Network Information Theory

A General Network

- There are *m* nodes trying to communicate with each other. (Before today our discussion has been limited to one sender and one receiver.)
- Node *n* sends *x_n*, depending on the message it wants to send and past received symbols.
- It also receives y_n depending on the signals being sent over the network.
- The noises and interferences is characterized by the conditional probability

$$p(y_1,\ldots,y_m|x_1,\ldots,x_m).$$

Network Problem

- Given the source distributions (which may be mutually dependent) and network transition probability, can one transmit these sources over the network reliably?
- There are some special networks for which this question can be answered.
- The max-flow min-cut theorem also gives upper bound on the achievable information rates (capacity) between two nodes over a network.

Gaussian Channels

• A Gaussian channel is characterized by

$$Y_i = X_i + Z_i,$$

where Z_i are i.i.d. Gaussian r.v. with variance N.

• The channel capacity for this channel is

$$C = \frac{1}{2}\log(1 + \frac{P}{N}),$$

where P is the constraint on signal power.

The Multiple-Access Gaussian Channels

• Suppose we have *m* transmitters, each with a power *P*. A single receiver receives signal

$$Y = \sum_{i=1}^{m} X_i + Z.$$

- Let the rates be $R = (R_1, \ldots, R_m)$. That is, we have m codebooks, with 2^{nR_i} codewords of power P for codebook i.
- The decoder is looking for a set of m codewords, one from each codebook, such that the sum is closest to Y.

The Achievable Rates

• The achievable rates (R_1, \ldots, R_m) must satisfy

$$R_i \le C(\frac{P}{N})$$
$$R_i + R_j \le C(2\frac{P}{N})$$

$$\sum_{i=1}^{m} R_i \le C(m\frac{P}{N})$$

- The last inequality dominates the others.
- $-\sum_{i=1}^{m} R_i$ is not bounded as $m \to \infty$.

The Gaussian Broadcast Channels

• A sender of power P and two receivers with Gaussian noises of variance N₁ and N₂.

$$Y_i = X + Z_i.$$

• Suppose that $N_1 \leq N_2$. Let the achievable rates be R_1, R_2 respectively, then

$$R_1 \le C(\frac{\alpha P}{N_1})$$
$$R_2 \le C(\frac{(1-\alpha)P}{\alpha P + N_2})$$

where α is the proportion of signal power for receiver 1.

The Gaussian Relay Channel

• Suppose the sender is X and the receiver is Y. In addition, there is an intermediate relay which sends X₁ and receives Y₁ (Figure 14.30). Therefore,

$$Y_1 = X + Z_1$$
$$Y = X + Z_1 + X_1 + Z_2$$

• The capacity is given by

$$C = \max_{\alpha} \min\{C(\frac{P + P_1 + 2\sqrt{\bar{\alpha}PP_1}}{N_1 + N_2}), C(\frac{\alpha P}{N_1})\}$$

The Gaussian Interference Network

- As shown in Figure 14.5, we have two senders and two receivers. The channels are interfering.
- This is different from the broadcast network since there is only one intended receiver for each sender. This is also different from the multi-access network since each receiver is only interested in the signal intended for it.
- The signal model is

 $Y_1 = X_1 + aX_2 + Z_1$ $Y_2 = X_2 + aX_1 + Z_2$

The Gaussian Two-way Channel

- As shown in Figure 14.6, we have two nodes, each with a sender and a receiver. Node 1 sends message to node 2 and vice versa.
 - X_1 is intended for Y_2 , and X_2 is intended for Y_1 .
- Since node 1 receives from node 2, it can use this as **feedback** information in deciding what to send next.

Jointly Typical Sequences

Let Ω = {X₁,..., X_k} be a set of discrete random variables. Let S denote an ordered subset of Ω. Consider n samples of S, s = (s₁,..., s_n).

$$p(\mathbf{s}) = \prod_{i=1}^{n} p(S = s_i).$$

• By the law of large numbers,

$$-\frac{1}{n}\log p(\mathbf{s}) \to H(S).$$

Typical Set

• The set $A_{\epsilon}^{(n)}$ of ϵ -typical *n*-sequences is defined by

$$A_{\epsilon}^{(n)}(\Omega) = \{ (\mathbf{x_1}, \dots, \mathbf{x_k}) : | -\frac{1}{n} \log p(\mathbf{s}) - H(S) | < \epsilon, \ \forall S \subseteq \Omega \}$$

- An element in the typical set is a typical sequence.
- A_{\epsilon}⁽ⁿ⁾(S) denotes the restriction of A_{\epsilon}⁽ⁿ⁾ to the coordinates of S.
- Notation

$$a_n \doteq 2^{n(b\pm\epsilon)}$$
 means $\left|\frac{1}{n}\log a_n - b\right| \le \epsilon.$

Properties for Typical Sets Given an ϵ , for sufficiently large n, 1. $p(A_{\epsilon}^{(n)}(S)) \ge 1 - \epsilon$ for any $S \subseteq \Omega$. 2. $p(\mathbf{s}) \doteq 2^{-n(H(S)\pm\epsilon)}$ for any $\mathbf{s} \in A_{\epsilon}^{(n)}(S)$. 3. $|A_{\epsilon}^{(n)}(S)| \doteq 2^{n(H(S)\pm 2\epsilon)}$. 4. $p(\mathbf{s_1}|\mathbf{s_2}) \doteq 2^{-n(H(S_1|S_2)\pm 2\epsilon)}$ for $(\mathbf{s_1}, \mathbf{s_2}) \in A_{\epsilon}^{(n)}(S_1, S_2)$.

Conditional Typical Sets

- Given an ε, define A_ε⁽ⁿ⁾(S₁|s₂) to be the set of s₁ sequences that are jointly typical with s₂.
- Theorem: If $\mathbf{s_2} \in A_{\epsilon}^{(n)}(S_2)$ then

$$|A_{\epsilon}^{(n)}(S_1|\mathbf{s_2})| \le 2^{n(H(S_1|S_2)+2\epsilon)},$$

and

$$(1-\epsilon)2^{n(H(S_1|S_2)-2\epsilon)} \le \sum_{\mathbf{s_2}} p(\mathbf{s_2})|A_{\epsilon}^{(n)}(S_1|\mathbf{s_2})|,$$

for sufficiently large n.

Joint Typicality by Chance

- Let S_1, S_2, S_3 be subsets of Ω , with distribution p.
- Let S'_1 and S'_2 be conditionally independent given S'_3

$$p'(\mathbf{S'_1} = \mathbf{s_1}, \mathbf{S'_2} = \mathbf{s_2}, \mathbf{S'_3} = \mathbf{s_3}) = \prod_i p(s_{1i}|s_{3i})p(s_{2i}|s_{3i})p(s_{3i})$$

• Then

$$p'(\mathbf{S'_1}, \mathbf{S'_2}, \mathbf{S'_3} \in A_{\epsilon}^{(n)}) \doteq 2^{-n(I(S_1; S_2 | S_3) \pm 6\epsilon)}$$

Multiple Access Channel

- A discrete memoryless multiple access channel with two senders and one receiver is defined by three alphabets
 X₁, X₂, Y and a transition probability matrix p(y|x₁, x₂).
- A ((2^{nR₁}, 2^{nR₂}), n) code consists of two index sets, two encoding functions and one decoding function.
 - Sender 1 chooses an index W_1 from $\{1, 2, ..., 2^{nR_1}\}$ and sends the corresponding codeword $X_1^n(W_1)$. Sender 2 does likewise.
 - The decoder decides \hat{W}_1 and \hat{W}_2 from Y^n .

Achievable Rate Pair

• The average probability of error is defined by

 $P_e^{(n)} = p((\hat{W}_1, \hat{W}_2) \neq (W_1, W_2))$

where (W_1, W_2) is uniformly selected from the index sets.

- A rate pair (R_1, R_2) is said to be achievable if there exists a sequence of $((2^{nR_1}, 2^{nR_2}), n)$ codes with $P_e^{(n)} \to 0$.
- The capacity region is the closure of the set of achievable (R_1, R_2) rate pairs.

Capacity Regions of Multiple Access Channel

• Given a multiple access channel

$$(\mathfrak{X}_1 \times \mathfrak{X}_2, p(y|x_1, x_2), \mathfrak{Y}),$$

the capacity region is the closure of the convex hull of all (R_1, R_2) satisfying

$$(\alpha): \begin{cases} R_1 < I(X_1; Y | X_2), \\ R_2 < I(X_2; Y | X_1), \\ R_1 + R_2 < I(X_1, X_2; Y) \end{cases}$$

for some distribution $p(x_1)p(x_2)$.

Examples of Capacity Regions

- Independent binary symmetric channel
- Binary multiplier channel
- Binary erasure channel

Convexity of Capacity Region

• The capacity region C of a multiple access channel is convex. That is,

if $(R_1, R_2) \in C$ and $(R'_1, R'_2) \in C$, then $(\lambda R_1 + (1 - \lambda)R'_1, \lambda R_2 + (1 - \lambda)R'_2) \in C$

for $0 \le \lambda \le 1$.

• This can be shown based on the idea of time division.

Achievability

• If a rate pair (R_1, R_2) satisfies (α) for some distribution,

$$p(x_1, x_2) = p(x_1)p(x_2),$$

then it is achievable.

• The proof again uses the "standard" random codebook generation and joint typicality decoding. The average probability of error over all codebooks satisfies

$$P_{e}^{(n)} \leq p(E_{11}^{c}) + 2^{nR_{1}} 2^{-n(I(X_{1};Y|X_{2})-3\epsilon)} + 2^{nR_{2}} 2^{-n(I(X_{2};Y|X_{1})-3\epsilon)} + 2^{n(R_{1}+R_{2})} 2^{-n(I(X_{1},X_{2};Y)-4\epsilon)}$$
where $E_{ij} = \{ (\mathbf{X}_{1}(i), \mathbf{X}_{2}(j), \mathbf{Y}) \in A_{\epsilon}^{(n)} \}$

Gaussian Multiple Access Channels

• We can extend the previous result to a Gaussian channel,

$$Y_i = X_{1i} + X_{2i} + Z_i.$$

In this case, since

$$I(X_1; Y|X_2) = h(Y|X_2) - h(Y|X_1, X_2) \le \frac{1}{2}\log(1 + \frac{P_1}{N}),$$

we have

$$R_1 \le C(\frac{P_1}{N}).$$

Similarly,

$$R_2 \le C(\frac{P_2}{N}); \ R_1 + R_2 \le C(\frac{P_1 + P_2}{N})$$

A Few Comments

- If we generalize to m-senders and let m→∞, then the sum of information rates also goes to ∞ but the rate per user goes to 0.
- In frequency-division multiplexing, the power allocation should be proportional to the bandwidth.
- The capacity region is larger than that achieved by time division or frequency division.
- An equivalent of Gauss's law

$$\sum_{i \in S} R_i \le C(\frac{\sum_{i \in S} P_i}{N}).$$

Encoding of Correlated Sources

- Suppose there are two sources X and Y. To encode X with vanishing probability, a rate of R > H(X) suffices.
 Similarly, a rate of R > H(Y) suffices to encode Y.
- A rate of R > H(X, Y) suffices if we encode X and Y jointly.
- What if the X-source and Y-source must be separately (distributedly) encoded?
- Surprisingly, it is still R > H(X, Y) instead of R > H(X) + H(Y).

Distributed Source Code

• A ((2^{nR₁}, 2^{nR₂}), n) distributed source code for the joint source (X, Y) consists of two encoder functions,

$$f_1: \mathfrak{X}^n \to \{1, 2, \dots, 2^{nR_1}\}$$
$$f_2: \mathfrak{Y}^n \to \{1, 2, \dots, 2^{nR_2}\}$$

and one decoder function,

$$g: \{1, 2, \dots, 2^{nR_1}\} \times \{1, 2, \dots, 2^{nR_2}\} \to \mathfrak{X}^n \times \mathfrak{Y}^n$$

• $f_1(X^n)$ is the index for X^n . (R_1, R_2) is called the rate pair of the code.

Achievable Rate Region

• The probability of error for a distributed source code is defined by

$$P_e^{(n)} = p(g(f_1(X^n), f_2(Y^n)) \neq (X^n, Y^n)).$$

- A rate pair (R₁, R₂) is achievable if there exists a sequence of ((2^{nR₁}, 2^{nR₂}), n) distributed source codes with P_e⁽ⁿ⁾ → 0.
- The achievable rate region is the closure of the set of achievable rate pairs.

Slepian-Wolf Theorem

• For (X, Y) drawn i.i.d. $\sim p(x, y)$, the achievable rate region is given by

$$(\beta): \begin{cases} R_1 \ge H(X|Y) \\ R_2 \ge H(Y|X) \\ R_1 + R_2 \ge H(X,Y) \end{cases}$$

- Examples
 - Gotham and Metropolis weather
 - Example 14.4.2.

Random-Bin Source Codes

- For each sequence Zⁿ, draw an index at random from {1, 2, ..., 2^{nR}}. The set of Zⁿ's with the same index form a bin. (We are basically throwing Zⁿ into one of the 2^{nR} bins at random.)
- To decode from the bin index, we look for a typical sequence Z^n in the bin. If there is only one such Z^n , then Z^n is the decoded output. Otherwise, an error is declared.
- If R > H(Z), then the error probability vanishes.
 - There are exponentially more bins than typical sequences, so each bin has zero or one typical sequence.

Distributed Random-Bin Source Codes

- We use the idea of random-bin source codes to show the achievability of Slepian-Wolf theorem. Specifically, given 2^{nR_1} bins for \mathfrak{X}^n and 2^{nR_2} bins for \mathfrak{Y}^n ,
 - codebook: independently assign each $\mathbf{x} \in \mathcal{X}^n$ to a bin. Similarly for each $\mathbf{y} \in \mathcal{Y}^n$. Now we have $f_1(\mathbf{x}), f_2(\mathbf{y})$.
 - encoding: encode \mathbf{X}, \mathbf{Y} by $f_1(\mathbf{X}), f_2(\mathbf{Y})$.
 - decoding: given (i, j) declare $g(i, j) = (\mathbf{x}, \mathbf{y})$ if there is only one pair of sequences (\mathbf{x}, \mathbf{y}) such that $f_1(\mathbf{x}) = i, f_2(\mathbf{y}) = j$ and $(\mathbf{x}, \mathbf{y}) \in A_{\epsilon}^{(n)}$.

Achievability

- A rate pair satisfying (β) is achievable.
 - Define the events of error

 $E_{0} = \{ (\mathbf{X}, \mathbf{Y}) \notin A_{\epsilon}^{(n)} \},\$ $E_{1} = \{ \exists \mathbf{x}' \neq \mathbf{X} : f_{1}(\mathbf{x}') = f_{1}(\mathbf{X}) \text{ and } (\mathbf{x}', \mathbf{Y}) \in A_{\epsilon}^{(n)} \},\$ $E_{2} = \{ \exists \mathbf{y}' \neq \mathbf{Y} : f_{2}(\mathbf{y}') = f_{2}(\mathbf{Y}) \text{ and } (\mathbf{X}, \mathbf{y}') \in A_{\epsilon}^{(n)} \},\$ $E_{3} = \{ \exists (\mathbf{x}', \mathbf{y}') \neq (\mathbf{X}, \mathbf{Y}) : f_{1}(\mathbf{x}') = f_{1}(\mathbf{X}), f_{2}(\mathbf{y}') = f_{2}(\mathbf{Y}),\$ $(\mathbf{x}', \mathbf{y}') \in A_{\epsilon}^{(n)} \},\$

 $P_e^{(n)} = p(E_0 \cup E_1 \cup E_2 \cup E_3) \le p(E_0) + p(E_1) + p(E_2) + p(E_3)$ \$\to 0\$

(For example, see (14.165)-(14.169) for $p(E_1)$.)

Converse

- If (R_1, R_2) is an achievable pair, then (β) is satisfied.
- The proof is based on the Fano's inequality.

$$n(R_1 + R_2) \ge H(I, J)$$

$$\ge I(X^n, Y^n; I, J) = H(X^n, Y^n) - H(X^n, Y^n | I, J)$$

$$\ge H(X^n, Y^n) - n\epsilon_n = nH(X, Y) - n\epsilon_n$$

- The rate region is illustrated in Figure 14.20.
- The Slepian-Wolf theorem can be extended to
 - multiple sources (theorem 14.4.2)
 - non-i.i.d. correlated sources

Interpretation

- Consider the point where R₁ = H(X), R₂ = H(Y|X). It is easy to encode Xⁿ with nH(X) bits, but how do we encode Yⁿ with nH(Y|X) bits?
 - Known, if the Y encoder knows X^n . But it does not.
- The Y encoder randomly colors all Yⁿ sequences with 2^{nR_2} colors. If the number of colors is high enough, all the colors of Yⁿ sequences jointly typical with Xⁿ will be different so the color implies identity.

Duality

- With a multiple access channel, we consider the problem of sending independent messages over a channel.
- With Slepian-Wolf encoding, we consider the problem of sending correlated sources over a noiseless channel, with a common decoder to recover both sources.
- For vanishing error probability, the information rates *R* are respectively constrained by the channel capacity *I* and the entropy rates *H* based on the idea of codeword encoding and joint typicality decoding.

Broadcast Channel

- A diagram is shown in Figure 14.24.
- One sender, sending messages (W_1, W_2) respectively to two (or more) receivers.
- The basic problem is to find the set of simultaneously achievable rates.
- In general, we want to arrange things so that different receivers receive different amount of informations.

Examples

- TV station: to send signals such that HDTV users receive the high definition signal and normal users receive regular signal.
- Classroom: to lecture in a way such that good students learn extra points while poor students learn the basic. To pace with the slowest learner is not good.
- Spanish and Dutch speakers: interesting point. See text. The ordering of information designated for different receivers encodes extra information.

Definition for A Broadcast Channel

• A broadcast channel with two receivers consists of an input alphabet, two output alphabets and a probability transition function.

 $\mathfrak{X}, \mathfrak{Y}_1, \mathfrak{Y}_2, p(y_1, y_2|x)$

• A broadcast channel is said to be memoryless if

$$p(y_1^n, y_2^n | x^n) = \prod_{i=1}^n p(y_{1i}, y_{2i} | x_i)$$

Code for Broadcast Channels

• A ((2^{nR₁}, 2^{nR₂}), n) code for a broadcast channel with independent information consists of an encoder,

$$f: \{1, 2, \dots, 2^{nR_1}\} \times \{1, 2, \dots, 2^{nR_2}\} \to \mathfrak{X}^n,$$

and two decoders,

$$g_1: \mathcal{Y}_1^n \to \{1, 2, \dots, 2^{nR_1}\}; \ g_2: \mathcal{Y}_2^n \to \{1, 2, \dots, 2^{nR_2}\}.$$

• The probability of error is defined by

 $P_e^{(n)} = p(\{g_1(Y_1^n) \neq W_1\} \cup \{g_2(Y_2^n) \neq W_2\}),$

where W_1 and W_2 are uniformly distributed.

Broadcast Channel with Common Information

• A ((2^{nR₀}, 2^{nR₁}, 2^{nR₂}), n) code for a broadcast channel with common information consists of an encoder,

 $f: \{1, 2, \dots, 2^{nR_0}\} \times \{1, 2, \dots, 2^{nR_1}\} \times \{1, 2, \dots, 2^{nR_2}\} \to \mathcal{X}^n,$

and two decoders,

$$g_1: \mathcal{Y}_1^n \to \{1, 2, \dots, 2^{nR_0}\} \times \{1, 2, \dots, 2^{nR_1}\};$$
$$g_2: \mathcal{Y}_2^n \to \{1, 2, \dots, 2^{nR_0}\} \times \{1, 2, \dots, 2^{nR_2}\}.$$

The probability of error is defined by
 P_e⁽ⁿ⁾ = p({g₁(Y₁ⁿ) ≠ (W₀, W₁)}∪{g₂(Y₂ⁿ) ≠ (W₀, W₂)}),
 where W₀, W₁ and W₂ are uniformly distributed.

Achievable Rates and Capacity Region

- A rate pair (R₁, R₂) is said to be achievable for a broadcast channel with independent information if there exists a sequence of ((2^{nR₁}, 2^{nR₂}), n) codes such that P_e⁽ⁿ⁾ → 0.
- Similarly, a rate triple (R₀, R₁, R₂) is said to be achievable for a broadcast channel with common information if there exists a sequence of ((2^{nR₀}, 2^{nR₁}, 2^{nR₂}), n) codes such that P_e⁽ⁿ⁾ → 0.
- The **capacity region** of a broadcast channel is the closure of the set of achievable rates.

Degraded Broadcast Channels

• A broadcast channel is said to be physically degraded if

$$p(y_1, y_2|x) = p(y_1|x)p(y_2|y_1).$$

• A broadcast channel is said to be statistically degraded if there exists a distribution $p'(y_2|y_1)$ such that

$$p(y_2|x) = \sum_{y_1} p(y_1|x)p'(y_2|y_1).$$

• A physically degraded broadcast channel is stochastically degraded, since

$$p(y_2|x) = \sum_{y_1} p(y_1, y_2|x) = \sum_{y_1} p(y_1|x)p(y_2|y_1).$$

Capacity Region for Degraded Broadcast Channel

The capacity region for a degraded broadcast channel
 X → Y₁ → Y₂ (a Markov chain) is the convex hull of all rate pairs satisfying

$$(\gamma): \begin{cases} R_2 \leq I(U; Y_2), \\ R_1 \leq I(X; Y_1 | U) \end{cases}$$

for some joint distribution $p(u)p(x|u)p(y_1, y_2|x)$, where the auxiliary random variable U has a constraint on cardinality $|\mathcal{U}| \leq \min(|\mathcal{X}|, |\mathcal{Y}_1|, |\mathcal{Y}_2|)$.

Achievability

- A rate pair satisfying (γ) for a degraded broadcast channel is achievable, by the following coding scheme.
 - random codebook generation

$$\mathbf{U}(w_2) \sim \prod_{i=1}^n p(u_i); \quad \mathbf{X}(w_1, w_2) \sim \prod_{i=1}^n p(x_i | u_i(w_2))$$

- encoding: $(W_1, W_2) \rightarrow \mathbf{X}(W_1, W_2)$.
- decoding:

receiver 2: \tilde{W}_2 such that $(\mathbf{U}(\tilde{W}_2), \mathbf{Y}_2) \in A_{\epsilon}^{(n)}$. receiver 1: (\hat{W}_1, \hat{W}_2) such that $(\mathbf{U}(\hat{W}_2), \mathbf{X}(\hat{W}_1, \hat{W}_2), \mathbf{Y}_1) \in A_{\epsilon}^{(n)}$.

Probability of Error

- Assuming that $(w_1, w_2) = (1, 1)$.
- The channel from U to Y₂ is essentially a single user channel, so for receiver 2,

$$R_2 \leq I(U; Y_2) \Rightarrow P_e^{(n)}(2) \to 0.$$

• For receiver 1, define the following events

 $E_{Y_i} = \{ (\mathbf{U}(i), \mathbf{Y}_1) \in A_{\epsilon}^{(n)} \}, E_{Y_{ij}} = \{ (\mathbf{U}(i), \mathbf{X}(j, i), \mathbf{Y}_1) \in A_{\epsilon}^{(n)} \}, \\ P_e^{(n)}(1) = p(E_{Y_1}^c \cup (\cup_{i \neq 1} E_{Y_i}) \cup (\cup_{j \neq 1} E_{Y_{1j}})) \\ \leq p(E_{Y_1}^c) + p(\cup_{i \neq 1} E_{Y_i}) + p(\cup_{j \neq 1} E_{Y_{1j}}) \}$

The second term is exponentially small as $R_2 \leq I(U; Y_1)$, so is the third term as $R_1 \leq I(X; Y_1|U)$.

Common Information

- If (R₁, R₂) is achievable for a degraded broadcast channel, then (R₀, R₁ − R₀, R₂ − R₀) is achievable, provided that R₀ ≤ min(R₁, R₂).
- If (R₁, R₂) is achievable for a degraded broadcast channel, then (R₀, R₁, R₂ − R₀) is achievable, provided that R₀ ≤ R₂.
 - This is so because the better receiver always decodes the information for the worse receiver.

Binary Symmetric Broadcast Channel

- We have a pair of binary symmetric channels and we want to compute the capacity region for this channel.
- This broadcast channel is equivalent to a cascade of BSCs as shown in Figure 14.27.
- The capacity region is computed via the addition of another BSC.
- The result is shown in Figure 14.28.

The Relay Channel

- One sender and one reciever with a number of intermediate nodes which act as relays to help the communication between the sender and the receiver.
- In the simplest case, there is one relay node. There are four alphabet sets X, X₁, Y, Y₁ and one probability function p(·, ·|x, x₁).
- As shown in Figure 14.30, a relay channel consists of one broadcast channel and one multi-access channel.

Code for A Relay Channel

• A $(2^{nR}, n)$ code for a relay channel consists of an encoding function,

$$\{1, 2, \dots, 2^{nR}\} \to \mathfrak{X}^n$$

a set of relay functions,

$$X_{1i} = f_i(Y_{11}, \dots, Y_{1i-1})$$

and a decoding function,

$$\mathcal{Y}^n \to \{1, 2, \dots, 2^{nR}\}.$$

Capacity for A Relay Channel

- The error event is the event that the decoded message $\hat{W} = g(Y)$ is not equal to the sent message W.
- An rate R is achievable if there exists a sequence of $(2^{nR}, n)$ codes such that the average probability of error $P_e^{(n)} \rightarrow 0.$
- The capacity of a relay channel is the supremum of the set of achievable rates.
- An upper bound on the capacity is

$$C \leq \sup_{p(x,x_1)} \min(I(X, X_1; Y), I(X; Y, Y_1 | X_1)).$$

Multi-Terminal Networks

- There are m nodes. Node i has a transmission variable X⁽ⁱ⁾ and a receiving variable Y⁽ⁱ⁾. It sends messages at rate R^(ij) to node j. We assume that the messages sent from node i to node j is independent and uniformly distributed over the range {1,..., 2^{nR^(ij)}}.
- The channel is represented by the transition function

$$p(y^{(1)}, \dots, y^{(m)} | x^{(1)}, \dots, x^{(m)}).$$

It is assumed to be memoryless.

Rate of Flow of Information

• If $\{R^{(ij)}\}\$ are achievable over a network, then there exists a joint distribution $p(x^{(1)}, \ldots, x^{(m)})$ such that

$$\sum_{i \in S, j \in S^c} R^{(ij)} \le I(X^{(S)}; Y^{(S^c)} | X^{(S^c)}),$$

for all $S \subseteq \{1, 2, ..., m\}$. In other words, the total rate of flow of information across a cut-set is bounded by the conditional mutual information.

• The converse, however, is not generally true.