Homework 4: Turn in your work electronically to TA by December 17.

1. Find a matrix \boldsymbol{T} with cofactor matrix

$$
\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 3 & 1
\end{array}\right]
$$

2. Find $|\boldsymbol{A B}|$ where

$$
\boldsymbol{A}=\left[\begin{array}{lll}
1 & 7 & 2 \\
5 & 7 & 3 \\
8 & 3 & 5
\end{array}\right], \quad \boldsymbol{B}=\left[\begin{array}{lll}
3 & 6 & 5 \\
1 & 0 & 9 \\
1 & 7 & 5
\end{array}\right]
$$

3. Solve the following system of linear equations by Cramer's rule

$$
\begin{array}{r}
x_{1}+3 x_{2}-3 x_{3}=1 \\
2 x_{1}+4 x_{2}+x_{3}=6 \\
-x_{1}-2 x_{2}+2 x_{3}=2
\end{array}
$$

4. \boldsymbol{C}_{n} is an $n \times n$ matrix with 1 s above and below the main diagonal, and 0 s at other places. Find $\left|C_{10}\right|$. (hint: recursion by cofactor expansion.)
5. Find the inverse of

$$
\boldsymbol{M}=\left[\begin{array}{llll}
3 & 0 & 1 & 1 \\
0 & 9 & 6 & 0 \\
4 & 3 & 4 & 2 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

