Homework 2: Turn in your work electronically to TA by November 9

1. Solve

 $\begin{cases} 1x_1 + 2x_2 + 3x_3 + 5x_4 = 0\\ 2x_1 + 4x_2 + 8x_3 + 6x_4 = 6\\ 3x_1 + 6x_2 + 7x_3 + 2x_4 = 2 \end{cases}$

2. Decide whether the following vectors are linearly independent

[1]	$\begin{bmatrix} 2 \end{bmatrix}$		3	
3	3		-2	
0 '	4	,	1	•
1	-1		-1	

- 3. Consider \mathbb{R}^3 .
 - (a) Find a spanning set of 3 vectors for the plane x + y + z = 0.
 - (b) Find a basis for the above plane.
- 4. Find a basis for each fundamental subspace of matrix

$$\boldsymbol{A} = \begin{bmatrix} 1 & 2 & 3 & 5 \\ 2 & 4 & 8 & 12 \\ 3 & 6 & 7 & 13 \end{bmatrix}$$

5. Determine the rank and the fundamental subspaces of matrix

$$\boldsymbol{M} = \begin{bmatrix} 1 & 1 & 1 & 2 \\ 3 & 0 & 3 & -1 \\ 2 & -1 & 2 & -3 \end{bmatrix}$$

- 6. Consider the plane $\mathcal{P}: x y z = 0$ in \mathbb{R}^3 .
 - (a) Express \mathcal{P} as the nullspace of a matrix B.
 - (b) Find the row space of B.
- 7. What is the echelon matrix of

$$\boldsymbol{A} = \begin{bmatrix} 1 & 2 & 0 & 2 & 1 \\ -1 & -2 & 1 & 1 & 0 \\ 1 & 2 & -3 & -7 & -2 \end{bmatrix}$$

- 8. Let $\mathbf{R} : \mathbb{R}^2 \mapsto \mathbb{R}^2$ be the reflection across the 45° line.
 - (a) Find the representation for \boldsymbol{R} with basis $\{v_1 = (1,0), v_2 = (0,1)\}$
 - (b) Find the representation for \boldsymbol{R} with basis $\{V_1 = (1,1), V_2 = (1,-1)\}$
- 9. (20%) Let $T : \mathbb{M}_{2 \times 2} \mapsto \mathbb{M}_{2 \times 2}$ maps a 2×2 matrix to its transpose.
 - (a) Show that T is linear transformation
 - (b) Find a matrix representation for T