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The Method of Types - Definitions

• The type of a sequence x = x1, . . . , xn, denoted by Px, is
the relative frequencies in x of the symbols in X. I.e.

Px(a) =
N(a|x)

n
,

where N(a|x) is the number of times a occurs in x.

• Pn denotes the set of types with denominator n.

• The type class of P , denoted by T (P ), is defined by

T (P ) = {x : Px = P}

• Let X = {1, 2, 3},x = 11223.

Px =? P5 =? T (Px) =?
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Bounds on the Number of Types

• Theorem: The number of types with denominator n is
bounded from above by

|Pn| ≤ (n + 1)|X|.

In other words, there is only a polynomial number of
types.

• Proof: There are |X| components and each can take a
value from n + 1 possibilities.

3



National Sun Yat-Sen University CSE Course: Information Theory Chia-Ping Chen

The Probability of a Sequence

• The probability of a sequence x drawn i.i.d. from Q(x) is

Qn(x) = 2n(−H(Px)−D(Px||Q)).

Proof:

Qn(x) =
∏

i

Q(xi) =
∏

a

Q(a)N(a|x) =
∏

a

Q(a)nPx(a)

=
∏

a

2nPx(a) log Q(a) = 2n
P

a Px(a) log Q(a)

= 2n
P

a Px(a) log
Q(a)
Px(a)

Px(a) = 2n(−H(Px)−D(Px||Q))

• What does this say about the MLE of Q(x)?
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The Size of A Type Class

• The size of the type class T (P ) of a given type P ∈ Pn is
bounded by

1

(n + 1)|X|
2nH(P ) ≤ |T (P )| ≤ 2nH(P )

Proof:

1 ≥ P
n(T (P )) =

X

x∈T (P )

P
n(x) =

X

x∈T (P )

2−nH(P ) = |T (P )|2−nH(P )

1 =
X

P ′∈Pn

P
n(T (P ′)) ≤ |Pn|P

n(T (P )) = |Pn||T (P )|2−nH(P )

Note that P n(T (P )) ≥ P n(T (P ′)).

• See Example 12.1.3 for the binary alphabet case.
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The Probability of A Type Class

• The probability of the type class T (P ) of a given type
P ∈ Pn under Q(x) is bounded by

1

(n + 1)|X|
2−nD(P ||Q) ≤ Qn(T (P )) ≤ 2−nD(P ||Q)

Proof: We have

Qn(T (P )) =
∑

x∈T (P )

Qn(x)

=
∑

x∈T (P )

2n(−H(P )−D(P ||Q))

= |T (P )|2n(−H(P )−D(P ||Q)).

The result is proved by applying the bounds on |T (P )|.
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Summary for the Method of Types

• We can summarize the basic theorems as follows

– |Pn| ≤ (n + 1)|X|

– Qn(x) = 2−n(H(Px)+D(Px||Q))

– |T (P )|
.
= 2nH(P )

– Qn(T (P ))
.
= 2−nD(P ||Q)

• While the number of sequences is exponential in n, the
number of types is polynomial in n.

• The probability of any sequence is exponentially small.
In fact, the probability of any type class is exponentially
small except for the type class of the true distribution.
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Typical Sets

• For ε > 0, the typical set T ε
Q of sequences x = x1, . . . , xn

drawn i.i.d. from Q(x) is defined by

T ε
Q = {x : D(Px||Q) ≤ ε}

• The probability that a sequence is not in the typical set
goes to 0 as n → ∞. Or

Pr(x ∈ T ε
Q) → 1

• The strongly typical set is defined by

A(n)
ε =

{

x : |
1

n
N(a|x) − P (a)| <

ε

|X|
∀a

}
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Universal Source Coding

• What compression can be achieved if the true distribution
p(x) is unknown?

– If the wrong distribution q(x) is used, the penalty is
D(p||q).

– But almost certainly a sequence is in the typical set, so
D(p||q) can be made small.

• Is there a universal code of rate R that suffices to describe
every i.i.d. source with entropy H < R? Yes!

9



National Sun Yat-Sen University CSE Course: Information Theory Chia-Ping Chen

Universal Source Coding - Definitions

• A block code of rate R for a source X1, . . . , Xn with
unknown distribution Q encodes and decodes a block of n

source symbols at a time.

fn : X
n → {1, 2, . . . , 2nR}

gn : {1, 2, . . . , 2nR} → X
n

• Probability of error P
(n)
e = Qn({X : gn(fn(X)) 6= X})

• A code of rate R will be called universal if

– gn and fn does not depend on Q

– P
(n)
e → 0 as n → ∞ when R > H(Q).
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Universal Source Coding Theorem

• There exists a sequence of (2nR, n) universal source
codes such that the P

(n)
e → 0 for any source distribution

Q with H(Q) < R.

• The proof is provided in the next slide. It is based on the
fact that the number of sequences of a type increases
exponentially with the entropy, while there is only a
polynomial number of types.

11



National Sun Yat-Sen University CSE Course: Information Theory Chia-Ping Chen

Proof
Define Rn = R − |X| log(n+1)

n
, A = {x : H(Px) ≤ Rn}.

Then

|A| =
X

H(P )≤Rn

|T (P )| ≤
X

H(P )≤Rn

2nH(P ) ≤
X

H(P )≤Rn

2nRn ≤ 2nR
.

So the elements in A can be mapped to {1, . . . , 2nR} with no
elements sharing the same integer. It follows that

P (n)
e = 1 − Qn(A) =

∑

P :H(P )>Rn

Qn(T (P ))

≤ (n + 1)|X| max
P :H(P )>Rn

Qn(T (P ))

≤ (n + 1)|X|2−n minP :H(P )>Rn
D(P ||Q) → 0
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Properties

• For H(Q) > R, a sequence is not in A with high
probability. With this code, the error probability is close
to 1.

• The scheme descried here works for i.i.d. sources. We
will see other schemes which works for non-i.i.d. sources
as well.

• Universal codes need a longer block length to achieve the
same performance as say Huffman codes, which requires
detailed distribution, but not encoding and decoding long
blocks.
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Large Deviation Theory

• What is the probability that the sample average is close to
p or q 6= p for samples drawn i.i.d. from Bernoulli(p)?

• More generally, suppose the true distribution is Q. What
is the probability that we observe a sequence of a type in
a set E which does not contain Q? That is

Qn(E) = Qn(E ∩ Pn) =
∑

x:Px∈E∩Pn

Qn(x)
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Sanov’s Theorem

• Let X1, . . . , Xn be drawn i.i.d. from Q(x). Let E be a set
of probability distributions. Then

Qn(E) , Qn(E ∩ Pn) ≤ (n + 1)|X|2−nD(P ∗||Q),

where
P ∗ = arg min

P∈E
D(P ||Q).

Furthermore, if the set E includes its closure, then

1

n
log Qn(E) → −D(P ∗||Q)

• Proof: see text; Examples: dice, coins.
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Hypothesis Testing

• One problem in statistics is to decide between two
alternative explanations for the observed data. For
example

– Is a new drug effective?

– Is a coin biased?

• In the simplest hypothesis testing problem, we want to
decide between two i.i.d. distributions for explaining the
data.
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Problem

• Let X = X1, . . . , Xn be i.i.d. random variables with
distribution Q(x). We consider two hypotheses

H1 : Q = P1 and H2 : Q = P2.

• Let g be the decision function, where g(x) = i implies
that Hi is accepted. Define the error probabilities

α = Pr(g(x) = 2|H1 is true) = P1(A
c)

β = Pr(g(x) = 1|H2 is true) = P2(A),

where A is the set over which g is 1.

• There is a trade-off between minimizing α, β, so we
minimize one subject to a constraint on the other.

17



National Sun Yat-Sen University CSE Course: Information Theory Chia-Ping Chen

Neyman-Pearson Lemma
Follow the previous setting. For T ≥ 0, define a region

A(T ) =

{

x :
P1(x1, . . . , xn)

P2(x1, . . . , xn)
> T

}

Let
α∗ = P1(A

c(T )), β∗ = P2(A(T )).

These are the error probabilities if we use A(T ) as the region
with g = 1. Let B be any other decision region with
associated probabilities of error α, β. Then

α ≤ α∗ ⇒ β ≥ β∗.

See the text for proof.
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Optimal Test for Two Hypotheses

• The optimal test, called the likelihood ratio test, is of the
form

P1(X1, . . . , Xn)

P2(X1, . . . , Xn)
> T.

• The log likelihood can be shown to be the difference
between the relative entropies of the sample type to each
of the two distributions. I.e.

L(X) = log
P1(X)

P2(X)
= nD(PX||P2) − nD(PX||P1)

The likelihood ratio test is now equivalent to

D(PX||P2) − D(PX||P1) >
1

n
log T
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Stein’s Lemma
We now consider the case where we constraint on one error
probability (α) and minimize the other (β).

Let X = X1, . . . , Xn be i.i.d. ∼ Q(x). Let An ⊆ Xn be an
acceptance region for H1. Define

αn = P1(A
c
n), βn = P2(An),

and
βε

n = min
An⊆Xn,αn<ε

βn.

Then

lim
ε→0

lim
n→∞

1

n
log βε

n = −D(P1||P2).

See the text for proof.
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Lempel-Ziv Coding

• A parsing S of a string is a division of the string into
phrases. A distinct parsing is a parsing such that no
phrases are identical.

• Lempel-Ziv coding scheme:

– Apply a distinct parsing to a source string into the
shortest phrases

– The prefix must have appeared in the string.

– Represent these phrases by the position of the prefix
(which is also a phrase) and the last source symbol.

• An example helps to illustrate the idea.
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Average Length of Lempel-Ziv Coding

• Let c(n) be the number of pharses in the parsing of a
binary input string of length n.

– c(n) depends on the actual string.

• The compressed representation consists of c(n) pairs of
prefix location and last symbol of the phrase. Need
log c(n) bits for prefix location and 1 bit for last symbol.

• The average length (in bits per source symbol) of a
Lempel-Ziv coding for a length-n string is thus

c(n)(log c(n) + 1)

n
.
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The Number of Phrases

• Theorem: Let c(n) be the number of pharses in the
parsing of a binary input string of length n. Then

c(n) ≤
n

(1 − εn) log n
,

where εn → 0 as n → ∞.

• Proof: Let nk be the sum of lengths of all distinct phrases
of length no greater then k. I.e.

nk =
k
∑

j=1

j2j = (k − 1)2k+1 + 2.
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Continued Proof

• The number of phrases is maximized when the distinct
phrases are as short as possible, so

c(nk) ≤
k
∑

j=1

2j ≤
nk

k − 1
.

• For any n, there is one k such that

nk ≤ n < nk+1, c(n) ≤
n

k − 1
, and k ≤ log n.

Moreover,

n ≤ (log n + 2)2k+2 ⇒ (k + 2) ≥ log
n

log n + 2
.
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Continued Proof

• It follows that

k − 1 ≥ log n − log(log n + 2) − 3 ≥ (1 − εn) log n,

where εn = min{1, log log n+4
log n

}.

• So the number of phrases in a distinct parsing of a
sequence of length n is bounded by

c(n) ≤
n

k − 1
≤

n

(1 − εn) log n
.
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A Lemma

• Let Z be a non-negative integer-valued random variable
with mean µ. Then

H(Z) ≤ (µ + 1) log(µ + 1) − µ log µ.

• The proof follows from the theory of the maximum
entropy distribution.
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Markov Approximation

• Let {Xi}
∞
i=−∞ be a stationary ergodic process with

probability P (x1, . . . , xn).

• The kth order Markov approximation to P is defined by

Qk(x
n
−(k−1)) = P (x0

−(k−1))
n
∏

j=1

P (xj|x
j−1
j−k),

where x
j
i = (xi, . . . , xj).

• The entropy rate of the Markov approximation converges

−
1

n
log Qk(X1, . . . , Xn|X

0
−(k−1)) → H(Xj|X

j−1
j−k).
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Preliminary for Ziv’s

• Let (y1, . . . , yc) be a distinct parsing for a given string
(x1, . . . , xn) into c phrases.

• Let νi be the index of the start of the ith phrase. Then

yi = xνi+1−1
νi

, si = xνi−1
νi−k.

Note that s1 = x0
−(k−1).

• Let cls be the number of phrases yi with length l and
preceding state si = s ∈ Xk. Then we have

∑

l,s

cls = c,
∑

l,s

lcls = n.
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Ziv’s Inequality

• For any distinct parsing of x1x2 . . . xn, we have

log Qk(x1, x2, . . . , xn|s1) ≤
∑

l,s

cls log
1

cls

.

• Proof:

log Qk(x1, x2, . . . , xn|s1) = log

c
Y

i=1

P (yi|si) =

c
X

i=1

log P (yi|si)

=
X

l,s

X

i:|yi|=l,si=s

log P (yi|si) =
X

l,s

cls

X

i:|yi|=l,si=s

1

cls

log P (yi|si)

≤
X

l,s

cls log(
X

i:|yi|=l,si=s

1

cls

P (yi|si)) ≤
X

l,s

cls log
1

cls

.
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Main Theorem
Let {Xi}

∞
i=−∞ be a stationary ergodic process with entropy

rate H(X). Let c(n) be the number of phrases in a distinct
parsing of a sequence of length n sampled from this process.
Then, with probability 1,

lim
n→∞

sup
c(n) log c(n)

n
≤ H(X).

So the number of bits per symbol is not greater than the
entropy rate.

30



National Sun Yat-Sen University CSE Course: Information Theory Chia-Ping Chen

Proof
From Ziv’s inequality, we have

− log Qk(x1, x2, . . . , xn|s1) ≥
∑

l,s

cls log cls =
∑

ls

cls log
clsc

c

= c log c − c
∑

l,s

πls log πls,

where πls = cls

c
. Define random variables U, V with

Pr(U = l, V = s) = πls.

Note EU = n
c
. Now we have

−
1

n
log Qk(x1, x2, . . . , xn|s1) ≥

c

n
log c −

c

n
H(U, V ).
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Proof Continued
Now

H(U, V ) ≤ H(V ) + H(U)

≤ k + log
n

c
+ (

n

c
+ 1) log(

c

n
+ 1).

From Lemma 12.10.1, c ∼ n
log n

, so

c

n
H(U, V ) ≤

c

n
k +

c

n
log

n

c
+ o(1) → 0.

Therefore,
c

n
log c ≤ −

1

n
log Qk(x1, x2, . . . , xn|s1) + ε

⇒ lim
n→∞

sup
c(n) log c(n)

n
≤ H(X).
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Asymptotic Optimality of Lempel-Ziv Coding

• Let {Xi}
∞
i=−∞ be a stationary ergodic process with

entropy rate H(X). Let l(X1, . . . , Xn) be the codeword
length of the Lempel-Ziv coding associated with
X1, . . . , Xn. Then, with probability 1,

lim
n→∞

sup
l(X1, . . . , Xn)

n
≤ H(X)

• Proof: This follows from

l(n) = c(n)(log c(n) + 1)
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