Discrete-Time Signals and Systems Discrete-Time Signal Processing

Chia-Ping Chen

Department of Computer Science and Engineering
National Sun Yat-Sen University
Kaohsiung, Taiwan ROC

Outline

- discrete-time signals
- discrete-time systems
- linear time-invariant systems
- linear difference equations
- frequency-domain representation of signals and systems
- Fourier transform: representation of sequences
- Fourier transform theorems

Discrete-Time Signals

- a discrete-time signal = a sequence of numbers

$$
x=\{x[n]\}, \quad-\infty<n<\infty .
$$

- For instance, $x[n]$ often arises from periodic sampling of a continuous-time signal,

$$
x[n]=x_{a}(n T), \quad-\infty<n<\infty .
$$

- T : sampling period
- $\frac{1}{T}=f_{s}$: sampling frequency

Basic Sequences

- impulse sequence, aka unit sample sequence

$$
\delta[n]= \begin{cases}1, & n=0 \\ 0, & \text { otherwise }\end{cases}
$$

- unit step sequence

$$
u[n]= \begin{cases}1, & n \geq 0 \\ 0, & n<0\end{cases}
$$

- sinusoidal sequence

$$
x[n]=A \cos (\omega n+\phi)
$$

Basic Sequence Operations

- shift or delay: $y[n]=x\left[n-n_{0}\right]$ is a shifted or delayed version of $x[n]$ by n_{0}
- sum: the sum of two sequences $x[n], y[n]$ is another sequence

$$
z[n]=x[n]+y[n]
$$

- product: the product of two sequences $x[n], y[n]$ is another sequence

$$
z[n]=x[n] y[n]
$$

- scaling $x[n]$ by a factor of α

$$
z[n]=\alpha x[n]
$$

Decomposition of a Sequence

- Any discrete-time signal can be represented as a sum of delayed and scaled impulse sequences.
- Specifically

$$
x[n]=\sum_{k=-\infty}^{\infty} x[k] \delta[n-k] .
$$

- Note we can also write

$$
x[n]=\sum_{k=-\infty}^{\infty} x[n-k] \delta[k] .
$$

Impulse and Unit Step Sequences

- For the unit step sequence

$$
\begin{aligned}
u[n] & =\sum_{k=-\infty}^{\infty} u[k] \delta[n-k]=\sum_{k=0}^{\infty} \delta[n-k] \\
& =\sum_{k=-\infty}^{\infty} u[n-k] \delta[k]=\sum_{k=-\infty}^{n} \delta[k] \\
& =\delta[n]+\delta[n-1]+\ldots
\end{aligned}
$$

- It follows that

$$
\delta[n]=u[n]-u[n-1] .
$$

Exponential Sequences

- An exponential sequence is given by

$$
x[n]=C \alpha^{n} .
$$

- We can combine with the unit step function such that $x[n]=0$ for $n<0$, i.e.,

$$
x[n]=C \alpha^{n} u[n] .
$$

- C and α are complex numbers, so we can write

$$
C=A e^{j \phi}, \quad \alpha=|\alpha| e^{j \omega_{0}},
$$

where A, ϕ, ω_{0} are real numbers.

Sinusoidal Sequences

- A sinusoidal sequence has the form

$$
x[n]=A \cos \left(\omega_{0} n+\phi\right),
$$

where A, ω_{0} and ϕ are real.

- Note the real and imaginary parts of an exponential sequence are

$$
\begin{aligned}
x[n] & =C \alpha^{n}=A e^{j \phi}|\alpha|^{n} e^{j \omega_{0} n} \\
& =A|\alpha|^{n} e^{j \omega_{0} n+\phi} \\
& =A|\alpha|^{n} \cos \left(\omega_{0} n+\phi\right)+j A|\alpha|^{n} \sin \left(\omega_{0} n+\phi\right)
\end{aligned}
$$

Complex Exponential Sequences

- By definition, a complex exponential is an exponential sequence with $|\alpha|=1$, i.e.,

$$
x[n]=A \cos \left(\omega_{0} n+\phi\right)+j A \sin \left(\omega_{0} n+\phi\right)
$$

- ω_{0} is called frequency
- ϕ is called phase
- The real and imaginary parts are both sinusoidal sequences. Note that

$$
\omega_{0}, \quad \omega_{r}=\omega_{0}+2 \pi r, r \in Z
$$

are indistinguishable frequencies, since they give identical complex exponential sequences.

Periodicity

- For a given sinusoidal sequence $x[n]=A \cos \left(\omega_{0} n+\phi\right)$ to be periodic, it is required that

$$
2 \pi k=\omega_{0} \Delta n, \quad \text { for some integers } k, \Delta n .
$$

- Therefore, a sinusoidal sequence is not always periodic in the index n.
- Note this contrasts the continuous-time case, where $x(t)=A \cos \left(\omega_{0} t+\phi\right)$ is always periodic with period $\frac{2 \pi}{\omega_{0}}$.
- Increasing the frequency may increase the period!

$$
x_{1}[n]=\cos \left(\frac{\pi}{4} n\right), x_{2}[n]=\cos \left(\frac{3 \pi}{8} n\right)
$$

Periodic Frequencies

- A discrete-time sinusoidal sequence is N-periodic if $\omega=\frac{2 \pi k}{N}, k \in Z$, since

$$
A \cos (\omega(n+N)+\phi)=A \cos (\omega n+\phi) .
$$

- For a given N, there are N distinguishable frequencies for periodic sinusoidal sequences,

$$
\omega_{k}=\frac{2 \pi}{N} k, k=0,1, \ldots, N-1 .
$$

- Any sequence periodic with N is a linear combination of sinusoidal sequences of these frequencies.

High and Low Frequencies

- The oscillation of a sinusoidal sequence $x[n]=\cos (\omega n)$ does not always increase with ω !
- $x[n]$ does oscillate more and more rapidly as ω increases from 0 to π
- oscillation slows down as ω increases from π to 2π

$$
\cos (\omega n)=\cos (-\omega n)=\cos ((2 \pi-\omega) n)
$$

- For discrete-time signals, the frequencies near $\omega=2 \pi k$ are the low frequencies, while the frequencies near $\omega=\pi+2 \pi k$ are the high frequencies.

Discrete-Time Systems

- A discrete-time system is a transformation T that maps an input sequence $\{x[n]\}$ to an output sequence $\{y[n]\}$

$$
y[n]=T\{x[n]\} .
$$

- T is characterized by the exact mathematical formula relating $y[n]$ and $x[n]$.

Examples

- ideal delay

$$
y[n]=x\left[n-n_{d}\right]
$$

- moving average

$$
y[n]=\frac{1}{M_{1}+M_{2}+1} \sum_{k=-M_{1}}^{M_{2}} x[n-k]
$$

Memoryless Systems

- A system is said to be memoryless if the value of $y[n]$ at n depends only on the value of $x[n]$ at n.
- For example,

$$
y[n]=(x[n])^{2} .
$$

- It does not depend on any earlier value of $x[n]$.

Linear Systems

- A system is said to be linear if

$$
\begin{aligned}
& \left.T\left\{x_{1}[n]+x_{2}[n]\right\}=T\left\{x_{1}[n]\right\}\right)+T\left(\left\{x_{2}[n]\right\}\right. \\
& T\{a x[n]\}=a T\{x[n]\}
\end{aligned}
$$

- For example, the accumulator defined by

$$
y[n]=\sum_{k=-\infty}^{n} x[k]
$$

is linear.

Time-Invariant Systems

- A system is said to be time-invariant if

$$
y_{n_{d}}[n]=T\left\{x\left[n-n_{d}\right]\right\}=y\left[n-n_{d}\right] .
$$

- For example, the accumulator is time-invariant, since

$$
T\left\{x\left[n-n_{d}\right]\right\}=\sum_{k=-\infty}^{n} x\left[k-n_{d}\right]=\sum_{k^{\prime}=-\infty}^{n-n_{d}} x\left[k^{\prime}\right]=y\left[n-n_{d}\right] .
$$

Example: Compressor

- A compressor is defined by

$$
y[n]=x[M n], \quad-\infty<n<\infty, M \in Z^{+} .
$$

- It "compacts" every other M samples of $x[n]$.
- To see that this system is not time-invariant, note

$$
T\left\{x\left[n-n_{d}\right]\right\}=x\left[M n-n_{d}\right] \neq y\left[n-n_{d}\right]=x\left[M\left(n-n_{d}\right)\right] .
$$

- A counterexample can be established by

$$
\begin{aligned}
x[n] & =\delta[n], M=2, n_{d}=1 \\
\Rightarrow y[n] & =\delta[2 n]=\delta[n] \& T\{\delta[n-1]\}=0 \neq y[n-1]=\delta[n-1]
\end{aligned}
$$

Causal Systems

- A system is said to be causal if the output value at any n_{0} only depends on the input values at $n \leq n_{0}$.
- In other words, the system is non-anticipative.
- Which of the systems are causal
- accumulator?
- moving average?

Example: Forward Difference

- A forward difference system is defined by

$$
y[n]=x[n+1]-x[n] .
$$

- A backward difference system is defined by

$$
y[n]=x[n]-x[n-1] .
$$

- Which is causal? Which is not?

Stability

- A system is said to be stable if a bounded input sequence produces a bounded output sequence.

$$
|x[n]| \leq B_{x}<\infty \Rightarrow|y[n]| \leq B_{y}<\infty
$$

- BIBO
- Which of the systems are stable
- accumulator?
- moving average?

Linear Time-Invariant Systems

- important, important, important
- A linear time-invariant (LTI) system is characterized by its impulse response function.
- basic ideas
- any input sequence is a linear combination of shifted impulse sequences (general property)
- the output of a shifted impulse is a shifted impulse response (time-invariance)
- the output of any input sequence is the same linear combination of shifted impulse response (linearity)

Impulse Response

- The impulse response function is the output sequence when the input is the impulse sequence,

$$
h[n]=T\{\delta[n]\} .
$$

- Suppose a system is LTI. For any input sequence $x[n]$, the output is

$$
\begin{aligned}
y[n] & =T\{x[n]\}=T\left\{\sum_{m} x[m] \delta[n-m]\right\} \\
& =\sum_{m} x[m] T\{\delta[n-m]\}=\sum_{m} x[m] h[n-m] .
\end{aligned}
$$

Convolution

- The operation between two sequences

$$
x[n] * h[n]=\sum_{m} x[m] h[n-m]
$$

is called the convolution of $x[n]$ and $h[n]$, which results in another sequence.

- The summation in an operation of convolution is called convolution sum.
- In the derivation, the perspective is to express the resultant sequence as a sum of sequences, i.e., $h[n-m]$.

Evaluation of Convolution

- We now show how to compute $x[n] * h[n]$ at a specific time index n.
- Given n, the convolution sum is the "inner product" of two sequences $x[k]$ and $h[n-k]$ both indexed by k.
- $x[k]$ is just $x[n]$
- $h[n-k]=h[-k+n]$ is $h[k]$ reflected (with respect to time origin) and then shifted to the right by n.

Example

- Let the impulse response and input sequence be

$$
x[n]=a^{n} u[n] ; h[n]=u[n]-u[n-N]= \begin{cases}1, & 0 \leq n \leq N-1 \\ 0, & \text { otherwise },\end{cases}
$$

- The output is

$$
\begin{aligned}
y[n] & =x[n] * h[n]=\sum_{k} x[k] h[n-k] \\
& = \begin{cases}0, & n<0, \\
\frac{1-a^{n+1}}{1-a}, & 0 \leq n \leq N-1 \\
a^{n-N+1}\left(\frac{1-a^{N}}{1-a}\right), & n>N-1\end{cases}
\end{aligned}
$$

Convolution Properties

- commutative

$$
x[n] * h[n]=\sum_{m} x[m] h[n-m]=\sum_{m^{\prime}} x\left[n-m^{\prime}\right] h\left[m^{\prime}\right]=h[n] * x[n] .
$$

- linearity

$$
\begin{aligned}
x[n] *(h[n]+g[n]) & =\sum_{m} x[m](h[n-m]+g[n-m]) \\
& =x[n] * h[n]+x[n] * g[n] .
\end{aligned}
$$

Connection of Systems

- cascade connection: the response to an impulse sequence is

$$
h[n]=h_{1}[n] * h_{2}[n] .
$$

- parallel connection: the response to an impulse sequence is

$$
h[n]=h_{1}[n]+h_{2}[n] .
$$

LTI Causal Systems

- From an LTI system, with impulse response $h[n]$, to be causal, since

$$
y[n]=\sum_{k} h[k] x[n-k],
$$

it must hold that

$$
h[k]=0, \quad k<0 .
$$

- A sequence $x[n]$ is said to be causal if

$$
x[n]=0, \quad n<0 .
$$

Examples of Impulse Response

- ideal delay

$$
h[n]=\delta\left[n-n_{d}\right]
$$

- moving average

$$
h[n]=\frac{1}{M_{1}+M_{2}+1} \sum_{k=-M_{1}}^{M_{2}} \delta[n-k]
$$

- accumulator

$$
h[n]=u[n]
$$

More Examples

- forward difference

$$
h[n]=\delta[n+1]-\delta[n]
$$

- backward difference

$$
h[n]=\delta[n]-\delta[n-1]
$$

Equivalent Systems

- The cascade system of a forward difference and a one-sample delay is equivalent to a backward difference system

$$
\begin{aligned}
h[n] & =(\delta[n+1]-\delta[n]) * \delta[n-1] \\
& =\delta[n]-\delta[n-1]
\end{aligned}
$$

- The cascade system of a backward difference and a accumulator is equivalent to an identity system

$$
\begin{aligned}
h[n] & =u[n] *(\delta[n]-\delta[n-1])=u[n]-u[n-1] \\
& =\delta[n] .
\end{aligned}
$$

Inverse Systems

- The last example is an example of inverse system.
- More generally, the impulse response functions of a system and its inverse system satisfies

$$
h[n] * h_{i}[n]=h_{i}[n] * h[n]=\delta[n]
$$

- Given $h[n]$, it is difficult to solve for $h_{i}[n]$ directly.
- With z-transform, this problem becomes much easier!

Linear Difference Equations

- a class of system representations
- The input and output sequences are related by a linear constant-coefficient difference equation (LCCDE)

$$
\sum_{k=0}^{N} a_{k} y[n-k]=\sum_{m=0}^{M} b_{m} x[n-m] .
$$

- N is said to be the order of this difference equation.

Accumulator as LCCDE

- The accumulator can be represented by an LCCDE

$$
y[n]-y[n-1]=\sum_{k=-\infty}^{n} x[k]-\sum_{k=-\infty}^{n-1} x[k]=x[n],
$$

corresponding to $N=1, a_{0}=1, a_{1}=-1, M=0, b_{0}=1$.

- One can also see a recursive representation for $y[n]$

$$
y[n]=x[n]+y[n-1] .
$$

- offering another picture of a system

Causal Moving Average as LCCDE

- Recall that

$$
y[n]=\frac{1}{M_{2}+1} \sum_{m=0}^{M_{2}} x[n-m]
$$

- an LCCDE with $N=0, a_{0}=1, M=M_{2}, b_{m}=1 /\left(M_{2}+1\right)$
- We can express the impulse response as

$$
h[n]=\frac{1}{M_{2}+1}\left(\delta[n]-\delta\left[n-M_{2}-1\right]\right) * u[n] .
$$

- Note how a causal moving average is equivalent to attenuation, ideal delay and accumulator.

More on Causal Moving Average

- If we define

$$
x_{1}[n]=\frac{1}{M_{2}+1}\left(x[n]-x\left[n-M_{2}-1\right]\right),
$$

we have

$$
y[n]-y[n-1]=x_{1}[n]=\frac{1}{M_{2}+1}\left(x[n]-x\left[n-M_{2}-1\right]\right) .
$$

- Note we have another LCCDE for the same system! Specifically,
$N=1, a_{0}=1, a_{1}=-1, M=M_{2}+1, b_{0}=b_{M_{2}+1}=1 /\left(M_{2}+1\right)$.

Recursive Computation of Solution

- Suppose an LCCDE is given for a system. With input sequence $x[n]$ and initial conditions $y[-1], \ldots, y[-N]$, $y[n]$ can be computed recursively as follows.
- For $n>0$, starting from $n=0$ and recursively,

$$
y[n]=-\sum_{k=1}^{N} \frac{a_{k}}{a_{0}} y[n-k]+\sum_{m=0}^{M} \frac{b_{m}}{a_{0}} x[n-m] .
$$

- For $n<-N$, starting from $l=1$ and recursively,

$$
y[-N-l]=-\sum_{k=0}^{N-1} \frac{a_{k}}{a_{N}} y[-k-l]+\sum_{m=0}^{M} \frac{b_{m}}{a_{N}} x[-m-l] .
$$

Example

$$
\left\{\begin{array}{l}
y[n]=a y[n-1]+x[n] ; \\
y[-1]=c ; x[n]=K \delta[n] ;
\end{array}\right.
$$

- For $n \geq 0$, from $y[-1]=c$ and recursion,

$$
y[0]=a c+K, y[1]=a(a c+K), \ldots, y[n]=a^{n+1} c+a^{n} K
$$

- For $n<-1$, from $y[-1]=c$ and recursion,

$$
\begin{aligned}
& y[-2]=a^{-1}(y[-1]-x[-1])=a^{-1} c \\
& y[-3]=a^{-1}(y[-2]-x[-2])=a^{-2} c \\
& \vdots \\
& y[n]=a^{n+1} c
\end{aligned}
$$

Consistent Conditions

- In the current example, the system is not linear and not time-invariant.
- not linear: $K=0$, then $x[n]=0$ but $y[n] \neq 0$
- not time invariant: $x^{\prime}[n]=K \delta\left[n-n_{0}\right]$, then

$$
y^{\prime}[n]=a^{n+1} c+K a^{n-n_{0}} u\left[n-n_{0}\right] \neq y\left[n-n_{0}\right] .
$$

- not causal: $y[-1]=c \neq 0$
- We have a system described by LCCDE but is not LTI!
- If a system described by LCCDE is required to be LTI and causal, then the solution is unique!
- It must have initial-rest conditions: the first non-zero output point cannot precede the first non-zero input.

FIR Filters

- FIR: finite impulse response
- In an LCCDE, if $N=0$, then

$$
y[n]=\sum_{m=0}^{M} \frac{b_{m}}{a_{0}} x[n-m] .
$$

- Let $x[n]=\delta[n]$, then

$$
y[n]=h[n]=\sum_{m=0}^{M}\left(\frac{b_{m}}{a_{0}}\right) \delta[n-m]= \begin{cases}\left(\frac{b_{m}}{a_{0}}\right), & 0 \leq m \leq M \\ 0, & \text { otherwise }\end{cases}
$$

- This is FIR.

Frequency-Domain Representation

- A discrete-time signal may be represented in a number of different ways.
- A periodic sequence can be represented as a sum of sinusoidal sequences of certain frequencies.
- For LTI systems, sinusoidal and complex exponential sequences are of particular importance.
- They are the eigenfunctions of LTI systems, as we show below.

Eigenvector of LTI System

- If a complex exponential $x[n]=e^{j \omega n}$ is input to an LTI system, with impulse response $h[n]$, the output is

$$
y[n]=x[n] * h[n]=\sum_{m} h[m] e^{j \omega(n-m)}=e^{j \omega n} \sum_{m} h[m] e^{-j \omega m}=x[n] H\left(e^{j \omega}\right)
$$

- The output is a multiple of the input!
- The key idea is to see a sequence as a vector, and see a system as a linear transformation.
- Clearly $e^{j \omega n}$ is an eigenvector with eigenvalue

$$
H\left(e^{j \omega}\right)=\sum_{m} h[m] e^{-j \omega m} .
$$

Frequency Response

- $H\left(e^{j \omega}\right)$ is called the frequency response of the system.
- In general, $H\left(e^{j \omega}\right)$ is complex

$$
H\left(e^{j \omega}\right)=H_{R}\left(e^{j \omega}\right)+j H_{I}\left(e^{j \omega}\right)=\left|H\left(e^{j \omega}\right)\right| e^{j \arg \left(H\left(e^{j \omega}\right)\right)}
$$

- $\left|H\left(e^{j \omega}\right)\right|$ is called magnitude response
- $\arg \left(H\left(e^{j \omega}\right)\right)$ is called phase response

Fundamental Relationship

- The Fourier transform of a discrete-time signal $x[n]$ is defined by

$$
X\left(e^{j \omega}\right)=\sum_{n} x[n] e^{-j \omega n} .
$$

- We have just shown that, for an LTI system, the frequency response and the impulse response are related by the Fourier transform!

$$
H\left(e^{j \omega}\right)=\sum_{m} h[m] e^{-j \omega m} .
$$

Example: Ideal Delay

- ideal delay
- via Fourier transform of $h[n]$

$$
H\left(e^{j \omega}\right)=\sum_{n} \delta\left[n-n_{d}\right] e^{-j \omega n}=e^{-j \omega n_{d}} .
$$

- via direct computation: $x[n]=e^{j \omega n}$,

$$
\begin{aligned}
& y[n]=x\left[n-n_{d}\right]=e^{j \omega\left(n-n_{d}\right)}=e^{j \omega n} e^{-j \omega n_{d}}=x[n] H\left(e^{j \omega}\right) \\
& \Rightarrow H\left(e^{j \omega}\right)=e^{-j \omega n_{d}}
\end{aligned}
$$

- The magnitude and phase of $H\left(e^{j \omega}\right)$ is 1 and $-\omega n_{d}$ respectively.

Decomposition

- Suppose $x[n]$ is a linear combination of $e^{j \omega_{k} n}$ of different ω_{k} 's

$$
x[n]=\sum_{k} \alpha_{k} e^{j \omega_{k} n} .
$$

- The output of an LTI system is, by the principle of superposition,

$$
y[n]=\sum_{k} \alpha_{k} e^{j \omega_{k} n} H\left(e^{j \omega_{k}}\right) .
$$

- For any input sequence, we just need to figure out the linear combination to compute the output.

Example

- Let $x[n]$ be a sinusoidal sequence

$$
x[n]=A \cos \left(\omega_{0} n+\phi\right) .
$$

- decomposition by complex exponential sequences

$$
A \cos \left(\omega_{0} n+\phi\right)=\frac{A}{2} e^{j \phi} e^{j \omega_{0} n}+\frac{A}{2} e^{-j \phi} e^{-j \omega_{0} n} .
$$

- The output is

$$
y[n]=\frac{A}{2} e^{j \phi} H\left(e^{j \omega_{0} n}\right) e^{j \omega_{0} n}+\frac{A}{2} e^{-j \phi} H\left(e^{-j \omega_{0} n}\right) e^{-j \omega_{0} n}
$$

Properties of Frequency Response

- For any LTI system, the frequency response is always periodic, with period 2π, since

$$
H\left(e^{j(\omega+2 \pi)}\right)=\sum_{n} h[n] e^{-j(\omega+2 \pi) n}=\sum_{n} h[n] e^{-j \omega n}=H\left(e^{j \omega}\right)
$$

- This is to be expected as $\left\{e^{j \omega n}\right\}$ and $\left\{e^{j(\omega+2 \pi) n}\right\}$ are identical sequences.
- We only need to specify $H\left(e^{j \omega}\right)$ over one period, say $[0,2 \pi]$ or $[-\pi, \pi]$.

Frequency Selective Filters

- ideal low-pass filters

$$
H_{\mid p}\left(e^{j \omega}\right)= \begin{cases}1, & |\omega| \leq \omega_{c} \\ 0, & \omega_{c}<|\omega| \leq \pi\end{cases}
$$

- ideal high-pass filters

$$
H_{\mathrm{hp}}\left(e^{j \omega}\right)= \begin{cases}0, & |\omega| \leq \omega_{c} \\ 1, & \omega_{c}<|\omega| \leq \pi\end{cases}
$$

- ideal band-pass filters are similarly defined with cut-off frequencies ω_{a}, ω_{b}.

Moving-Average System

- Recall that

$$
h[n]= \begin{cases}\frac{1}{M_{1}+M_{2}+1}, & -M_{1} \leq n \leq M_{2} \\ 0, & \text { otherwise }\end{cases}
$$

- The frequency response is

$$
\begin{aligned}
H\left(e^{j \omega}\right) & =\frac{1}{M_{1}+M_{2}+1} \sum_{n=-M_{1}}^{M_{2}} e^{-j \omega n} \\
& =\frac{1}{M_{1}+M_{2}+1} \frac{\sin \left[\omega\left(M_{1}+M_{2}+1\right) / 2\right]}{\sin (\omega / 2)} e^{-j \omega\left(M_{2}-M_{1}\right) / 2} .
\end{aligned}
$$

(cf 2.19) The low-frequency part is more emphasized.

Causal Complex Exponentials

- A complex exponential that extends to both sides of infinity seems impractical. Instead, consider a suddenly applied exponential

$$
x[n]=e^{j \omega n} u[n] .
$$

- For a causal LTI system, the output is

$$
y[n]=\sum h[k] x[n-k]= \begin{cases}0, & n<0 \\ \sum_{k=0}^{n}\left(h[k] e^{-j \omega k}\right) e^{j \omega n}, & n \geq 0\end{cases}
$$

State-State and Transient

- For $n \geq 0$, we write

$$
\begin{aligned}
y[n] & =\left(\sum_{k=0}^{n} h[k] e^{-j \omega k}\right) e^{j \omega n}=H\left(e^{j \omega}\right) e^{j \omega n}-\left(\sum_{k=n+1}^{\infty} h[k] e^{-j \omega k}\right) e^{j \omega n} \\
& =y_{S S}[n]+y_{t}[n] .
\end{aligned}
$$

- $y_{S S}[n]$ is called the state-state response, given by

$$
y_{S S}[n]=H\left(e^{j \omega}\right) e^{j \omega n} .
$$

- $y_{t}[n]$ is called the transient response, given by

$$
y_{t}[n]=-\left(\sum_{k=n+1}^{\infty} h[k] e^{-j \omega k}\right) e^{j \omega n} .
$$

Stable System

- Under certain conditions, $y_{t}[n]$ vanishes as $n \rightarrow \infty$.
- Specifically,

$$
\left|y_{t}[n]\right|=\left|\left(\sum_{k=n+1}^{\infty} h[k] e^{-j \omega k}\right) e^{j \omega n}\right| \leq \sum_{k=n+1}^{\infty}|h[k]|
$$

- If the system is stable, i.e.,

$$
\sum_{k=0}^{\infty}|h[k]|<\infty \Rightarrow \sum_{k=n+1}^{\infty}|h[k]| \rightarrow 0
$$

So $y_{t}[n] \rightarrow 0$.

Representations of a Sequence

- An LTI system is characterized by its frequency response, the Fourier transform of the impulse response

$$
h[n] \leftrightarrow H\left(e^{j \omega}\right) .
$$

- Likewise, a sequence $x[n]$ can be represented by its Fourier transform $X\left(e^{j \omega}\right)$

$$
X\left(e^{j \omega}\right)=\sum x[n] e^{-j \omega n} .
$$

- Indeed, from $X\left(e^{j \omega}\right)$ we can reconstruct $x[n]$

$$
x[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \omega}\right) e^{j \omega n} d \omega .
$$

Analysis and Synthesis

- Fourier integral = synthesis: $x[n]$ as a superposition of (infinitesimal) complex exponentials

$$
x[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \omega}\right) e^{j \omega n} d \omega
$$

also known as the inverse Fourier transform

- Fourier transform = analysis: for the the weights of complex exponentials in $x[n]$

$$
X\left(e^{j \omega}\right)=\sum x[n] e^{-j \omega n}
$$

Proof of Inverse

- Plugging in the analysis formula into the rhs of the synthesis formula, we have

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\sum_{m} x[m] e^{-j \omega m}\right) e^{j \omega n} d \omega=\sum_{m} x[m]\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{j \omega(n-m)} d \omega\right)
$$

- Note that

$$
\int_{-\pi}^{\pi} e^{j \omega(n-m)} d \omega= \begin{cases}2 \pi, & n=m \\ 0, & n \neq m\end{cases}
$$

- So the integral yields $x[n]$.

Convergence

- The infinite sum for the analysis formula has to converge for $X\left(e^{j \omega}\right)$ to be defined.
- What $x[n]$ has a convergent $X\left(e^{j \omega}\right)$?
- A sufficient condition is that $x[n]$ is absolutely summable, i.e.,

$$
\sum_{n}|x[n]|<\infty \Rightarrow\left|X\left(e^{j \omega}\right)\right| \leq \sum|x[n]| \leq \infty
$$

- A stable sequence, by definition, is absolutely summable, so it has a Fourier transform.

Square Summable Sequence

- Consider the ideal low-pass filter

$$
H_{\mathrm{lp}}\left(e^{j \omega}\right)=\left\{\begin{array}{ll}
1, & |\omega|<\omega_{c} \\
0, & \omega_{c}<|\omega|<\pi
\end{array},\right.
$$

the impulse response is

$$
h[n]=\frac{1}{2 \pi} \int_{-\omega_{c}}^{\omega_{c}} e^{j \omega n} d \omega=\left.\frac{1}{2 \pi j n} e^{j \omega n}\right|_{-\omega_{c}} ^{\omega_{c}}=\frac{\sin \omega_{c} n}{\pi n} .
$$

- not absolutely summable, but square summable
- an example of Fourier transform representation for a sequence not absolutely summable

Constant Sequence

- A constant sequence is neither absolutely summable nor square summable,

$$
x[n]=1 .
$$

- Yet, we can define the Fourier transform to be

$$
X\left(e^{j \omega}\right)=\sum_{r} 2 \pi \delta(\omega+2 \pi r) .
$$

- This is justified by the fact that substituting $X\left(e^{j \omega}\right)$ into the synthesis formula yields $x[n]$.

Complex Exponential

- The FT of a constant sequence is a periodic (2π) impulse train.
- What if we shift the impulse by ω_{0}, i.e.,

$$
X\left(e^{j \omega}\right)=\sum_{r} 2 \pi \delta\left(\omega-\omega_{0}+2 \pi r\right) ?
$$

- It is the FT of $e^{j \omega_{0} n}$ since

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \omega}\right) e^{j \omega n} d \omega \\
= & \frac{1}{2 \pi} \int_{-\pi}^{\pi} 2 \pi \delta\left(\omega-\omega_{0}\right) e^{j \omega n} d \omega=e^{j \omega_{0} n} .
\end{aligned}
$$

Sum of Discrete-Frequency Components

- Suppose a sequence is a sum of discrete-frequency exponential components,

$$
x[n]=\sum_{k} a_{k} e^{j \omega_{k} n} .
$$

- Then the Fourier transform representation is

$$
X\left(e^{j \omega}\right)=\sum_{r} \sum_{k} 2 \pi a_{k} \delta\left(\omega-\omega_{k}+2 \pi r\right) .
$$

Symmetric/Antisymmetric Sequences

- conjugate-symmetric sequence

$$
x[n]=x^{*}[-n] .
$$

- conjugate-antisymmetric sequence

$$
x[n]=-x^{*}[-n] .
$$

- Any sequence $x[n]$ is a sum of conjugate-symmetric and conjugate-antisymmetric sequences,

$$
x[n]=\frac{1}{2}\left(x[n]+x^{*}[-n]\right)+\frac{1}{2}\left(x[n]-x^{*}[-n]\right)=x_{s}[n]+x_{a}[n]
$$

Real Sequences

- A real sequence is even if

$$
x[n]=x[-n]
$$

- A real sequence is odd if

$$
x[n]=-x[-n]
$$

- Any real sequence $x[n]$ is a sum of even and odd sequences,

$$
x[n]=\frac{1}{2}(x[n]+x[-n])+\frac{1}{2}(x[n]-x[-n])=x_{e}[n]+x_{o}[n]
$$

Regarding Fourier Transform

- $X\left(e^{j \omega}\right)$ can be written

$$
X\left(e^{j \omega}\right)=\frac{1}{2}\left(X\left(e^{j \omega}\right)+X^{*}\left(e^{-j \omega}\right)\right)+\frac{1}{2}\left(X\left(e^{j \omega}\right)-X^{*}\left(e^{-j \omega}\right)\right)
$$

- The first part is conjugate-symmetric, since

$$
\begin{aligned}
X_{s}\left(e^{j \omega}\right) & =\frac{1}{2}\left(X\left(e^{j \omega}\right)+X^{*}\left(e^{-j \omega}\right)\right) \\
\Rightarrow X_{s}^{*}\left(e^{-j \omega}\right) & =\frac{1}{2}\left(X\left(e^{-j \omega}\right)+X^{*}\left(e^{j \omega}\right)\right)^{*} \\
& =\frac{1}{2}\left(X\left(e^{j \omega}\right)+X^{*}\left(e^{-j \omega}\right)\right)=X_{s}\left(e^{j \omega}\right) .
\end{aligned}
$$

- The second part is conjugate-antisymmetric, so

$$
X\left(e^{j \omega}\right)=X_{s}\left(e^{j \omega}\right)+X_{a}\left(e^{j \omega}\right)
$$

Symmetry Properties: General $x[n]$

- Suppose $x[n] \leftrightarrow X\left(e^{j \omega}\right)$.

$$
\begin{aligned}
x^{*}[n] & \leftrightarrow X^{*}\left(e^{-j \omega}\right) \\
x^{*}[-n] & \leftrightarrow X^{*}\left(e^{j \omega}\right) \\
\operatorname{Re}\{x[n]\} & \leftrightarrow X_{s}\left(e^{j \omega}\right) \\
j \operatorname{lm}\{x[n]\} & \leftrightarrow X_{a}\left(e^{j \omega}\right)
\end{aligned}
$$

- exemplar proof

$$
\begin{aligned}
& y[n]=x^{*}[n] \Rightarrow Y\left(e^{j \omega}\right)=\sum_{n} x^{*}[n] e^{-j \omega n}=\sum_{n}\left(x[n] e^{-j(-\omega) n}\right)^{*}=X^{*}\left(e^{-j \omega}\right) \\
& z[n]=x^{*}[-n] \Rightarrow Z\left(e^{j \omega}\right)=\sum_{n} x^{*}[-n] e^{-j \omega n}=\sum_{n}\left(x[-n] e^{-j \omega(-n)}\right)^{*}=X^{*}\left(e^{j \omega}\right) \\
& w[n]=\operatorname{Re}\{x[n]\}=\frac{1}{2}\left(x[n]+x^{*}[n]\right) \Rightarrow W\left(e^{j \omega}\right)=\frac{1}{2}\left(X\left(e^{j \omega}\right)+X^{*}\left(e^{-j \omega}\right)\right)=X_{s}\left(e^{j \omega}\right)
\end{aligned}
$$

Symmetry Properties: Real $x[n]$

- We have seen that the FT of the real part of $x[n]$ is the conjugate-symmetric part of $X\left(e^{j \omega}\right)$, and the FT of the imaginary part of $x[n]$ is the conjugate-antisymmetric part of $X\left(e^{j \omega}\right)$.
- Suppose $x[n]$ is real.

$$
\begin{aligned}
X\left(e^{j \omega}\right) & =X^{*}\left(e^{-j \omega}\right) \\
\Rightarrow \quad X_{R}\left(e^{j \omega}\right) & =X_{R}\left(e^{-j \omega}\right) \\
X_{I}\left(e^{j \omega}\right) & =-X_{I}\left(e^{-j \omega}\right) \\
\left|X\left(e^{j \omega}\right)\right| & =\left|X\left(e^{-j \omega}\right)\right| \\
<X\left(e^{j \omega}\right) & =-<X\left(e^{-j \omega}\right)
\end{aligned}
$$

Example

- Let $x[n]=a^{n} u[n],|a|<1$. The Fourier transform is

$$
\begin{aligned}
X\left(e^{j \omega}\right) & =\sum_{n=0}^{\infty} a^{n} e^{-j \omega n}=\frac{1}{1-a e^{-j \omega}} \\
\Rightarrow \quad X\left(e^{j \omega}\right) & =X^{*}\left(e^{-j \omega}\right) \\
X_{R}\left(e^{j \omega}\right) & =X_{R}^{*}\left(e^{-j \omega}\right)=\frac{1-a \cos \omega}{1+a^{2}-2 a \cos \omega} \\
X_{I}\left(e^{j \omega}\right) & =-X_{I}\left(e^{-j \omega}\right)=\frac{-a \sin \omega}{1+a^{2}-2 a \cos \omega} \\
\left|X\left(e^{j \omega}\right)\right| & =\left|X\left(e^{-j \omega}\right)\right| \\
<X\left(e^{j \omega}\right) & =-<X\left(e^{-j \omega}\right)=\tan ^{-1}\left(\frac{-a \sin \omega}{1-a \cos \omega}\right)
\end{aligned}
$$

Fourier Transform Theorems

- linearity

$$
a x[n]+b y[n] \leftrightarrow a X\left(e^{j \omega}\right)+b Y\left(e^{j \omega}\right)
$$

- time shift

$$
x\left[n-n_{d}\right] \leftrightarrow e^{-j \omega n_{d}} X\left(e^{j \omega}\right)
$$

- frequency modulation

$$
e^{j \omega_{0} n} x[n] \leftrightarrow X\left(e^{j\left(\omega-\omega_{0}\right)}\right)
$$

- time reversal

$$
x[-n] \leftrightarrow X\left(e^{-j \omega}\right)
$$

Fourier Transform Theorems

- frequency differentiation

$$
n x[n] \leftrightarrow j \frac{d X\left(e^{j \omega}\right)}{d \omega}
$$

- convolution

$$
x[n] * h[n] \leftrightarrow X\left(e^{j \omega}\right) H\left(e^{j \omega}\right)
$$

- multiplication (windowing)

$$
x[n] w[n] \leftrightarrow \frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \theta}\right) W\left(e^{j(\omega-\theta)}\right) d \theta .
$$

The integral is a frequency-domain convolution.

Parseval's Theorem

- The convolution of $x[n]$ and $y[n]=x^{*}[-n]$ has a FT of

$$
X\left(e^{j \omega}\right) Y\left(e^{j \omega}\right)=X\left(e^{j \omega}\right) X^{*}\left(e^{j \omega}\right) .
$$

- Evaluating $z[n]=x[n] * y[n]$ at $n=0$, we have

$$
z[0]=\sum_{k} x[k] y[0-k]=\sum_{k} x[k] x^{*}[k]=\sum_{k}|x[k]|^{2} .
$$

- Representing $z[n]$ by the synthesis formula, at evaluating at $n=0$, we have

$$
z[0]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \omega}\right) X^{*}\left(e^{j \omega}\right) e^{j \omega 0} d \omega
$$

Energy and Spectrum

- The energy of a sequence is the sum of squares of each term. The previous slide shows that

$$
E=\sum_{n}|x[n]|^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|X\left(e^{j \omega}\right)\right|^{2} d \omega(=z[0]) .
$$

- We are essentially decompose energy in two ways: time-wise and frequency-wise.
- For this reason, $\left|X\left(e^{j \omega}\right)\right|^{2}$ is called energy density spectrum.

Spectral Relationship

- Suppose we have an LTI system, with frequency response $H\left(e^{j \omega}\right)$.
- Suppose we have an input $x[n]$, with output $y[n]$.
- Now, from the synthesis formula, we have

$$
\begin{aligned}
x[n] & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \omega}\right) e^{j \omega n} d \omega \\
\Rightarrow y[n] & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \omega}\right) H\left(e^{j \omega}\right) e^{j \omega n} d \omega=\frac{1}{2 \pi} \int_{-\pi}^{\pi} Y\left(e^{j \omega}\right) e^{j \omega} d \omega .
\end{aligned}
$$

It follows that

$$
Y\left(e^{j \omega}\right)=X\left(e^{j \omega}\right) H\left(e^{j \omega}\right) .
$$

