National Sun Yat-Sen University CSE Course: Information Theory Chia-Ping Chen

Information Theory and Statistics
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The Method of Types - Definitions

e The type of a sequence x = x4, ..., T,, denoted by Pk, 1s
the relative frequencies in x of the symbols in X. I.e.

P, (a) — N{ap)

n

where N (a|x) is the number of times a occurs in X.
e P, denotes the set of types with denominator n.

e The type class of P, denoted by T'(P), is defined by
T(P)={x:P,= P}

o Let X = {1,2,3},x = 11223.
Pe=? Ps=? T(P,)=?
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Bounds on the Number of Types

e Theorem: The number of types with denominator 7 1s
bounded from above by

P, < (n+ 1),

In other words, there 1s only a polynomial number of
types.

e Proof: There are |X| components and each can take a
value from n + 1 possibilities.
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The Probability of a Sequence

e The probability of a sequence x drawn i.i.d. from Q(x) is

Qn (X) — 2%(—H(PX)_D(PX||Q)) )

Proof:

Q" (x) = H Qz:) = [T Q)N = TT Q(a)"™@

_ H 2an(a) logQ(a) _ on >, Px(a)logQ(a)

_9n > o Px(a)log g{(acz) Px(a) _ 2n(—H(PX)—D(PX||Q))

e What does this say about the MLE of )(x)?
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The Size of A Type Class
e The size of the type class T'(P) of a given type P € P, is
bounded by

1
(n + 1)

QnH(P) < |T(P)‘ < 2nH(P)

AP = Y P = 3D e

xeT (P) x€T(P)

1= 3 PP < [Pl PT(P) = [Pl T(P) 27

Note that P" (T (P)) > P"(T(P")).

e See Example 12.1.3 for the binary alphabet case.
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The Probability of A Type Class

e The probability of the type class T'( P) of a given type
P € P, under )(x) is bounded by

1
(n+ 1)
Proof: We have

o—nD(P||Q) < Qn<T<p>) < o—nD(P||Q)

QT(P) = ) Q"(x)

(P)
§ gnHP)-DEIQ)

The result is proved by applying the bounds on |T'(P)].

Chia-Ping Chen
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Summary for the Method of Types

e We can summarize the basic theorems as follows

= [Pu] < (n+ DF
— Q" (x) = 2 MHPOTD(PQ)

_ \T(P)| = onH(P)

— Q"(T(P)) = 2 "PFIIQ)

e While the number of sequences is exponential in n, the
number of types 1s polynomial in n.

e The probability of any sequence is exponentially small.
In fact, the probability of any type class 1s exponentially
small except for the type class of the true distribution.
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Typical Sets

e For ¢ > (), the typical set 1 of sequences x = 1, ..., T,
drawn i.i.d. from () is defined by

To = {x: D(P|Q) < ¢}

e The probability that a sequence is not in the typical set
goes to 0 as n — oo. Or

PrixeT)) —1

e The strongly typical set 1s defined by

AP = {x: |1 N{ao) ~ Pla)] < o Va
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Universal Source Coding

e What compression can be achieved if the true distribution
p(x) is unknown?

— If the wrong distribution ¢(z) is used, the penalty is
D(pllq).

— But almost certainly a sequence 1s in the typical set, so
D(p||q) can be made small.

e Is there a universal code of rate R that suffices to describe
every 1.1.d. source with entropy H < R? Yes!
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Universal Source Coding - Definitions

e A block code of rate R for a source X, ..., X, with
unknown distribution () encodes and decodes a block of n
source symbols at a time.

fr X" —{1,2,...,2™

gn {1,2,..., 2" — X"

e Probability of error P\") = Q"{X : g.(fn(X)) # X})

e A code of rate R will be called universal if
— g, and f,, does not depend on ()
~ P — 0asn — oo when R > H(Q).
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Universal Source Coding Theorem

e There exists a sequence of (2", n) universal source

codes such that the P\ — 0 for any source distribution
Q with H(Q) < R.

e The proof is provided in the next slide. It is based on the
fact that the number of sequences of a type increases
exponentially with the entropy, while there 1s only a
polynomial number of types.




National Sun Yat-Sen University CSE Course: Information Theory Chia-Ping Chen

Proof

Define R, = R — | X2 A = {x: H(P,) < R,}.
Then
Al = Z T(P)| < Z onH (P) < Z gnfin < gnR.

H(P)<Rnp H(P)<Rn H(P)<Rn

So the elements in A can be mapped to {1, ..., 2"%} with no
elements sharing the same integer. It follows that

PM=1-Q"A)= »  QT(P))
P:H(P)>R

< (D g, QTP

< (n 4 1)Mg-nminpar)>r, DPIQ) _,
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Properties

e For H(()) > R, a sequence is not in A with high
probability. With this code, the error probability is close
to 1.

e The scheme descried here works for 1.1.d. sources. We
will see other schemes which works for non-1.1.d. sources
as well.

e Universal codes need a longer block length to achieve the
same performance as say Huffman codes, which requires
detailed distribution, but not encoding and decoding long

blocks.
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Large Deviation Theory

e What 1s the probability that the sample average is close to
p or q # p for samples drawn 1.1.d. from Bernoulli(p)?

e More generally, suppose the true distribution is (). What
1s the probability that we observe a sequence of a type in
a set £/ which does not contain ()? That is

QE)=Q"EN?P,) = > Q"

x:Pxe ENP,
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Sanov’s Theorem

o Let Xy,..., X, bedrawn i.i.d. from Q(x). Let E be a set
of probability distributions. Then

Q"(E) = Q"ENTP,) < (n+ 1)H27mPI),

where

P* = arg min D(P[Q).

Furthermore, 1f the set £ includes its closure, then

“log Q"(B) — ~D(P"]|Q)

e Proof: see text; Examples: dice, coins.
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Hypothesis Testing

e One problem 1n statistics 1s to decide between two
alternative explanations for the observed data. For
example

— Is a new drug effective?
— Is a coin biased?
e In the simplest hypothesis testing problem, we want to

decide between two 1.1.d. distributions for explaining the
data.
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Problem

o Let X = X4,...,.X, be1id. random variables with
distribution Q) (). We consider two hypotheses

leszlandHQ:Q:Pg.

e Let g be the decision function, where g(x) = ¢ implies
that H, 1s accepted. Define the error probabilities

o = Pr(g(x) = 2|H; is true) = P;(A°)
B = Pr(g(x) =1|Hyistrue) = P,(A),

where A is the set over which g is 1.

e There is a trade-off between minimizing «, (3, so we
minimize one subject to a constraint on the other.
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Neyman-Pearson Lemma

Follow the previous setting. For 1" > 0, define a region

P
< - 1(3317 7:671) >T}
PQ(ZCl, “ . ,CIZn)

a” = P (ANT)), 0" = P(A(T)).

These are the error probabilities if we use A(T") as the region
with g = 1. Let B be any other decision region with
associated probabilities of error «, 3. Then

a<a = 0>p0%

See the text for proof.
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Optimal Test for Two Hypotheses

e The optimal test, called the likelihood ratio test, 1s of the

form
P (Xy,...,X,)

Py (Xy,..., X,)
e The log likelihood can be shown to be the difference

> 7.

between the relative entropies of the sample type to each
of the two distributions. IL.e.

P (X)
P(X)

The likelihood ratio test 1s now equivalent to

1
D(Px||P>) — D(Px||P1) > 510gT

L(X) = log = = nD(Px||P;) — nD(Px||P;)
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Stein’s Lemma

We now consider the case where we constraint on one error
probability («r) and minimize the other ().

Let X = Xq,..., X, beiid. ~ Q(z). Let A, C X" be an
acceptance region for 4. Define

Oy = Pl(A;)a 67?, — PQ(An)7

min [,
AnCX" o <e

1
lim lim —log B = —D(

e—0n—oo N

See the text for proof.
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Lempel-Ziv Coding

e A parsing S of a string is a division of the string into
phrases. A distinct parsing is a parsing such that no
phrases are 1dentical.

e Lempel-Ziv coding scheme:

— Apply a distinct parsing to a source string into the
shortest phrases

— The prefix must have appeared in the string.
— Represent these phrases by the position of the prefix

(which 1s also a phrase) and the last source symbol.

e An example helps to illustrate the 1dea.
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Average Length of Lempel-Ziv Coding

e Let ¢(n) be the number of pharses in the parsing of a
binary input string of length n.

— ¢(n) depends on the actual string.

e The compressed representation consists of ¢(n) pairs of
prefix location and last symbol of the phrase. Need

Chia-Ping Chen

log c¢(n) bits for prefix location and 1 bit for last symbol.

e The average length (in bits per source symbol) of a
Lempel-Ziv coding for a length-n string 1s thus

c(n)(logc(n) + 1).
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The Number of Phrases

e Theorem: Let c(n) be the number of pharses in the
parsing of a binary input string of length n. Then

c(n) <

(g

(1 —¢€,)logn’
where €,, — 0 as n — oc.

e Proof: Let n; be the sum of lengths of all distinct phrases
of length no greater then k. L.e.

2]2] — 2k-|-1 _|_2
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Continued Proof

e The number of phrases 1s maximized when the distinct

phrases are as short as possible, so

k
- n
c(ng) < ZQJ < k—kl'
j=1

e For any n, there is one & such that

n
nEg < n < ngr1, cn) < , and k < logn.

— k-1
Moreover,

n

< (1 2)k+2 E42)>1 .
n < (logn + 2) = (k+2) > S P—
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Continued Proof
e It follows that

k—12>logn —log(logn +2) —3 > (1 —¢,)logn,

log n+4 }
logn )

where ¢, = min{1, ‘&

e So the number of phrases 1n a distinct parsing of a
sequence of length n is bounded by

n
<

(1 —¢,)logn
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A Lemma

e Let Z be a non-negative integer-valued random variable
with mean p. Then

H(Z) < (u+1)log(p+ 1) — plog .

e The proof follows from the theory of the maximum
entropy distribution.
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Markov Approximation

o Let {X;}°__ be a stationary ergodic process with

1=—00

probability P(x1,...,x,).
e The kth order Markov approximation to P is defined by

where 27 = (z;,..., ;).

e The entropy rate of the Markov approximation converges

1 -
— log Qr(X1, ... ,Xn|X9(k_1)) — H(XJ‘X;—;)
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Preliminary for Ziv’s

e Let (y1,...,y.) be adistinct parsing for a given string
(1,...,x,) into ¢ phrases.

e Let v; be the index of the start of the :th phrase. Then

R I/'_|_1—1 o I/,L'—l
Yi = ajl/z y Si = xl/i—k'

Note that s; = :1:(1(,{_1).

e Let ¢, be the number of phrases y; with length [ and
preceding state s; = s € X*. Then we have

E Cls = C, E lc;s = n.

l,s l,s

Chia-Ping Chen
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Z1v’s Inequality

e For any distinct parsing of x5 . .. x,, we have

1
log Qk(xla L2y e 7xn’31) < chs log o

C
s ls

e Proof:

log Qr (21,22, ..., zn|s1) =log | [ P(yilsi) = log P(yils:)
L. —

=1

=Y ) logP(yilsi) = > é log P(y:|s:)

s d:ly;|=l,s;=s ity |=l,s;=s

<Y aslog( Y %P(yi\si)) <) caslog é
l,s 5

ls

i:|ly;|=l,s;=s l,s
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Main Theorem

Let {X;}32___ be a stationary ergodic process with entropy
rate H(X). Let ¢(n) be the number of phrases in a distinct
parsing of a sequence of length n sampled from this process.

Then, with probability 1,

c(n) log c(n) < H(X)

lim sup
Nn— 00 n

So the number of bits per symbol 1s not greater than the
entropy rate.
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Proof

From Ziv’s inequality, we have

— log Qk(xlax% e ,$n|51) > ZCZS log ¢ = chs log

l,s ls

CisC

= clogc — chS log 75,

l,s

where m;, = . Define random variables U, V' with

Pr(U=1V =s)=ms.

Note £ U % Now we have

1
——log Qu(1, 72, ..., @als1) > —logc — —H(U, V).
T T T
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Proof Continued

Now
HUV)<HWV)+ H(U)

< k+log = + (= +1)log(~ + 1)

From Lemma 12.10.1, ¢ ~ ﬁ, SO

SHU,V) < “k+ =log— +o(1) — 0.
mn n mn C

Therefore,

C 1
Sloge < —=log Qu(x1, @2, .., 2als1) + €
n n

c(n) log ¢(n) < H(Y)

= lim sup

n— 00 n




National Sun Yat-Sen University CSE Course: Information Theory

Asymptotic Optimality of Lempel-Ziv Coding

o Let {X;}° _ be a stationary ergodic process with

entropy rate H(X). Let [(X, ..., X,,) be the codeword
length of the Lempel-Ziv coding associated with

X1,...,X,. Then, with probability 1,

[(Xq,...
lim sup (X1,

n—o00 n

< H(X)

e Proof: This follows from

[(n) =c(n)(loge(n) + 1)

Chia-Ping Chen



