Final Exam 2022.01.05

1. Solve the following system of linear equations

ſ	x	_	y	+	z	=	0
2	x	+	2y	—	z	=	1
l	x	+	y	+	z	=	3

2. Solve the following under-determined system of linear equations

- 3. Solve the following over-determined system of linear equations
 - $\begin{cases} x_1 + x_2 = 0\\ x_1 + 2x_2 = 1\\ x_1 + 3x_2 = 3 \end{cases}$
- 4. Derive the projection matrix P to the column space of

$$\boldsymbol{B} = \begin{bmatrix} 1 & 1\\ 2 & -1\\ -1 & 1 \end{bmatrix}$$

5. Compute $F_3(2\%), F_{13}(3\%), F_{100}(5\%)$ where F_n is the determinant of $n \times n$ tridiagonal matrix

$$F_n = \begin{vmatrix} 1 & -1 \\ 1 & 1 & -1 \\ & 1 & 1 & -1 \\ & & \ddots & \ddots \\ & & & 1 & 1 \end{vmatrix}$$

6. Show that $G^2 - (a+d)G + (ad-bc)I = 0$ where

$$oldsymbol{G} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

7. Derive the diagonalization $V = U \Lambda U^H$ where U is unitary, Λ is diagonal, and

$$V = \begin{bmatrix} 1 & 1-i\\ 1+i & 1 \end{bmatrix}$$

8. Derive $e^{\mathbf{P}}$ where

$$m{P} = egin{bmatrix} rac{1}{2} & rac{1}{2} \ rac{1}{2} & rac{1}{2} \ rac{1}{2} & rac{1}{2} \end{bmatrix}$$

9. Solve linear differential equation

$$\frac{d\boldsymbol{u}}{dt} = \boldsymbol{A}\boldsymbol{u}, \text{ where } \boldsymbol{A} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \text{ and } \boldsymbol{u}(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

- 10. Derive matrix representation for the linear transformation consisting of the counterclockwise rotation of $\frac{\pi}{4}$ followed by the projection to the line y = x.
 - (a) in standard basis
 - (b) in orthonormal eigenbasis of the projection