
National Sun Yat-Sen University CSE Course: Information Theory Chia-Ping Chen

Kolmogorov Complexity
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Introduction

• Quantifies the intrinsic descriptive complexity of an
object.

• If X is a random variable, there is a sense to say that the
descriptive complexity of the event X = x is log 1

p(x)
, as

that is the codeword length by Shannon code.

• Kolmogorov defines the algorithmic (descriptive)
complexity of an object (represented in bits, say) to be the
length of the shortest binary computer program that prints
out the object.
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Example of Descriptive Complexity

• Consider the three bit strings as given in pp 145.

– The first string is a repetition of 01.

– The second looks random but it is the binary expansion
of

√
2 − 1

– The third string is random but the proportion of 1’s is
not 0.5

• The first and second strings are simple to describe, while
the third is not. By describing the number of 1’s and
giving the index of this string in the set of strings with the
same number of 1’s, one needs log n + nH( k

n
) bits.
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Models of Computation

• Universal Turing machine

– Finite state control

– Input tape: stores program (and initial data)

– Work tape: stores transitory data

– Output tape

• Here we assume that the machine reads program from
right to left and not backwards. Then the set of programs
that halt is a prefix-free set.
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Definition of Kolmogorov complexity

• The Kolmogorov complexity KU(x) of a string x w.r.t. a
universal computer is defined as

KU(x) = min
p:U(p)=x

l(p),

where l(p) is the length of p, which prints x and halts.
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Universality of Kolmogorov Complexity

• Let U be a universal computer and A be any other
computer, then

KU(x) ≤ KA(x) + cA,

where cA does not depend on x.

• cA is basically the length of a program on U which
simulates A with U .

• It is Ok to focus on universal machine, so we can drop the
U subscript.
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Conditional Kolmogorov Complexity

• The conditional Kolmogorov complexity K(x) knowing
the length of a string x is defined as

K(x|l(x)) = min
p:U(p,l(x))=x

l(p).

• Theorem
K(x|l(x)) ≤ l(x) + c,

since we can use the program:
Print out the following l-bit sequence x1x2 . . .
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Upper Bound on Kolmogorov Complexity

• If the length of x is not known to the machine, we can
describe l(x) by repeating twice every digit of the binary
representation of l(x), and then appending 01. The extra
number of bits is 2 log l(x) + 2, so

K(x) ≤ K(x|l(x)) + 2 log l(x) + c.

• In fact the upper bound can be improved to be

K(x) ≤ K(x|l(x)) + log∗ l(x) + c.
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Examples of Kolmogorov Complexity

• The sequence of n zeros

K(000 . . . 0|n) = c

• The sequence of the first n bits of π

K(π1π2 . . . πn|n) = c

• An integer n:
K(n) ≤ log∗ n + c
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Kolmogorov Complexity of A Binary String

• The sequence of n bits with k ones:
Generate, in lexicographic order, all sequences with k

ones. Of these sequences, print the ith sequence.

l(p) = c + 2 log k + log Cn
k ≤ c + 2 log k + nH0(

k

n
),

where H0 is the binary entropic function.

• It follows that

K(x1 . . . xn|n) ≤ c + 2 log n + nH0(
1

n

∑
xi)

• A string is compressible if K(x) < l(x).
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Kolmogorov Complexity and Entropy

• Let an i.i.d. process {X1, X2, . . . } with a finite alphabet
X be drawn according to f(x). Let f(xn) =

∏
i f(xi).

Then

H(X) ≤ 1

n

∑

xn

f(xn)K(xn|n) ≤ H(X) +
|X| log n

n
+

c

n
,

for some c.

• It follows that

E
1

n
K(Xn|n) → H(X)
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Proof for Lower Bound

• The halting programs satisfy the prefix property, thus the
lengths satisfy the Kraft’s inequality. We assign each xn

to the shortest program that prints it and halts. These
shortest programs also satisfy Kraft’s and thus the
expected length is no less than the entropy. Hence

∑

xn

f(xn)K(xn|n) ≥ H(X1, . . . , Xn) = nH(X),
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Proof for Upper Bound

• We have established, for binary sequences,

K(x1 . . . xn|n) ≤ c + 2 log n + nH0(
1

n

∑
xi).

Hence

EK(X1 . . . Xn|n) ≤ c + 2 log n + nEH0(
1

n

∑
Xi)

≤ c + 2 log n + nH0(
1

n

∑
EXi)

= c + 2 log n + nH0(p).

• For |X| > 2, we can use the method of types, which will
be described later.
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Kolmogorov Complexity of Integers

• Definition
K(n) = min

p:U(p)=n
l(p).

• Upper bound
K(n) ≤ log∗ n + c.

• There is an infinite number of n such that

K(n) > log n.

See the text for proof.
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Probability of Simple Sequences

• There are long strings and large numbers that are simple
to describe.

• However, most sequences or numbers do not have simple
(short) descriptions.

• Let X1 . . . Xn be drawn from Bernoulli( 1
2
). Then

p(K(X1 . . . Xn|n) < n − k) < 2−k.

See the text for proof.

• Thus most sequences have a complexity close to their
length.
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Random and Incompressible Sequences

• A sequence is algorithmically random if

K(x1 . . . xn|n) ≥ n.

• An infinite string is incompressible if

lim
n→∞

K(x1 . . . xn|n)

n
= 1.

• If x1, x2, . . . is incompressible, then

1

n

∑

i

xi →
1

2
.

That is, the proportions of 0 and 1 are almost equal.
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Universal Probability

• The universal probability of a string x is

PU(x) =
∑

p:U(p)=x

2−l(p) = Pr(U(p) = x).

which is the probability that a random program (drawn
i.i.d.) prints out the sequence x.

• Imagine a monkey sitting in front of a computer and
typing keys at random to create a program. Will the
output looks random?

• Since shorter programs are more probable, simpler strings
are more likely to be printed out than complicated ones.
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Halting Problem

• For any computational model, there is no general
algorithm to decide whether a program will halt or not.

• So there are problems that are computable by a computer
and there are problems that are not.

• One consequence of interest is that the Kolmogorov
complexity is non-computable.

– The only way to find the shortest program is to test the
short programs until one is found.

– But it may not be found.
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Ω

• Definition
Ω =

∑

p:U(p) halts

2−l(p)

It is the probability that a program randomly drawn i.i.d.
from Bernoulli(1

2
) halts.

• Property

– Ω ≤ 1 since halting programs are prefix-free.

– Ω is not computable (as halting problem is not).

– Ω is not compressible (Theorem 7.8.1).
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Running All Programs in Parallel

• It is possible to run all programs in parallel with the
scheme as outlined in the text.

• A program that halts will eventually halt and its
contribution to Ω can be recorded.

• Knowing the first n bits of Ω allows us to determine the
whether a program of length ≤ n bits halts: Simply run
all programs in parallel until the sum exceeds Ωn. All
programs with length ≤ n not halting yet will not halt.
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Incompressibility of Ω

• Theorem: There exists a constant c such that

K(ω1 . . . ωn) ≥ n − c, ∀n.

• Proof: Using K(ω1 . . . ωn) bits, we can print and know
the first n bits of Ω, which enables us to know which
programs with length ≤ n bits halt together with their
outputs. Find a string x0 that is not in the output list, then
the complexity of x0 is greater than n, i.e. K(x0) > n.
Furthermore, K(x0) ≤ K(Ωn) + c since x0 is described
by the routine to compute Ωn appended by a routine of
finding and printing x0. Thus the theorem.
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Universal Gambling

• A gambler is gambling sequentially on a random binary
sequence with 2-for-1 odds.

• Suppose the gambler bets by universal gambling, that is

b(x) = 2−K(x).

Note that
∑

b(x) =
∑

2−K(x) ≤ Ω ≤ 1.
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Gambler’s Wealth

• The complexity, the wealth and the length of x is related
by

log S(x) + K(x) ≥ l(x).

which follows from

S(x) =
∑

x′prefixed byx

2l(x′)b(x′) ≥ 2l(x)2−K(x)

• For sequence with finite complexity

S(x) ≥ 2l(x)−c,

which is asymptotically equivalent to knowing the
sequence in advance (wealth is 2l(x)).
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