Final Exam 2022.01.05

1. Solve the following system of linear equations

$$
\left\{\begin{array}{l}
x-y+z=0 \\
x+2 y-z=1 \\
x+y+z=3
\end{array}\right.
$$

2. Solve the following under-determined system of linear equations

$$
\left\{\begin{array}{l}
x_{1}+4 x_{2}+6 x_{3}+3 x_{4}=0 \\
x_{1}+5 x_{2}+7 x_{3}+2 x_{4}=1 \\
x_{1}+3 x_{2}+5 x_{3}+x_{4}=3
\end{array}\right.
$$

3. Solve the following over-determined system of linear equations

$$
\left\{\begin{array}{l}
x_{1}+x_{2}=0 \\
x_{1}+2 x_{2}=1 \\
x_{1}+3 x_{2}=3
\end{array}\right.
$$

4. Derive the projection matrix \boldsymbol{P} to the column space of

$$
\boldsymbol{B}=\left[\begin{array}{cc}
1 & 1 \\
2 & -1 \\
-1 & 1
\end{array}\right]
$$

5. Compute $F_{3}(2 \%), F_{13}(3 \%), F_{100}(5 \%)$ where F_{n} is the determinant of $n \times n$ tridiagonal matrix

$$
F_{n}=\left|\begin{array}{ccccc}
1 & -1 & & & \\
1 & 1 & -1 & & \\
& 1 & 1 & -1 & \\
& & \cdot & \cdot & . \\
& & & 1 & 1
\end{array}\right|
$$

6. Show that $\boldsymbol{G}^{2}-(a+d) \boldsymbol{G}+(a d-b c) \boldsymbol{I}=\mathbf{0}$ where

$$
\boldsymbol{G}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

7. Derive the diagonalization $\boldsymbol{V}=\boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{H}$ where \boldsymbol{U} is unitary, $\boldsymbol{\Lambda}$ is diagonal, and

$$
\boldsymbol{V}=\left[\begin{array}{cc}
1 & 1-i \\
1+i & 1
\end{array}\right]
$$

8. Derive $e^{\boldsymbol{P}}$ where

$$
\boldsymbol{P}=\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right]
$$

9. Solve linear differential equation

$$
\frac{d \boldsymbol{u}}{d t}=\boldsymbol{A} \boldsymbol{u}, \text { where } \boldsymbol{A}=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right] \text { and } \boldsymbol{u}(0)=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

10. Derive matrix representation for the linear transformation consisting of the counterclockwise rotation of $\frac{\pi}{4}$ followed by the projection to the line $y=x$.
(a) in standard basis
(b) in orthonormal eigenbasis of the projection
