
Asymptotic Equipartition Property
Notes on Information Theory

Chia-Ping Chen

Department of Computer Science and Engineering

National Sun Yat-Sen University

Kaohsiung, Taiwan ROC

Asymptotic Equipartition Property – p. 1



The Law of Large Numbers

In information theory, a result of the law of large
numbers is the asymptotic equipartition property
(AEP).

The law of large numbers states that for independent,
identically distributed (i.i.d.) random variables, the
sample mean is close to the expectation value, i.e.,

1

n

n
∑

i=1

Xi → EX.
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Asymptotic Equipartition Property

The entropy is the expectation of − log p(X), since

H(X) =
∑

p(X) log
1

p(X)
.

Let X1:n be independent, identically distributed
(i.i.d.) random variables. For samples x1:n of X1:n,

−
1

n
log p(x1:n) = −

1

n

n
∑

i=1

log p(xi) → E(− log p(X))

= H(X).
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Typical Set

Given a distribution p(x), the typical set is the set of
sequences with

A(n)
ε = {x1:n|2

−n(H(X)+ε) ≤ p(x1:n) ≤ 2−n(H(X)−ε)}.

A sequence in the typical set is a typical sequence.
From above, we can see that the average log
probability of a typical sequence is within ε of
−H(X).
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Properties of A Typical Set

A typical set has the following properties.

x1:n ∈ A(n)
ε ⇒ −

1

n
log p(x1:n) ∼ H(X) ± ε;

Pr{A(n)
ε } > 1 − ε for n sufficiently large;

|A(n)
ε | ≤ 2n(H(X)+ε);

|A(n)
ε | ≥ (1 − ε)2n(H(X)−ε) for n sufficiently large.

Thus the typical set has a probability of nearly 1, all
elements are nearly equally likely and the total
number of elements is nearly 2nH .
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Proof

Property 1 follows from the definition of typical set.

Property 2 follows from the AEP theorem.

For property 3, note that

1 =
∑

x1:n∈Xn

p(x1:n) ≥
∑

x1:n∈A
(n)
ε

p(x1:n) ≥ 2−n(H(X)+ε)|A(n)
ε |.

For property 4, note

1 − ε < Pr(A(n)
ε ) ≤

∑

x1:n∈A
(n)
ε

2−n(H(X)−ε) = 2−n(H(X)−ε)|A(n)
ε |.
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Data Compression

As a direct result of AEP, we now demonstrate that
we can “compress data” to the entropy rate with a
vanishing error probability.

Specifically, we will construct a source code that
Use bit strings to represent each source symbol
sequence.
The average length of the bit string per source
symbol is the entropy.
We can reconstruct the original source symbol
seqeuence from the bit string. The probability of
that the reconstructed sequence is different from
the original seqeunce approaches 0.
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Source Code by Typical Set

The central idea in the source code is the typical set.
Divide all sequences into two sets: the typical
sequences and others.
The typical sequences can be indexed by no
more than n(H(X) + ε) + 1 bits.
Prefix the bit string of a typical sequence by a
0-bit. This is the codeword.
The non-typical sequences can be indexed in
n log |X| + 1 bits. Prefix the bit string of a
non-typical sequences by a 1-bit.
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Code Length Per Source Symbol

There are two important metrics for a code: the
probability of error and the codeword length.

Here we have an error-free source code as there is
one-to-one correspondence between the source
sequences and the codewords.

The average number of bits for a source sequence is

Pr(A(n)
ε ) [n(H(X) + ε) + 2] +

(1 − Pr(A(n)
ε )) [n log |X| + 2] → n(H(X) + ε′).

It follows that on average each symbol can be
represented by H(X) bits.
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Entropy Rates

By AEP, we are able to establish that we can
describe n i.i.d. random variables in nH(X) bits.
But what if the random variables are dependent?

We relax assumptions about the sources to allow
them to be dependent. However, we still make the
assumption of stationarity, which means the
distribution is still identical.

Under these assumptions, we will examine the
average number of bits per symbol in the long run.
This is called the entropy rate.
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Stationary Stochastic Processes

A stochastic process is an indexed sequence of
random variables. It is characterized by the joint
probability p(x1, . . . , xn), n = 1, 2, . . . .

A stochastic process is stationary if the joint
distribution is invariant with respect to a shift in the
time index. That is, for all n and t,

Pr(X1 = x1, . . . , Xn = xn) = Pr(X1+t = x1, . . . , Xn+t = xn).

The simplest kind of stationary stochastic process is
the i.i.d. process.
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Markov Chains

The simplest stochastic process with dependence is
one in which each random variable depends on the
one preceding it and is conditionally independent of
all the other preceding ones. Such a process is said
to be Markov.

A stochastic process is a Markov chain if

Pr(Xn+1 = xn+1|Xn = xn, . . . , X1 = x1)

=Pr(Xn+1 = xn+1|Xn = xn),

The joint probability can be written as

p(x1, . . . , xn) = p(x1)p(x2|x1) . . . p(xn|xn−1).
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Time-Invariant Markov Chains

Xn is called the state at time n.

A Markov chain is time-invariant if the state
transition probability does not depend on time. Such
a Markov chain can be characterized by an initial
state (or distribution) and a transition probability
matrix P with

Pij = Pr(Xn = j|Xn−1 = i),

which is the probability of transition from state i to
state j.
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Stationary Distribution

The stationary distribution p of a time-invariant
Markov chain is defined by

p(j) =
∑

i

p(i)Pij .

If the initial state is drawn from the stationary
distribution, then the Markov chain is a stationary
process.

For a “regular” Markov chain, the stationary
distribution is unique and the asymptotic distribution
is the stationary distribution.
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A Two-State Markov Chain

Consider a two-state Markov chain with transition
probability matrix

P =

[

1 − α α

β 1 − β

]

.

Since there are only two states, the probability going
from state 1 to state 2 must be equal to the
probability going in the opposite direction in
stationary situation. Thus, the stationary distribution
is

(
β

α + β
,

α

α + β
)
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Entropy Rate

If we have a stochastic process X1, . . . , Xn, a natural
question to ask is how does the entropy grows with
n. The entropy rate is defined as this rate of growth.
Specifically,

H(X) = lim
n→∞

1

n
H(X1, X2, . . . , Xn),

when the limit exists.

To illustrate, we give the following examples.
Typewriter: H(X) = log m where m is the
number of equally likely output letters.
i.i.d. random variables: H(X) = H(X).

Asymptotic Equipartition Property – p. 16



Asymptotic Conditional Entropy

The asymptotic conditional entropy is defined by

H ′(X) = lim
n→∞

H(Xn|X1, . . . , Xn−1),

when the limit exists.

This quantity is often easy to compute. Furthermore,
it turns out that for stationary processes,

H(X) = H ′(X).
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Proof of Existence

We first show that H ′(X) exists for a stationary
process. This follows from that H(Xn+1|X1:n) is a
non-increasing sequence in n

H(Xn+1|X1:n) ≤ H(Xn+1|X2:n) = H(Xn|X1:n−1),

and it is bounded from below by 0.
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Proof of Equality

To establish the equality, note

H(X) = lim
n→∞

1

n
H(X1, X2, . . . , Xn)

= lim
n→∞

1

n

n
∑

i=1

H(Xi|X1:i−1)

= lim
n→∞

H(Xn|X1:n−1) = H ′(X),

where we have used the theorem that

If bn =
1

n

n
∑

i=1

ai and an → a, then bn → a.
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Entropy Rate of Markov Chain

The entropy rate of a stationary Markov chain is
given by

H(X) = −
∑

ij

µiPij log Pij,

where µ is the stationary distribution and P is the
transition probability matrix.

For example, the entropy rate of a two-state Markov
chain is

H(X) =
β

α + β
H(α) +

α

α + β
H(β).
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Random Walk

We will analyze a random walk on a connected
weighted graph. Suppose the graph has

m vertices labelled by {1, 2, . . . ,m}.
weight Wij ≥ 0 associated with the edge from
node i to node j.
We assume that Wij = Wji.
A random walk is a sequence of vertices of the
graph. Given Xn = i, the next vertex j is chosen
from the vertices connected to i with probability
proportional to Wij , i.e., Pij =

Wij

Wi
, where

Wi =
∑

j Wij .
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Stationary Distribution

The stationary distribution for the random walk is

µi =
Wi

∑

i Wi

=
Wi

2W
, where W =

∑

i,j

Wij .

This can be verified by checking µP = µ, i.e.,
∑

i

µiPij =
∑

i

Wi

2W

Wij

Wi

=
∑

i

1

2W
Wij =

Wj

2W
= µj
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Entropy Rate

The entropy rate for the random walk is

H(X) = H(X2|X1) = −
X

i

µi

X

j

Pij log Pij

= −
X

i

Wi

2W

X

j

Wij

Wi

log
Wij

Wi

= −
X

i

X

j

Wij

2W
log

Wij

Wi

= −
X

i

X

j

Wij

2W
log

Wij

2W
+

X

i

X

j

Wij

2W
log

Wi

2W

= H(. . . ,
Wij

2W
, . . . ) − H(. . . ,

Wi

2W
, . . . ).

If all edges are of equal weight, then

H(X) = log(2E) − H(
E1

2E
, . . . ,

Em

2E
).
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