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IT and the Stock Market
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The Stock Vector

• A stock market is represented as a vector of stocks
X = (X1, . . . , Xm) where m is the number of stocks and
Xi represents the price relative, i.e.

Xi =
price closed
price open

, for stock i.

E.g., Xi = 1.05 ⇔ the price of stock i is up by 5%.

• Apparently X is a random vector. Let X ∼ F (x).
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The Portfolio

• A portfolio b = (b1, . . . , bm), is an allocation of wealth
across the stocks, where bi is the fraction of wealth
invested in stock i.

• The wealth relative is defined by

S =
wealth at the end of the day

wealth at the beginning of the day

• When using a portfolio b on stock vector X,

S = b
t
X.

3



National Sun Yat-Sen University CSE Course: Information Theory Chia-Ping Chen

The Meaning of Optimum

• We want to maximize S in some sense. Since S is a
random variable, we need to be careful about our
definition of optimum.

• The standard theory of stock market investment is based
on maximizing the expected value of S subject to a
constraint on the variance.

• Since in stock markets one reinvests every day, the wealth
is the product of wealth relatives. The behavior of this
product is determined by the expected logarithm of the
wealth relative rather than the expected value.
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Doubling Rate

• The doubling rate of a stock market and portfolio b is
defined by

W (b, F ) = E(log b
t
X)

• The optimal doubling rate is defined by

W ∗(F ) = max
b

W (b, F )

• The log-optimal portfolio is the portfolio that achieves
the optimal doubling rate

b
∗(F ) = arg max

b

W (b, F )
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Theorem

• Let X1, . . . ,Xn be i.i.d. ∼ F (x). Define

S∗
n =

n
∏

i=1

b
∗t
X.

to be the wealth relative after n days. Then

1

n
log S∗

n → W ∗(F ).

In other words, S∗
n

.
= 2nW ∗ .

• Proof:

1

n
log S∗

n =
1

n

n
∑

i=1

log b
∗t
X → E(log b

∗t
X) = W ∗(F ).
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Properties of the Doubling Rates

• W (b, F ) is linear in F and concave in b.

– This follows from the definition of doubling rate

W (b, F ) = E(log b
t
X) =

∫

log b
t
X dF (x).

Simply plug in aF1 + bF2 and λb1 + (1 − λ)b2.

• W ∗(F ) is convex in F .
– Let F1, F2 be distributions. Let Fλ = λF1 + (1 − λ)F2

with optimum b
∗
λ.

W
∗(Fλ) = W (b∗

λ, Fλ) = λW (b∗
λ, F1) + (1 − λ)W (b∗

λ, F2)

≤ λW
∗(F1) + (1 − λ)W ∗(F2)
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Kuhn-Tucker Characterization

• Determining b
∗ given F is a problem of maximizing a

concave function over a convex set. The maximum may
lie on the boundary or be an interior point. We can use
Kuhn-Tucker conditions to characterize the maximum.

• The log-optimal portfolio b
∗ for a stock market X

satisfies the conditions

E

(

Xi

b∗tX

)

{

= 1, if b∗i > 0;

≤ 1, if b∗i = 0.
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Proof of the Conditions for Log-Optimum

• If b
∗ is an optimal point for W (b), the directional

derivative of W in a “feasible direction” at b∗ must be
non-positive. Let B be the feasible set and b ∈ B. Let

bλ = (1 − λ)b∗ + λb = b
∗ + λ(b − b

∗).

Since b
∗ is an optimal point, we have

d

dλ
W (bλ)|λ=0+ ≤ 0 ∀ b ∈ B.

Carrying out the one-sided derivative at λ = 0+ yields

E

(

b
t
X

b∗tX

)

− 1 ≤ 0.

• Set b to be the extreme points.
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Properties of Log-Optimal Portfolio

• Let S∗ and S be the wealth relatives from b
∗ and an

arbitrary b respectively. Then E S
S∗ ≤ 1.

E

(

Xi

b∗tX

)

≤ 1 ⇒
∑

i

biE

(

Xi

b∗tX

)

= E

(

b
t
X

b∗tX

)

≤ 1

Therefore optimizing expected log ratio also optimizes
expected ratio.

• The expected proportion of wealth in each stock is
constant under the log-optimal portfolio.

E

(

b∗i Xi

b∗tX

)

= b∗i E

(

Xi

b∗tX

)

= b∗i .
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Comparing Log-Optimal and Causal Portfolios

• Let X1, . . . ,Xn be i.i.d. ∼ F (x). Let S∗
n be the wealth

after n days for an investor using b
∗,

S∗
n =

n
∏

i=1

b
∗t
Xi

and let Sn be the wealth of another investor using any
causal strategy bi on day i.

Sn =
n
∏

i=1

b
t
iXi
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Log Optimal of Wealth

• The expectation of log S∗
n is optimal.

E log S∗
n = nW ∗ ≥ E log Sn.

• Proof:

max
b1...bn

E log Sn = max
b1...bn

E

n
∑

i=1

log b
t
iX

=
n
∑

i=1

max
bi

E log b
t
i(X1, . . .Xi−1)X

=
n
∑

i=1

E log b
∗t
X = nW ∗
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Asymptotic Optimality

• Using log-optimal portfolio will not do any worse than
using any causal strategy for almost every sequence of
outcomes of the stock market. That is,

lim
n→∞

sup
1

n
log

Sn

S∗
n

≤ 0 with probability 1.
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Side Information

• Let X1 . . .Xn be drawn i.i.d. ∼ F (x). Define
b
∗
F = arg maxb W (b, F ) and b

∗
G = arg maxb W (b, G).

Then

∆W , W (b∗
F , F ) − W (b∗

G, F ) ≤ D(F ||G).

• Proof

∆W =

Z

log b
∗t
F x F (x)dx −

Z

log b
∗t
G x F (x)dx

=

Z

log
b
∗t
F x

b∗t
G x

F (x)dx =

Z

log

„

b
∗t
F x

b∗t
G x

G(x)

F (x)

F (x)

G(x)

«

F (x)dx

≤ D(F ||G) + log

Z

b
∗t
F x

b∗t
G x

G(x)

F (x)
F (x)dx

≤ D(F ||G) + log 1 = D(F ||G).
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Side Information

• The increase in the doubling rate due to side information
Y is bounded by

∆W ≤ I(X; Y ).

• Proof

∆WY =y ≤ D(FX|Y =y||FX) =

Z

F (x|Y = y) log
F (x|Y = y)

FX(x)
dx

∆W ≤

Z

FY (y)

Z

F (x|Y = y) log
F (x|Y = y)

FX(x)
dxdy

=

Z Z

FY (y)F (x|Y = y) log
F (x|Y = y)

FX(x)
dxdy

=

Z Z

F (x, y) log
F (x, y)

FX(x)FY (y)
dxdy = I(X; Y )
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Stationary Markets

• We extend the discussion from i.i.d. markets to non-i.i.d.
markets.

– The distribution of stock vector Xt is generally
dependent on the previous stock vectors.

– The optimal portfolio is also dependent on previous
stock vectors.

• The wealth relative using a causal strategy is

Sn =
n
∏

i=1

b
t

i
(X1, . . . ,Xi−1)Xi.
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Log-Optimal Portfolio

• Define the conditional log-optimum

W ∗(Xi|x1, . . . ,xi−1) , max
b

EXi|x1,...,xi−1
log b

t
Xi

• Taking the expectation over X1, . . . ,Xi−1,

W ∗(Xi|X1, . . . ,Xi−1) , E max
b

EXi|X1,...,Xi−1
log b

t
Xi

• It follows that

W
∗(X1, . . . ,Xn) , max

b1...bn

E log Sn =

n
X

i=1

W
∗(Xi|X1, . . . ,Xi−1)

• This is the chain rule for W ∗. In some ways, W ∗ is the
dual of H .
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Doubling Rate

• The doubling rate is defined by

W ∗
∞ , lim

n→∞

W ∗(X1, . . . ,Xn)

n

• Theorem: For a stationary market, we have

W ∗
∞ = lim

n→∞
W ∗(Xn|X1, . . . ,Xn−1)

This follows the theorem of the Cesáro mean.
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Asymptotic Optimality

• Let {Xi} be a stationary stock market. Let S∗
n be the

wealth resulting from conditional log-optimal portfolios
and Sn be the wealth resulting from any other causal
portfolios. Then

lim
n→∞

sup
1

n
log

Sn

S∗
n

≤ 0.
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AEP for Stock Markets

• Let {Xi} be a stationary ergodic stock market. Let S∗
n be

the wealth resulting from conditional log-optimal
portfolios. Then

1

n
log S∗

n → W ∗ with probability 1.
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Competitive Optimality

• Is the log-optimal portfolio outperforms alternative
portfolios in a finite period of n days?

• From the KT condition, we have

E
Sn

S∗
n

≤ 1,

therefore, by the Markov inequality,

p(Sn > tS∗
n) ≤

1

t
.

• But this does not provide useful information for
p(Sn > S∗

n).
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Fair Randomization

• Let S∗ be the wealth at the end of one period of
investment in a stock market X with the log-optimal
portfolios, and S be the wealth of another strategy. Let
U ∼ U [0, 2] be independent of X and V be any other r.v.
independent of U and X with V ≥ 0 and EV = 1. Then

p(V S ≥ US∗) ≤
1

2
.

• This result provides a short-term justification for the use
of the log-optimal portfolio when fair randomization of
initial wealth is allowed.
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Horse Races

• The horse race is a special case of stock market, where
there are m stocks. At the end of day, the stock price ri

for stock i and 0 for all other stocks.

• The log-optimal portfolio is proportional betting

b∗i = pi.

• In the case of uniform fair odds,

W ∗ = log m − H(X),

and
S∗

n

.
= 2nW ∗

.
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AEP for Ergodic Process

• If {X} is a stationary and ergodic source, then

1

n

n
∑

i=1

Xi → EX w.p. 1.

• Thus the strong law of large numbers holds for a
stationary and ergodic source.
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The Shannon-McMillan-Breiman Theorem

• If H is the entropy rate of a finite-valued stationary
ergodic process {Xn}, then

−
1

n
log p(X0, X1, . . . , Xn−1) → H w.p. 1

• We wish to conclude that

−
1

n
log p(X0, . . . , Xn−1) = −

1

n

n−1
∑

i=0

log p(Xi|X
i−1

0 )

→ lim
n→∞

E[− log p(Xn|X
n−1

0 )].

But Xn|X
n−1

0 is not stationary.
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Outline of Proof
• While Xn|X

n−1

0
is not ergodic, Xn|X

n−1

n−k
, Xn|X

n−1

−∞
are. Define

Hk , E[− log p(Xk|Xk−1, . . . , X0)]

H∞ , E[− log p(X0|X−1, X−2, . . . )]

• Note that

H = H∞ = lim
k→∞

Hk = lim
n→∞

1

n

n
∑

k=1

Hk.

• The main idea is the conditional proportional gambling:

– A gambler knowing k past has a growth rate 1 − Hk.

– Another knowing infinite past has 1 − H∞.

– Our gambler knowing Xn−1

0
has a rate in between.

– Since the gap closes, all must be 1 − H .
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