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Introduction
Description of a data sequence from a random source can be
compressed by assigning shorter descriptions to the more
frequent symbols and longer descriptions to the less frequent
ones. This is the basic idea of data compression.
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Source Code

• A source code C is a mapping from X to D∗, where X is
the source alphabet and D is the code alphabet. C(x) is
called the codeword of x.

• The expected length L(C) is defined by

L(C) =
∑

x∈X

p(x)l(x),

where l(x) is the length of the codeword for x.

• Examples of source codes: 5.1.1, 5.1.2, 5.1.3 (Morse
code)
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Classes of Source Codes

• Non-singular codes: the codewords of two different
symbols are different.

• Uniquely decodable codes: A code is uniquely decodable
if its extension is non-singular. The extension C∗ of a
source code C is defined by

C∗(x1 . . . xn) = C(x1) . . . C(xn)

• Prefix or instantaneous codes: no codeword is a prefix of
any other codewords.

• Examples (Table 5.1) and relation (Fig 5.1)
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Kraft Inequality
The important things about a code are the decodability and the codeword
length. The following theorem connects the two.

Theorem (Kraft inequality)

For a prefix code over an alphabet of size D (e.g. D = {0, 1, . . . , D − 1})
for m possible outputs, the codeword lengths li, i = 1, . . . , m, must
satisfy the Kraft inequality

∑

i

D−li ≤ 1.

Conversely, given lengths that satisfy the Kraft inequality, one can
construct a prefix code.

5



National Sun Yat-Sen University CSE Course: Information Theory Chia-Ping Chen

Kraft’s Inequality – Proof
A source code can be related to a D-ary tree. A codeword of length l

correspond to a node at level l (the root is at level 0). If it is prefix, no
codeword is a descendant of any other codewords in the tree.

Start with the code tree. One can grow from each leaf complete
descendants up to the depth of the tree, the length of the longest
codeword. By counting the disjoint leafs added at this level and compare
to the maximum possible number, the inequality is proven.

To prove the converse, start with a full tree of the maximum length M .
Repeatly assign the leftmost node at level l to a codeword of length l and
remove its descendants, from l = 1 to l = M . At any stage, the existence
of a node at level l is guaranteed by the Kraft inequality. ¥
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Extended Kraft Inequality
The Kraft inequality can be extended to cases where the
cardinality of symbol set is countably infinite.

Proof
Instead of a D-ary tree, relate the codewords to intervals in
[0, 1] with the D-ary representation. That is, relate the
codeword y1y2 . . . yli

to the interval

(0.y1y2 . . . yli
, 0.y1y2 . . . yli

+
1

Dli
).

Since it is a prefix code, the related intervals are disjoint.
Therefore, the extended Kraft inequality is satisfied. ¥
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Optimal Codes
• Minimize the expected length L(C) over the set of prefix codes. This

is the same as minimizing L(C), subject to the constraint of the Kraft
inequality.

• Form the Lagrangian

J(l1, . . . , lm, λ) =
∑

pili + λ
(

∑

D−li − 1
)

.

By differentiating with respect to li
′s and λ, one can obtain

l∗i = − logD pi.

• The optimal expected length is the entropy,

L∗ =
∑

pil
∗

i =
∑

pi(− logD pi) = HD(X)
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Optimal Expected Length
The expected length of any D-ary prefix code is greater than or equal to
the base-D entropy of X .

Proof
Define c =

∑

i D−li and ri = D−li

c
(so r is a probability), one has

L − HD(X) =
∑

i

pili −
∑

i

pi logD

1

pi

= −
∑

i

pi logD D−li +
∑

i

pi logD pi =
∑

i

pi logD

pi

ri

1

c

= D(p||r) + logD

1

c
≥ 0. ¥

Note that the equality only holds if c = 1 and p = r.
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D-adic probability

• A probability function is D-adic if each probability can
be written as

pi = D−n where n is an integer.

• The expected codelength of a D-adic distribution is
optimal when

l(xi) = − log
D

p(xi).

• This optimal value is equal to the entropy of X .

• How about distributions that are not D-adic?
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Bounds on the Optimal Codelength
Given distribution p and a D-ary alphabet, the minimum
expected length L∗ over the prefix codes satisfies

HD(X) ≤ L∗ < HD(X) + 1.

Proof
Choose the codeword length for xi

li = dlog
D

1

pi

e,

which satisfies the Kraft inequality, since

c =
∑

D−li ≤
∑

D
− log 1

pi =
∑

pi = 1,
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so a prefix code can be constructed. For this prefix code,

log
D

1

pi

≤ li < log
D

1

pi

+ 1.

Multiplying by pi and sum over i, we have

HD(X) ≤ L ≤ HD(X) + 1.

The optimal expected length can only be better than L but
cannot be better than HD(X), thus the bounds. ¥

The idea of proof is that the function value of a point is an
upper bound for the minimum value and a lower bound for
the maximum value over a set containing the point.
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Expected Codeword Length Per Symbol
• Definition

Ln =
1

n

∑

p(x1, . . . , xn)l(x1, . . . , xn) =
1

n
El(X1, . . . , Xn)

• From

H(X1, . . . , Xn) ≤ El(X1, . . . , Xn) ≤ H(X1, . . . , Xn) + 1

the minimum expected codeword length per symbol satisfies

H(X1, . . . , Xn)

n
≤ L∗

n ≤
H(X1, . . . , Xn)

n
+

1

n
.

If X1, X2, . . . , Xn is stationary, then L∗

n → H(X), the entropy rate.
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Using Incorrect Distribution for Shannon Code
If the true distribution of X is p and the codeword length is assigned
according to q,

l(x) = dlog
1

q(x)
e,

then
H(p) + D(p||q) ≤ El(X) < H(p) + D(p||q) + 1.

Thus the penalty is D(p||q).

For the upper bound,

El(X) =
∑

p(x)dlog
1

q(x)
e <

∑

p(x)

(

log
1

q(x)
+ 1

)

=
∑

p(x) log
1

p(x)

p(x)

q(x)
+ 1 = H(p) + D(p||q) + 1.

Similarly for the lower bound. ¥
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Kraft Inequality for Uniquely Decodable Codes
We show that the for the set of uniquely decodable source codes, the Kraft
inequality holds. That is, for any uniquely decodable codes,

∑

D−li ≤ 1.

Consider the k-th extension of code C where x1 . . . xk is mapped to
c(x1) . . . c(xk). Note that l(x1 . . . xk) =

∑

n l(xn).
 

X

x∈X

D
−l(x)

!k

=
X

xk∈Xk

D
−l(xk) =

klmax
X

m=1

a(m)D−m

≤

klmax
X

m=1

D
m

D
−m = klmax,

where a(m) ≤ Dm is the number of codewords in Ck with length m. So
∑

x∈X

D−l(x) ≤ (klmax)
1

k → 1.
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Huffman Codes
Huffman code is a prefix code with the minimum expected length for a
given distribution. Before we give the details for the Huffman code, we
notice the following results.

There exists an optimal prefix code that satisfies the following properties.

1. If pj > pk, then lj ≤ lk. (swapping)

2. The two longest codewords have the same length. (trimming)

3. The two longest codewords differ only in the last bit and corresponds
to the two least likely symbols. (re-arranging)

Suppose that p1 ≥ p2 ≥ · · · ≥ pm, then there exists a code with
l1 ≤ l2 ≤ · · · ≤ lm−1 = lm, and C(xm−1) and C(xm) differ only in the
last bit.
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Huffman Codes
Given an optimal code Cm satisfying the above properties with m

symbols, we define a merged code Cm−1 with m − 1 symbols in which
we merge the two least likely symbols into a new symbol. For this new
symbol we assign the common prefix as its codeword and assign the
probability sum as its probability. Other symbols stay put. The expected
length of Cm−1 and Cm is differed by pm + pm−1, which is constant. We
can now look for the optimal code for the new set of m − 1 symbols.
Proceeding this way, we will finally reach a two-symbol problem, which
has the trivial solution of assigning 0 to one symbol and assigning 1 to the
other. At this point, we can trace back for the original code. A few
examples will help to see how this works, e.g., pp. 93-94.
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Shannon-Fano-Elias Coding
• Use the cumulative distribution function to assign codewords.

• Defined a modified cdf

F̄ (x) =
∑

a<x

p(a) +
1

2
p(x),

so its value at x is the middle point of the cdf jump.

• The codeword for x is the truncated binary representation of F̄ (x) to
l(x) = dlog 1

p(x)e + 1 bits, denoted by bF̄ (x)cl(x). Then

2−l(x) ≤ p(x)
2 and such assignment assures that the intervals

[bF̄ (x)cl(x), bF̄ (x)cl(x) + 2−l(x)]

for all x’s are disjoint. So these codes are prefix-free. Furthermore,
the expected codeword length is less then H(X) + 2. Example 5.9.1.
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Arithmetic Coding 1/2

• The idea of the Shannon-Fano-Elias coding can be
extended to blocks of source symbols.

• Here we encode a fixed length n of binary symbols. We
associate the length-n sequences with the leaves of a
depth-n binary tree.

• The cdf F (xn) is the sum of the probabilities of all the
subtrees to the left of x, plus p(xn).

• See Figure 5.6 and Example 5.10.1.
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Arithmetic Coding 2/2

• To encode the next source symbol, we need only
calculating p(xixi+1) to update F (xixi+1).

• This is easy if p(xixi+1) can be computed easily for all xi

and xi+1.

– I.i.d symbols

– Markov model

• To decode, we use Figure 5.6 as a decision tree. At the
top of the tree, we check if the codeword exceeds p(0). If
it does, then the 0-subtree is to the left of the leaf of the
codeword, so the first symbol is 1. Continue this process
until we find the leaf matching the codeword.
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