Information Theory and Statistics

The Method of Types - Definitions

 The type of a sequence x = x₁,..., x_n, denoted by P_x, is the relative frequencies in x of the symbols in X. I.e.

$$P_{\mathbf{x}}(a) = \frac{N(a|\mathbf{x})}{n},$$

where $N(a|\mathbf{x})$ is the number of times a occurs in \mathbf{x} .

- \mathcal{P}_n denotes the set of types with denominator n.
- The type class of P, denoted by T(P), is defined by

$$T(P) = \{\mathbf{x} : P_{\mathbf{x}} = P\}$$

• Let
$$\mathfrak{X} = \{1, 2, 3\}, \mathbf{x} = 11223.$$

$$P_{\mathbf{x}} = ? \quad \mathcal{P}_5 = ? \quad T(P_{\mathbf{x}}) = ?$$

Bounds on the Number of Types

• **Theorem:** The number of types with denominator *n* is bounded from above by

 $|\mathcal{P}_n| \le (n+1)^{|\mathcal{X}|}.$

In other words, there is only a *polynomial* number of types.

• **Proof:** There are $|\mathcal{X}|$ components and each can take a value from n + 1 possibilities.

The Probability of a Sequence

• The probability of a sequence **x** drawn i.i.d. from Q(x) is

$$Q^{n}(\mathbf{x}) = 2^{n(-H(P_{\mathbf{x}}) - D(P_{\mathbf{x}}||Q))}.$$

Proof:

$$Q^{n}(\mathbf{x}) = \prod_{i} Q(x_{i}) = \prod_{a} Q(a)^{N(a|\mathbf{x})} = \prod_{a} Q(a)^{nP_{\mathbf{x}}(a)}$$
$$= \prod_{a} 2^{nP_{\mathbf{x}}(a)\log Q(a)} = 2^{n\sum_{a} P_{\mathbf{x}}(a)\log Q(a)}$$
$$= 2^{n\sum_{a} P_{\mathbf{x}}(a)\log \frac{Q(a)}{P_{\mathbf{x}}(a)}} = 2^{n(-H(P_{\mathbf{x}}) - D(P_{\mathbf{x}}||Q))}$$

• What does this say about the MLE of Q(x)?

The Size of A Type Class

• The size of the type class T(P) of a given type $P \in \mathfrak{P}_n$ is bounded by

$$\frac{1}{(n+1)^{|\mathfrak{X}|}} 2^{nH(P)} \le |T(P)| \le 2^{nH(P)}$$

Proof:

$$1 \ge P^{n}(T(P)) = \sum_{\mathbf{x}\in T(P)} P^{n}(\mathbf{x}) = \sum_{\mathbf{x}\in T(P)} 2^{-nH(P)} = |T(P)|2^{-nH(P)}$$
$$1 = \sum_{P'\in\mathcal{P}_{n}} P^{n}(T(P')) \le |\mathcal{P}_{n}|P^{n}(T(P)) = |\mathcal{P}_{n}||T(P)|2^{-nH(P)}$$

Note that $P^n(T(P)) \ge P^n(T(P'))$.

• See Example 12.1.3 for the binary alphabet case.

The Probability of A Type Class

• The probability of the type class T(P) of a given type $P \in \mathcal{P}_n$ under Q(x) is bounded by

$$\frac{1}{(n+1)^{|\mathfrak{X}|}} 2^{-nD(P||Q)} \le Q^n(T(P)) \le 2^{-nD(P||Q)}$$

Proof: We have

$$Q^{n}(T(P)) = \sum_{\mathbf{x}\in T(P)} Q^{n}(\mathbf{x})$$
$$= \sum_{\mathbf{x}\in T(P)} 2^{n(-H(P)-D(P||Q))}$$
$$= |T(P)|2^{n(-H(P)-D(P||Q))}.$$

The result is proved by applying the bounds on |T(P)|.

Summary for the Method of Types

• We can summarize the basic theorems as follows

$$- |\mathcal{P}_n| \le (n+1)^{|\mathcal{X}|}$$

-
$$Q^n(\mathbf{x}) = 2^{-n(H(P_{\mathbf{x}}) + D(P_{\mathbf{x}}||Q))}$$

$$-|T(P)| \doteq 2^{nH(P)}$$

$$- Q^n(T(P)) \doteq 2^{-nD(P||Q)}$$

- While the number of sequences is exponential in n, the number of types is polynomial in n.
- The probability of any sequence is exponentially small. In fact, the probability of any type class is exponentially small except for the type class of the true distribution.

Typical Sets

For ε > 0, the typical set T^ε_Q of sequences x = x₁,..., x_n drawn i.i.d. from Q(x) is defined by

$$T_Q^{\epsilon} = \{ \mathbf{x} : D(P_{\mathbf{x}} || Q) \le \epsilon \}$$

• The probability that a sequence is not in the typical set goes to 0 as $n \to \infty$. Or

$$Pr(\mathbf{x} \in T_Q^{\epsilon}) \to 1$$

• The strongly typical set is defined by

$$A_{\epsilon}^{(n)} = \left\{ \mathbf{x} : \left| \frac{1}{n} N(a | \mathbf{x}) - P(a) \right| < \frac{\epsilon}{|\mathcal{X}|} \, \forall a \right\}$$

Universal Source Coding

- What compression can be achieved if the true distribution p(x) is unknown?
 - If the wrong distribution q(x) is used, the penalty is D(p||q).
 - But almost certainly a sequence is in the typical set, so D(p||q) can be made small.
- Is there a universal code of rate R that suffices to describe every i.i.d. source with entropy H < R? Yes!

Universal Source Coding - Definitions

• A block code of rate R for a source X_1, \ldots, X_n with *unknown* distribution Q encodes and decodes a block of n source symbols at a time.

$$f_n: \mathfrak{X}^n \to \{1, 2, \dots, 2^{nR}\}$$

$$g_n: \{1, 2, \dots, 2^{nR}\} \to \mathfrak{X}^n$$

- Probability of error $P_e^{(n)} = Q^n(\{\mathbf{X} : g_n(f_n(\mathbf{X})) \neq \mathbf{X}\})$
- A code of rate R will be called **universal** if
 - g_n and f_n does not depend on Q
 - $P_e^{(n)} \to 0$ as $n \to \infty$ when R > H(Q).

Universal Source Coding Theorem

- There exists a sequence of (2^{nR}, n) universal source codes such that the P_e⁽ⁿ⁾ → 0 for any source distribution Q with H(Q) < R.
- The proof is provided in the next slide. It is based on the fact that the number of sequences of a type increases exponentially with the entropy, while there is only a polynomial number of types.

Proof Define $R_n = R - |\mathfrak{X}| \frac{\log(n+1)}{n}$, $A = \{\mathbf{x} : H(P_{\mathbf{x}}) \le R_n\}$. Then

$$|A| = \sum_{H(P) \le R_n} |T(P)| \le \sum_{H(P) \le R_n} 2^{nH(P)} \le \sum_{H(P) \le R_n} 2^{nR_n} \le 2^{nR_n}$$

So the elements in A can be mapped to $\{1, \ldots, 2^{nR}\}$ with no elements sharing the same integer. It follows that

$$P_{e}^{(n)} = 1 - Q^{n}(A) = \sum_{P:H(P) > R_{n}} Q^{n}(T(P))$$

$$\leq (n+1)^{|\mathcal{X}|} \max_{P:H(P) > R_{n}} Q^{n}(T(P))$$

$$\leq (n+1)^{|\mathcal{X}|} 2^{-n \min_{P:H(P) > R_{n}} D(P||Q)} \to 0$$

Properties

- For H(Q) > R, a sequence is not in A with high probability. With this code, the error probability is close to 1.
- The scheme descried here works for i.i.d. sources. We will see other schemes which works for non-i.i.d. sources as well.
- Universal codes need a longer block length to achieve the same performance as say Huffman codes, which requires detailed distribution, but not encoding and decoding long blocks.

Large Deviation Theory

- What is the probability that the sample average is close to p or $q \neq p$ for samples drawn i.i.d. from Bernoulli(p)?
- More generally, suppose the true distribution is Q. What is the probability that we observe a sequence of a type in a set E which does not contain Q? That is

$$Q^{n}(E) = Q^{n}(E \cap \mathcal{P}_{n}) = \sum_{\mathbf{x}: P_{\mathbf{x}} \in E \cap \mathcal{P}_{n}} Q^{n}(\mathbf{x})$$

Sanov's Theorem

• Let X_1, \ldots, X_n be drawn i.i.d. from Q(x). Let E be a set of probability distributions. Then

$$Q^{n}(E) \triangleq Q^{n}(E \cap \mathcal{P}_{n}) \leq (n+1)^{|\mathfrak{X}|} 2^{-nD(P^{*}||Q)},$$

where

$$P^* = \arg\min_{P \in E} D(P||Q).$$

Furthermore, if the set E includes its closure, then

$$\frac{1}{n}\log Q^n(E) \to -D(P^*||Q)$$

• Proof: see text; Examples: dice, coins.

Hypothesis Testing

- One problem in statistics is to decide between two alternative explanations for the observed data. For example
 - Is a new drug effective?
 - Is a coin biased?
- In the simplest hypothesis testing problem, we want to decide between two i.i.d. distributions for *explaining* the data.

Problem

• Let $\mathbf{X} = X_1, \dots, X_n$ be i.i.d. random variables with distribution Q(x). We consider two hypotheses

$$H_1: Q = P_1 \text{ and } H_2: Q = P_2.$$

 Let g be the decision function, where g(x) = i implies that H_i is accepted. Define the error probabilities
α = Pr(g(x) = 2|H₁ is true) = P₁(A^c) β = Pr(g(x) = 1|H₂ is true) = P₂(A),

where A is the set over which g is 1.

• There is a trade-off between minimizing α, β , so we minimize one subject to a constraint on the other.

Neyman-Pearson Lemma

4

Follow the previous setting. For $T \ge 0$, define a region

$$A(T) = \left\{ \mathbf{x} : \frac{P_1(x_1, \dots, x_n)}{P_2(x_1, \dots, x_n)} > T \right\}$$

Let

$$\alpha^* = P_1(A^c(T)), \ \beta^* = P_2(A(T)).$$

These are the error probabilities if we use A(T) as the region with g = 1. Let B be any other decision region with associated probabilities of error α, β . Then

$$\alpha \le \alpha^* \Rightarrow \beta \ge \beta^*.$$

See the text for proof.

Optimal Test for Two Hypotheses

• The optimal test, called the likelihood ratio test, is of the form

$$\frac{P_1(X_1,\ldots,X_n)}{P_2(X_1,\ldots,X_n)} > T.$$

• The log likelihood can be shown to be the difference between the relative entropies of the sample type to each of the two distributions. I.e.

$$L(\mathbf{X}) = \log \frac{P_1(\mathbf{X})}{P_2(\mathbf{X})} = nD(P_{\mathbf{X}}||P_2) - nD(P_{\mathbf{X}}||P_1)$$

The likelihood ratio test is now equivalent to

$$D(P_{\mathbf{X}}||P_2) - D(P_{\mathbf{X}}||P_1) > \frac{1}{n}\log T$$

Stein's Lemma

We now consider the case where we constraint on one error probability (α) and minimize the other (β).

Let $\mathbf{X} = X_1, \ldots, X_n$ be i.i.d. $\sim Q(x)$. Let $A_n \subseteq \mathfrak{X}^n$ be an acceptance region for H_1 . Define

$$\alpha_n = P_1(A_n^c), \quad \beta_n = P_2(A_n),$$

and

$$\beta_n^{\epsilon} = \min_{A_n \subseteq \mathcal{X}^n, \alpha_n < \epsilon} \beta_n.$$

Then

$$\lim_{\epsilon \to 0} \lim_{n \to \infty} \frac{1}{n} \log \beta_n^{\epsilon} = -D(P_1 || P_2).$$

See the text for proof.

Lempel-Ziv Coding

- A parsing S of a string is a division of the string into phrases. A distinct parsing is a parsing such that no phrases are identical.
- Lempel-Ziv coding scheme:
 - Apply a distinct parsing to a source string into the shortest phrases
 - The prefix must have appeared in the string.
 - Represent these phrases by the position of the prefix (which is also a phrase) and the last source symbol.
- An example helps to illustrate the idea.

Average Length of Lempel-Ziv Coding

- Let c(n) be the number of pharses in the parsing of a binary input string of length n.
 - c(n) depends on the actual string.
- The compressed representation consists of c(n) pairs of prefix location and last symbol of the phrase. Need log c(n) bits for prefix location and 1 bit for last symbol.
- The average length (in bits per source symbol) of a Lempel-Ziv coding for a length-*n* string is thus

$$c(n)(\log c(n) + 1)$$

The Number of Phrases

• **Theorem:** Let c(n) be the number of pharses in the parsing of a binary input string of length n. Then

$$c(n) \le \frac{n}{(1-\epsilon_n)\log n},$$

where $\epsilon_n \to 0$ as $n \to \infty$.

• **Proof:** Let n_k be the sum of lengths of all distinct phrases of length no greater then k. I.e.

$$n_k = \sum_{j=1}^k j 2^j = (k-1)2^{k+1} + 2.$$

Continued Proof

• The number of phrases is maximized when the distinct phrases are as short as possible, so

$$c(n_k) \le \sum_{j=1}^k 2^j \le \frac{n_k}{k-1}.$$

• For any n, there is one k such that

$$n_k \le n < n_{k+1}, \ c(n) \le \frac{n}{k-1}, \ \text{and} \ k \le \log n.$$

Moreover,

$$n \le (\log n + 2)2^{k+2} \Rightarrow (k+2) \ge \log \frac{n}{\log n + 2}$$

Continued Proof

• It follows that

$$k-1 \ge \log n - \log(\log n + 2) - 3 \ge (1 - \epsilon_n) \log n,$$

where $\epsilon_n = \min\{1, \frac{\log \log n + 4}{\log \log n + 4}\}.$

• So the number of phrases in a distinct parsing of a sequence of length n is bounded by

$$c(n) \le \frac{n}{k-1} \le \frac{n}{(1-\epsilon_n)\log n}$$

A Lemma

• Let Z be a non-negative integer-valued random variable with mean μ . Then

$$H(Z) \le (\mu + 1) \log(\mu + 1) - \mu \log \mu.$$

• The proof follows from the theory of the maximum entropy distribution.

Markov Approximation

- Let $\{X_i\}_{i=-\infty}^{\infty}$ be a stationary ergodic process with probability $P(x_1, \ldots, x_n)$.
- The kth order Markov approximation to P is defined by

$$Q_k(x_{-(k-1)}^n) = P(x_{-(k-1)}^0) \prod_{j=1}^n P(x_j | x_{j-k}^{j-1}),$$

where $x_{i}^{j} = (x_{i}, ..., x_{j}).$

• The entropy rate of the Markov approximation converges $-\frac{1}{n}\log Q_k(X_1,\ldots,X_n|X_{-(k-1)}^0) \to H(X_j|X_{j-k}^{j-1}).$

Preliminary for Ziv's

- Let (y_1, \ldots, y_c) be a distinct parsing for a given string (x_1, \ldots, x_n) into c phrases.
- Let ν_i be the index of the start of the *i*th phrase. Then

$$y_i = x_{\nu_i}^{\nu_{i+1}-1}, \ s_i = x_{\nu_i-k}^{\nu_i-1}.$$

Note that $s_1 = x_{-(k-1)}^0$.

• Let c_{ls} be the number of phrases y_i with length l and preceding state $s_i = s \in X^k$. Then we have

$$\sum_{l,s} c_{ls} = c, \quad \sum_{l,s} lc_{ls} = n.$$

Ziv's Inequality

• For any distinct parsing of $x_1 x_2 \dots x_n$, we have

$$\log Q_k(x_1, x_2, \dots, x_n | s_1) \le \sum_{l,s} c_{ls} \log \frac{1}{c_{ls}}$$

• Proof:

$$\log Q_k(x_1, x_2, \dots, x_n | s_1) = \log \prod_{i=1}^c P(y_i | s_i) = \sum_{i=1}^c \log P(y_i | s_i)$$
$$= \sum_{l,s} \sum_{i:|y_i|=l,s_i=s} \log P(y_i | s_i) = \sum_{l,s} c_{ls} \sum_{i:|y_i|=l,s_i=s} \frac{1}{c_{ls}} \log P(y_i | s_i)$$
$$\leq \sum_{l,s} c_{ls} \log(\sum_{i:|y_i|=l,s_i=s} \frac{1}{c_{ls}} P(y_i | s_i)) \leq \sum_{l,s} c_{ls} \log \frac{1}{c_{ls}}.$$

Main Theorem

Let $\{X_i\}_{i=-\infty}^{\infty}$ be a stationary ergodic process with entropy rate $H(\mathfrak{X})$. Let c(n) be the number of phrases in a distinct parsing of a sequence of length n sampled from this process. Then, with probability 1,

$$\lim_{n \to \infty} \sup \frac{c(n) \log c(n)}{n} \le H(\mathfrak{X}).$$

So the number of bits per symbol is not greater than the entropy rate.

Proof

From Ziv's inequality, we have

$$-\log Q_k(x_1, x_2, \dots, x_n | s_1) \ge \sum_{l,s} c_{ls} \log c_{ls} = \sum_{ls} c_{ls} \log \frac{c_{ls}c}{c}$$
$$= c \log c - c \sum_{l,s} \pi_{ls} \log \pi_{ls},$$

where $\pi_{ls} = \frac{c_{ls}}{c}$. Define random variables U, V with

$$Pr(U=l, V=s) = \pi_{ls}.$$

Note $EU = \frac{n}{c}$. Now we have

$$-\frac{1}{n}\log Q_k(x_1, x_2, \dots, x_n | s_1) \ge \frac{c}{n}\log c - \frac{c}{n}H(U, V).$$

Proof Continued

Now

$$H(U,V) \le H(V) + H(U)$$
$$\le k + \log \frac{n}{c} + (\frac{n}{c} + 1) \log(\frac{c}{n} + 1).$$

From Lemma 12.10.1, $c \sim \frac{n}{\log n}$, so

$$\frac{c}{n}H(U,V) \le \frac{c}{n}k + \frac{c}{n}\log\frac{n}{c} + o(1) \to 0.$$

Therefore,

$$\frac{c}{n}\log c \leq -\frac{1}{n}\log Q_k(x_1, x_2, \dots, x_n | s_1) + \epsilon$$
$$\Rightarrow \lim_{n \to \infty} \sup \frac{c(n)\log c(n)}{n} \leq H(\mathfrak{X}).$$

Asymptotic Optimality of Lempel-Ziv Coding

Let {X_i}[∞]_{i=-∞} be a stationary ergodic process with entropy rate H(X). Let l(X₁,...,X_n) be the codeword length of the Lempel-Ziv coding associated with X₁,...,X_n. Then, with probability 1,

$$\lim_{n \to \infty} \sup \frac{l(X_1, \dots, X_n)}{n} \le H(\mathfrak{X})$$

• **Proof:** This follows from

$$l(n) = c(n)(\log c(n) + 1)$$