Rate Distortion Theory

Introduction

- A **distortion measure** is a measure of distance between a random variable and its representation.
- The basic problem in rate-distortion theory is this: *Given a random variable and a distortion measure, what is the minimum expected distortion achievable at a particular rate?*
- Equivalently, *What is the minimum rate required to achieve a distortion?*
- For zero-distortion discrete case, we have the data compression theory.

Engineering Aspects

- Want low rate (high compression) Given the constraint on maximum distortion, what is the minimum rate?
- Want low distortion (high fidelity)
 Given the constraint on maximum rate (such as data channel capacity), what is the minimum distortion?
- Examples
 - speech/audio coding
 - video coding/image compression

Quantization

- Representing a continuous random variable by a finite number of bits.
- Let the random variable be X and the representation be \hat{X} . We want to find the optimal set of values and the associated regions for each \hat{X} .
- For R bits to represent X, there are 2^R values for \hat{X} , which are called the reproduction points or code points.
- For example, let R = 1 and X ~ N(0, σ²). The answer is given by (13.1). How about R = 2?

Lloyd Algorithm

- Two properties for optimum regions and reconstruction points
 - Given a set of reproduction points, the distortion is minimized by assigning a value x to the closest reproduction point. The set of regions thus defined is called a Voronoi partition.
 - The reproduction points should minimize the conditional expected distortion over the assigned regions.
- The Lloyd algorithm finds a local minimum with these two properties.

Distortion Functions

• A distortion function or distortion measure is a mapping

$$d: \mathfrak{X} \times \hat{\mathfrak{X}} \to R^+ \cup \{0\},\$$

from the set of source-reproduction pairs into the set of non-negative real numbers. For examples,

- Hamming distortion:
$$d(x, \hat{x}) = \begin{cases} 0, & x = \hat{x} \\ 1, & x \neq \hat{x} \end{cases}$$

– squared error distortion:
$$d(x, \hat{x}) = (x - \hat{x})^2$$

Distortion between Sequences

• The distortion between sequences x^n and \hat{x}^n is defined by

$$d(x^n, \hat{x}^n) = \frac{1}{n} \sum_{i=1}^n d(x_i, \hat{x}_i).$$

In other words, it is the distortion per symbol.

- This is not the only reasonable definition. For example, one can use the maximal instead of the average.
- The analysis here is based on this average distortion measure between sequences.

Rate Distortion Code

• A (2^{nR}, n) rate distortion code consists of an encoding function

$$f_n: \mathfrak{X}^n \to \{1, 2, \dots, 2^{nR}\},\$$

and a decoding function

$$g_n: \{1, 2, \ldots, 2^{nR}\} \to \hat{\mathfrak{X}}^n.$$

• The distortion associated with this code is

$$\mathcal{D} = E\left[d(X^n, g_n(f_n(X^n)))\right]$$
$$= \sum_{x^n} p(x^n) d(x^n, g_n(f_n(x^n))).$$

Codebook and Vector Quantization

- f_n⁻¹(1),..., f_n⁻¹(2^{nR}) are called the assignment regions.
 I.e., f_n⁻¹(k) is the region associated with index k.
- $\hat{X}^n(1), \ldots, \hat{X}^n(2^{nR})$ constitute the codebook. Any X in region k is represented by the code point $\hat{X}^n(k)$.
- It is common to refer to Xⁿ as the vector quantization, reproduction, reconstruction, representation, source code, or estimate of Xⁿ.
- \mathcal{D} is the averaged distortion between X^n and \hat{X}^n .

Rate-Distortion Region

• A rate-distortion pair (R, D) is achievable if there exists a sequence of $(2^{nR}, n)$ rate distortion codes such that

 $\lim_{n \to \infty} E\left[d(X^n, g_n(f_n(X^n)))\right] \le D.$

- The rate-distortion region for a source is the closure of the set of achievable rate distortion pairs.
- The rate distortion function R(D) is the infimum of R for given D in the rate distortion region.
- The distortion rate function D(R) is the infimum of D for given R in the rate distortion region.

More Precisely (Mathematical)

- Let C be the rate distortion region, the closure of the set of achievable rate-distortion pairs.
- The rate distortion function is

$$R(D) = \inf_{(R,D)\in C} R$$

• The distortion rate function is

$$D(R) = \inf_{(R,D)\in C} D$$

Information Rate-Distortion Function

• The information rate distortion function $R^{(I)}(D)$ for a source X with distortion $d(x, \hat{x})$ is defined by

$$R^{(I)}(D) = \min_{p(\hat{x}|x): Ed(X, \hat{X}) \le D} I(X; \hat{X}).$$

where the minimization is over all conditional distributions $p(\hat{x}|x)$ for which the joint distribution $p(x, \hat{x})$ satisfies the expected distortion constraint.

$R^{(I)}(D)$ for a Bernoulli Source

• For a Bernoulli(*p*) source with Hamming distortion, the information rate distortion function is

$$R^{(I)}(D) = \begin{cases} H(p) - H(D), & 0 \le D \le \min\{p, 1-p\} \\ 0, & D > \min\{p, 1-p\} \end{cases}$$

• This follows from

$$I(X; \hat{X}) = H(X) - H(X|\hat{X}) = H(p) - H(X \oplus \hat{X}|\hat{X})$$

$$\geq H(p) - H(X \oplus \hat{X}) \geq H(p) - H(D),$$

since $p(X \neq \hat{X}) = E(d(X, \hat{X})) \leq D$. Furthermore, this lower bound is achievable. See Figure 13.3.

$R^{(I)}(D)$ for a Gaussian Source

• For a Gaussian source $N(0, \sigma^2)$ with squared error distortion, the information rate distortion function is

$$R^{(I)}(D) = \begin{cases} \frac{1}{2} \log \frac{\sigma^2}{D}, & 0 \le D \le \sigma^2\\ 0, & D > \sigma^2 \end{cases}$$

• It follows that each bit reduces the expected distortion by a factor of 4. The 1-bit quantization scheme mentioned earlier has an expected distortion of $\frac{\pi-2}{\pi}\sigma^2$. Why?

Proof

• The mutual information is lower-bounded by

$$\begin{split} I(X; \hat{X}) &= h(X) - h(X | \hat{X}) = h(X) - h(X - \hat{X} | \hat{X}) \\ &\geq h(X) - h(X - \hat{X}) \\ &\geq h(X) - h(N(0, E(X - \hat{X})^2)) \\ &= \frac{1}{2} \log(2\pi e \sigma^2) - \frac{1}{2} \log(2\pi e E(X - \hat{X})^2)) \\ &\geq \frac{1}{2} \log \frac{\sigma^2}{D}. \end{split}$$

• To see this lower bound is achievable, it is more convenient to look at the test channel as in Figure 13.5.

Rate Distortion Theorem

• The rate distortion function for an i.i.d. source X with distribution p(x) and distortion function $d(x, \hat{x})$ is equal to information rate distortion function. I.e.

 $R(D) = R^{(I)}(D)$

• Specifically, it can be shown that

 $R(D) \ge R^{(I)}(D)$

and

 $R^{(I)}(D) \ge R(D)$

Rate Distortion Theorem I

If $R < R^{(I)}(D)$, then (R, D) is not an achievable rate-distortion pair.

• Since R(D) is the infimum of all achievable rates given D, it follows that

 $R(D) \ge R^{(I)}(D).$

Otherwise, there exists R with $R(D) < R < R^{(I)}(D)$ and (R, D) is not achievable, a contradiction to the definition of R(D).

Suppose that (R, D) is an achievable pair, then

$$nR \ge H(\hat{X}^n) \ge H(\hat{X}^n) - H(\hat{X}^n|X^n) = I(\hat{X}^n;X^n)$$

$$= H(X^{n}) - H(X^{n}|\hat{X}^{n}) = \sum_{i=1}^{n} H(X_{i}) - H(X^{n}|\hat{X}^{n})$$

$$=\sum_{i=1}^{n} H(X_i) - \sum_{i=1}^{n} H(X_i | \hat{X}^n, X_{1:i-1}) \ge \sum_{i=1}^{n} I(X_i; \hat{X}_i)$$

$$\geq \sum_{i=1}^{N} R^{(I)}(Ed(X_i, \hat{X}_i)) = n \sum_{i=1}^{N} \frac{1}{n} R^{(I)}(Ed(X_i, \hat{X}_i))$$

$$\geq nR^{(I)}(\frac{1}{n}\sum_{i=1}^{n} Ed(X_i, \hat{X}_i)) = nR^{(I)}(Ed(X^n, \hat{X}^n))$$

$$= nR^{(I)}(D).$$

Rate Distortion Theorem II

If $R > R^{(I)}(D)$, then (R, D) is an achievable pair.

Since R(D) is the infimum of all achievable rates given
 D, it follows that

 $R^{(I)}(D) \ge R(D).$

Otherwise, there exists R with $R(D) > R > R^{(I)}(D)$ and (R, D) is achievable, again a contradiction.

Before we give the proof, we need a few lemmas.

Distortion Typical Set

- A pair of sequence (xⁿ, x̂ⁿ) is distortion ε-typical if the four conditions (13.71)-(13.74) is satisfied. The set of distortion typical sequences is the distortion typical set.
- Lemma 13.5.1: The probability of distortion typical set approaches 1 as $n \to \infty$ for any $\epsilon > 0$.
- Lemma 13.5.2: For all (x^n, \hat{x}^n) in distortion typical set,

$$p(\hat{x}^n) \ge p(\hat{x}^n | x^n) 2^{-n(I(X;\hat{X}) + 3\epsilon)}$$

• Lemma 13.5.3:

$$(1 - xy)^n \le 1 - x + e^{-yn}$$
 for $0 \le x, y \le 1, n > 0$.

Proof of Earlier Theorem

- We will prove the theorem by the existence of a rate-distortion code with rate R > R^(I)(D) that satisfies the distortion constraint.
- Let X₁,..., X_n be i.i.d. ~ p(x) and d(x, x̂) be a bounded distortion measure. Let p(x̂|x) be the conditional distribution that achieves the minimum. Compute p(x̂).

Rate-Distortion Coding Scheme

- Randomly generate a codebook, say \mathcal{C} , of 2^{nR} \hat{x}^n -sequences drawn i.i.d. from $\prod_{i=1}^n p(\hat{x}_i)$.
- Encode xⁿ by w if w is the only integer such that
 (xⁿ, x̂ⁿ(w)) is distortion ε-typical. If there are more than
 one w, send the least. Else, let w = 1.
- Decode: The reproduction point for x^n is $\hat{x}^n(w)$.

Analysis of Distortion

• Recall that the distortion is defined by

$$E[d(X^{n}, g_{n}(f_{n}(X^{n})))] = \sum_{x^{n}} p(x^{n})d(x^{n}, g_{n}(f_{n}(x^{n}))).$$

- For xⁿ that is jointly distortion ε-typical with a codeword *x̂*ⁿ(w) in the codebook, d(xⁿ, *x̂*ⁿ(w)) ≤ D + ε. The probability of all such sequences is at most 1, so the contribution of these xⁿ-sequences to the distortion is at most D + ε.
- Let P_e be the probability that X^n is not jointly distortion ϵ -typical with any codeword. The contribution of these sequences to the distortion is at most $P_e d_m$.

Calculation of P_e

For a codebook C, let J(C) be the set of sequences xⁿ such that it is jointly distortion ε-typical with at least one codeword. Then

$$P_e = \sum_{\mathcal{C}} p(\mathcal{C}) \sum_{x^n : x^n \notin J(\mathcal{C})} p(x^n) = \sum_{x^n} p(x^n) \sum_{\mathcal{C} : x^n \notin J(\mathcal{C})} p(\mathcal{C})$$

- The term $\sum_{\mathfrak{C}:x^n\notin J(\mathfrak{C})} p(\mathfrak{C})$ is the probability of choosing a codebook that does not represent x^n well.
- Define K(xⁿ, x̂ⁿ) to be the indicator function of the distortion ε-typical set A⁽ⁿ⁾_{d,ε}.

Calculation of P_e (continued)

• The probability that a single randomly chosen codeword \hat{X}^n does not represent a fixed x^n well is

$$p((x^n, \hat{X}^n) \notin A_{d,\epsilon}^{(n)}) = 1 - \sum_{\hat{x}^n} p(\hat{x}^n) K(x^n, \hat{x}^n)$$

• So the probability that 2^{nR} independently chosen codewords do not represent x^n well, average over x^n is,

$$P_e = \sum_{x^n} p(x^n) \left[1 - \sum_{\hat{x}^n} p(\hat{x}^n) K(x^n, \hat{x}^n) \right]^{2nR}$$

• With Lemma 13.5.2, it follows that

$$P_e \le \sum_{x^n} p(x^n) \left[1 - 2^{-n(I(X;\hat{X}) + 3\epsilon)} \sum_{\hat{x}^n} p(\hat{x}^n | x^n) K(x^n, \hat{x}^n) \right]^{2nR}$$

Calculation of P_e (continued)

• We now use Lemma 13.5.3,

$$\left[1 - 2^{-n(I(X;\hat{X})+3\epsilon)} \sum_{\hat{x}^n} p(\hat{x}^n | x^n) K(x^n, \hat{x}^n)\right]^{2nR}$$

$$\leq 1 - \sum_{\hat{x}^n} p(\hat{x}^n | x^n) K(x^n, \hat{x}^n) + e^{-2^{-n(I(X;\hat{X})+3\epsilon)} 2^{nR}}$$

$$= 1 - \sum_{\hat{x}^n} p(\hat{x}^n | x^n) K(x^n, \hat{x}^n) + e^{-2^{n(R-I(X;\hat{X})-3\epsilon)}}.$$

So the last term of P_e goes to 0 if R > I.

• Since the sum of the first two terms is the probability that (X^n, \hat{X}^n) are not distortion typical, it goes to 0 as well.