−jω)|

< X(ejω) = − < X(e−jω)

Discrete-Time Signals and Systems – p. 68



Example

Let x[n] = anu[n], |a| < 1. The Fourier transform is

X(ejω) =
∞
∑

n=0

ane−jωn =
1

1 − ae−jω

⇒ X(ejω) = X∗(e−jω)

XR(ejω) = X∗

R(e−jω) =
1 − a cosω

1 + a2 − 2a cosω

XI(e
jω) = −XI(e

−jω) =
−a sinω

1 + a2 − 2a cosω

|X(ejω)| = |X(e−jω)|

< X(ejω) = − < X(e−jω) = tan−1

(

−a sinω

1 − a cosω

)
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Fourier Transform Theorems

linearity

ax[n] + by[n] ↔ aX(ejω) + bY (ejω)

time shift

x[n − nd] ↔ e−jωndX(ejω)

frequency modulation

ejω0nx[n] ↔ X(ej(ω−ω0))

time reversal

x[−n] ↔ X(e−jω)
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Fourier Transform Theorems

frequency differentiation

nx[n] ↔ j
dX(ejω)

dω

convolution

x[n] ∗ h[n] ↔ X(ejω)H(ejω)

multiplication (windowing)

x[n]w[n] ↔
1

2π

∫ π

−π

X(ejθ)W (ej(ω−θ))dθ.

The integral is a frequency-domain convolution.
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Parseval’s Theorem

The convolution of x[n] and y[n] = x∗[−n] has a FT of

X(ejω)Y (ejω) = X(ejω)X∗(ejω).

Evaluating z[n] = x[n] ∗ y[n] at n = 0, we have

z[0] =
∑

k

x[k]y[0 − k] =
∑

k

x[k]x∗[k] =
∑

k

|x[k]|2.

Representing z[n] by the synthesis formula, at
evaluating at n = 0, we have

z[0] =
1

2π

∫ π

−π

X(ejω)X∗(ejω)ejω0dω
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Energy and Spectrum

The energyof a sequence is the sum of squares of
each term. The previous slide shows that

E =
∑

n

|x[n]|2 =
1

2π

∫ π

−π

|X(ejω)|2dω (= z[0]).

We are essentially decompose energy in two ways:
time-wise and frequency-wise.

For this reason, |X(ejω)|2 is called energy density
spectrum.
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Spectral Relationship

Suppose we have an LTI system, with frequency
response H(ejω).

Suppose we have an input x[n], with output y[n].

Now, from the synthesis formula, we have

x[n] =
1

2π

∫ π

−π

X(ejω)ejωndω

⇒ y[n] =
1

2π

∫ π

−π

X(ejω)H(ejω)ejωndω =
1

2π

∫ π

−π

Y (ejω)ejωdω.

It follows that

Y (ejω) = X(ejω)H(ejω).
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