Homework 2: Turn in your work electronically to TA by November 9

1. Solve

$$
\left\{\begin{array}{l}
1 x_{1}+2 x_{2}+3 x_{3}+5 x_{4}=0 \\
2 x_{1}+4 x_{2}+8 x_{3}+6 x_{4}=6 \\
3 x_{1}+6 x_{2}+7 x_{3}+2 x_{4}=2
\end{array}\right.
$$

2. Decide whether the following vectors are linearly independent

$$
\left[\begin{array}{l}
1 \\
3 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
2 \\
3 \\
4 \\
-1
\end{array}\right],\left[\begin{array}{c}
3 \\
-2 \\
1 \\
-1
\end{array}\right] .
$$

3. Consider \mathbb{R}^{3}.
(a) Find a spanning set of 3 vectors for the plane $x+y+z=0$.
(b) Find a basis for the above plane.
4. Find a basis for each fundamental subspace of matrix

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
1 & 2 & 3 & 5 \\
2 & 4 & 8 & 12 \\
3 & 6 & 7 & 13
\end{array}\right]
$$

5. Determine the rank and the fundamental subspaces of matrix

$$
\boldsymbol{M}=\left[\begin{array}{cccc}
1 & 1 & 1 & 2 \\
3 & 0 & 3 & -1 \\
2 & -1 & 2 & -3
\end{array}\right]
$$

6. Consider the plane \mathcal{P} : $x-y-z=0$ in \mathbb{R}^{3}.
(a) Express \mathcal{P} as the nullspace of a matrix \boldsymbol{B}.
(b) Find the row space of \boldsymbol{B}
7. What is the echelon matrix of

$$
\boldsymbol{A}=\left[\begin{array}{ccccc}
1 & 2 & 0 & 2 & 1 \\
-1 & -2 & 1 & 1 & 0 \\
1 & 2 & -3 & -7 & -2
\end{array}\right]
$$

8. Let $\boldsymbol{R}: \mathbb{R}^{2} \mapsto \mathbb{R}^{2}$ be the reflection across the 45° line.
(a) Find the representation for \boldsymbol{R} with basis $\left\{v_{1}=(1,0), v_{2}=(0,1)\right\}$
(b) Find the representation for \boldsymbol{R} with basis $\left\{V_{1}=(1,1), V_{2}=(1,-1)\right\}$
9. (20\%) Let $\boldsymbol{T}: \mathbb{M}_{2 \times 2} \mapsto \mathbb{M}_{2 \times 2}$ maps a 2×2 matrix to its transpose.
(a) Show that \boldsymbol{T} is linear transformation
(b) Find a matrix representation for \boldsymbol{T}
