Homework 1: Turn in your work electronically to TA by October 27.

1. Find

$$
\left[\begin{array}{ll}
2 & 3 \\
0 & 0
\end{array}\right]^{n}, \quad\left[\begin{array}{ll}
2 & 3 \\
0 & 1
\end{array}\right]^{n}, \quad\left[\begin{array}{ll}
2 & 3 \\
0 & 1
\end{array}\right]^{-1}
$$

2. Find the $L U$ decomposition of

$$
\left[\begin{array}{ccc}
1 & 3 & 5 \\
3 & 12 & 18 \\
5 & 18 & 30
\end{array}\right] .
$$

3. Draw the row picture and the column picture for the following system of linear equations

$$
\left\{\begin{array}{l}
x-2 y=0 \\
x+y=6
\end{array}\right.
$$

4. Let

$$
\mathbf{A}=\left[\begin{array}{ccc}
-1 & 1 & 2 \\
1 & 3 & 0
\end{array}\right], \mathbf{B}=\left[\begin{array}{ll}
1 & 4 \\
2 & 2 \\
3 & 0
\end{array}\right]
$$

Compute $\mathbf{A B}$ and BA with
(a) row-by-row computation
(b) column-by-column computation
5. Use Gauss-Jordan method to find the inverse of

$$
\mathbf{A}=\left[\begin{array}{ccc}
2 & -1 & 1 \\
1 & -6 & 5 \\
-3 & 3 & 2
\end{array}\right]
$$

6. Find an approximate solution to the differential equation

$$
-\frac{d^{2} u(x)}{d x^{2}}=4 x, \quad 0 \leq x \leq 1
$$

with boundary condition

$$
u(0)=0, u(1)=0
$$

at the discrete points of $x=\frac{1}{3}$ and $x=\frac{2}{3}$.

7．Compute the following sums

$$
\sum_{i=1}^{5} i, \quad \sum_{\substack{i=2 \\ i \neq 5}}^{6} 2, \quad \sum_{i=2}^{5} i^{2}(i+1), \quad \sum_{i=1}^{2} \sum_{j=2}^{3}(i-j+1)
$$

8．Let

$$
\mathbf{E}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \mathbf{F}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-3 & 0 & 1
\end{array}\right], \mathbf{G}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

Find 田けり。
9．Solve the following system of linear equations

$$
\left\{\begin{array}{r}
x+3 y+5 z=0 \\
x+2 y+3 z=3 \\
3 x+1 y+2 z=2
\end{array}\right.
$$

10．Let matrix S be symmetric and invertible．Show that \boldsymbol{S}^{-1} is symmetric．

