Midterm 2021.11.24

1. Find orthonormal vectors $\boldsymbol{q}_{1}, \boldsymbol{q}_{2}, \boldsymbol{q}_{3}$ by the Gram-Schmidt process from

$$
\boldsymbol{a}_{1}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad \boldsymbol{a}_{2}=\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right], \quad \boldsymbol{a}_{3}=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

2. Find LU-decomposition for

$$
\boldsymbol{M}=\left[\begin{array}{ccc}
2 & -1 & 0 \\
1 & 5 & 2 \\
-2 & 3 & 2
\end{array}\right]
$$

3. Find QR-factorization for

$$
\boldsymbol{A}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]
$$

4. Find the projection matrix to the column space of

$$
\boldsymbol{B}=\left[\begin{array}{cc}
1 & 1 \\
-2 & -1 \\
-1 & 2
\end{array}\right]
$$

5. Define elementary matrices

$$
\boldsymbol{E}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \boldsymbol{F}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right], \boldsymbol{G}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 2 & 1
\end{array}\right]
$$

(a) Find $\boldsymbol{E}^{13} \boldsymbol{F}^{26} \boldsymbol{G}^{39}$
(b) Find $\boldsymbol{G}^{13} \boldsymbol{F}^{26} \boldsymbol{E}^{39}$
6. Find a basis for the plane $x-2 y+z=0$ in \mathbb{R}^{3}.
7. Find the matrix for the composite transformation consisting of counter-clockwise rotation of 30° followed by projection on the 45° diagonal line.
8. Fit dataset $\{(-1,2),(0,0),(1,-3),(2,-5)\}$ to $y=a t^{2}+b t+c$.
9. Consider the space \mathcal{S} of all vectors in \mathbb{R}^{6} with $x_{1}-x_{2}=x_{3}-x_{4}=x_{5}-x_{6}$. Find the dimension of \mathcal{S} and a basis for \mathcal{S}^{\perp}.
10. Find \boldsymbol{A}_{3}^{-1} and \boldsymbol{A}_{4}^{-1} where

$$
\boldsymbol{A}_{3}=\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right], \boldsymbol{A}_{4}=\left[\begin{array}{cccc}
1 & -1 & 1 & -1 \\
0 & 1 & -1 & 1 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

