1. (20%) Let X and Y be discrete random variables taking value in $\{1,2,3\}$. Furthermore, the joint probability satisfies

$$p(x,y) \propto 2^{|x-y|}$$
.

Compute H(X,Y), H(Y), H(X|Y) and D(p(x,y)||p(x)p(y)).

Solution:

$$p = \frac{1}{19} \begin{bmatrix} 1 & 2 & 4 \\ 2 & 1 & 2 \\ 4 & 2 & 1 \end{bmatrix}$$

From this one can compute

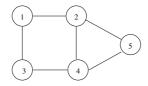
$$H(X,Y) = \log 19 - \frac{24}{19},$$

$$H(Y) = \log 19 - \frac{14}{19} \log 7 - \frac{5}{19} \log 5,$$

$$H(X|Y) = H(X,Y) - H(Y),$$

$$D(p(x,y)||p(x)p(y)) = I(X;Y) = H(X) + H(Y) - H(X,Y)$$

2. (20%) Compute the entropy rate of a random walk on the graph



- (a) if the weights of all edges are equal,
- (b) if the weight of the edge between node i and node j is |i-j|.

Solution:

- (a) From (4.41), $\log 12 H(\frac{2}{12}, \frac{3}{12}, \frac{2}{12}, \frac{3}{12}, \frac{2}{12}) = \frac{1}{2} \log 6$
- (b) From (4.40), $(\log 20 \frac{2}{5} \frac{3}{10} \log 3) (\log 20 \frac{7}{10} \frac{3}{5} \log 3) = \frac{3}{10} \log 6$
- 3. (10%) Let X_1, \ldots, X_n be i.i.d. random variables drawn from p(x). Let $q(x_1, \ldots, x_n) = \prod_{i=1}^n q(x_i)$. What is

$$\lim_{n\to\infty} -\frac{1}{n}\log\frac{p(X_1,\ldots,X_n)}{q(X_1,\ldots,X_n)}?$$

Solution:

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i} \log \frac{p(x_i)}{q(x_i)} \to E \log \frac{p(X)}{q(X)} = D(p||q).$$

4. (10%) Let $H(\mathcal{V})$ be the entropy rate of the stationary stochastic process $\{V_n|n=1,2,\ldots\}$. Show that

$$H(\mathcal{V}) \leq \frac{H(V_1, \dots, V_k)}{k}.$$

Proof:

$$\frac{H(V_1, \dots, V_k)}{k} = \frac{\sum_{i=1}^k H(V_i | V_{1:i-1})}{k} \ge \frac{\sum_{i=1}^k H(\mathcal{V})}{k} = H(\mathcal{V}).$$

- 5. (20%) Consider the discrete memoryless channel $Y = X + Z \pmod{10}$, where $Z \in \{-1, 0, 1\}$ and p(Z) is uniform, and $X \in \{0, \dots, 9\}$.
 - (a) What is the capacity? **Ans:** $\log \frac{10}{3}$.
 - (b) What is $p^*(x)$ that achieves this capacity? **Ans:** Uniform.
- 6. (20%) Given p = (0.49, 0.26, 0.12, 0.04, 0.04, 0.05).
 - (a) Find a binary prefix code with the minimum expected codeword length. **Solution:** Use Huffman code.
 - (b) Find another binary prefix code with a longer expected codeword length. **Solution:** Just add something based on Huffman code.