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CLASSIFICATION

Definition. The goal of classification is to take an input
instance @ and assign it to one discrete class. The assignment
is achieved by a classification function.

m In AlphaGo, decide the next move given previous moves

m Given a speech waveform, decide its emotional category
m Given an image of written digit, decide the digit

m Decide whether to buy, sell, or keep for a stock portfolio
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DECISION REGIONS

Definition. By a classification function, an input space
or feature space is divided into decision regions for the
classes. The boundary between adjacent decision regions is
a decision boundary or decision surface.

CHEN P LINEAR MODELS FOR CLASSIFICATION



LINEAR MODELS FOR CLASSIFICATION

Definition. A linear model for classification means that
the decision boundaries are linear functions of the input vec-
tor . That is, the decision boundaries are hyperplanes. A
generalized linear model means that the decision bound-
aries are linear functions of a feature vector ¢.
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LINEARLY SEPARABLE

Definition. A data set whose data points of different classes
can be separated cleanly by linear decision boundaries is lin-
early separable.
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CLASSIFICATION PARADIGMS

m Discriminants. Classification via yy(x).
k= argmax yy (@)
m Generative models. Classification via p(Cy) and p(z|Cg).
k = argmax p(Cy|x) = argmax p(|Ci)p(Cr)

m Discriminative models. Classification via p(Cy|x).

~

k = arg max p(Ck|x)
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LABELS FOR BINARY CLASSIFICATION

In binary classification, we may use the 0/1 target values for
the class labels, i.e. t = 1 for a data point of class C; and
t = 0 for a data point of class Cs.

This labeling scheme allows the interpretation that ¢ is the proba-
bility of class Cj.
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LABELS FOR K-ARY CLASSIFICATION

In K-ary classification, we often use K 1-hot vectors for the
class labels.

(k)

m The 1-hot vector t(*) has components tjk = Ok;-

m We use t = t(*) for a data point of class Cj.

This labeling scheme allows the interpretation that component ¢; is
the probability of class C;.
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BINARY CLASSIFICATION AND ACTIVATION

Definition. In binary classification, we may make decision
based on the posterior probability of class C;. This is achieved
by an activation function f(-) with range (0,1) such that

p(Cilz) = f(a(x))

Note that the activation function act on an activation, which
is denoted by a(x), of x.
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LINEAR ACTIVATION IMPLIES LINEAR MODEL

Definition. A linear activation is linear in the input vari-
ables
a(x) = wlz + wp

With linear activation, the decision boundary is determined by

a(x) = wlax +wy = f! (;)

Note that this is a hyperplane, and we have a linear model.
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FrROM INPUT SPACE TO FEATURE SPACE

Consideration in the input space can be extended to a feature space
defined by a set of basis functions

¢ = ¢(x)

It is often assumed that activation is linear in the features. Then
we have

p(Cilz) = fla(z)) = f(w’ é +wo)

Note that the decision boundary is a hyperplane in a feature space,
and non-flat in the input space.
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INPUT SPACE AND FEATURE SPACE

The basis functions ¢1(x) and ¢2(x) are Gaussian basis functions.
A linear decision boundary in the feature space (right) corresponds
to a non-linear decision boundary in the input space (left).
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K-ARY CLASSIFICATION AND ACTIVATIONS

In K-ary classification, we may make decision based on the
posterior probabilities of K classes. This is achieved by an
activation function y(x) such that the components of y are
non-negative and sum to 1, so

(p(Cil2), ..., p(Ck|2))" ~ f(a(z))

Again, the activation function f(-) acts on class activations

a(x) = (a1(x), ..., ax(x))T

And again, if the class activations are linear functions of the input
vector (or feature vector), then we have a (or generalized) linear
model.
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Discriminants
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LINEAR DISCRIMINANTS

Definition. A discriminant is a function that takes an input
vector (or feature vector) and assign it to a class. A discrim-
inant is linear if the corresponding decision boundaries are
hyperplanes.
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SIMPLEST LINEAR DISCRIMINANT

The simplest linear discriminant is a linear function of the
input vector

y(x) = w'z + wo

Here w is the weight vector, and wy is the bias. The neg-
ative bias is the threshold.

Sometimes we write

y(x) = w'e +wy = w' %

where @w” = (wp,w”) and 27 = (1,z7).
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BINARY DISCRIMINANT

Definition. In a binary discriminant, there is a discriminant
function y(x), and an input vector x is assigned to class
Cy if y(x) > 0 and class Cy otherwise. A binary linear
discriminant has a linear discriminant function.

The decision boundary of a binary discriminant is given by
y(x) =0

The decision boundary is a hyperplane for a binary linear discrimi-
nant.
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PROPERTIES OF A BINARY LINEAR DISCRIMINANT

m w is orthogonal to the decision boundary.

m The distance from x to the decision boundary is

y(x)
[lwll
y>0 T2
y=20
y <0 Ry
Ra
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K-ARY DISCRIMINANT

Definition. In a K-ary discriminant, there are K discrim-
inant functions y;(x),...,yx(x), and an input vector x is
assigned to class Cy, if

yr(x) > y;(x) for all j # k

A K-ary linear discriminant has K linear discriminant func-
tions of the input variables

yk(:c):'wfm%—wko, k=1,...,K
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DECISION BOUNDARIES AND DECISION REGIONS

With a K-ary linear discriminant, the decision boundaries are
hyperplanes and the decision regions are convex.

The decision boundary between class Cj, and class C; is given by
yr(x) = yj(x), i.e

(wk - wj)T:D + (wko — wj()) =0

which is a hyperplane. Convex decision regions are illustrated below.
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LEARNING LINEAR DISCRIMINANTS

The parameters in a linear discriminant (binary or K-ary) can
be learned from data.

= Let D = {(zn, t,)})_, be a data set
m Let X be the input matrix whose nth row is
&l = (1,2n1,...,%.p)
m Let T be the target matrix whose nth row is
t' = (tp1, ..tk
m Let W be the weight matrix whose kth column is

W0
Wk1

WD
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MINIMIZING THE SUM OF SQUARED ERRORS

For a K-ary linear discriminant, define the output y(x,)? of x,
as the nth row of XW. The sum of squared errors between the
outputs and the targets of D is

N
EW) =3 lly®a) —ta|”
n=1
=t {(XW - T)(XW - T)"}
Set the derivative with respect to W to 0
W=X"X)'X'"T=X'T
For a test input vector x, the output y(x) is

y(x) = W'z =17 (XT)T:I:
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ISSUE: ROBUSTNESS

-4 -2 0 2 4 6 8 -4 -2 0 2 4

Left: With outlier data points
Right: Without outlier data
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IssUE: CORRECTNESS

-4

-6

-6 -4 -2 0 2 4

Left: Least squares learning
Right: Logistic regression learning
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PROJECTION TO A LINE

Projection is often used in dimension reduction. We want
to look for an optimum direction.

Consider projection to a line defined by a unit vector w. Let m,w
is the mean of the projection points of Cp, i.e.

1 1
mpw = — Z (wla,)w=w! | — Z z, | w= (w'my)w

ka,ec "k g,ec

n€lk rncCk

where my, = n—lk Zmneck x,, is the mean of data points of class Cy.
The separation between classes C1 and Cy after the projection can be
measured by (mg —my)2. Since (m2 — m1)? = (w! (mg —my))?,
it is maximized when

w X (Mg —my)
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AN ISSUE

As is shown, there may be considerable overlap between the classes
when
w x (mg —my)

N

-

o

-2 -2

CHEN P LINEAR MODELS FOR CLASSIFICATION



FisHER’S CRITERION FOR BINARY CLASSIFICATION

Idea. Minimize the class overlap by large separation between
class means and small variance within each class.

Let w be a unit vector defining a line and y,, = w” x,, so y,w is the
projection of @, on the line. We define the within-class variance

of class Cj, as
S% = E : (yn_mk)2
EnECk

and the total within-class variance as s7 + s3.

Criterion. Maximize

(mg —my)?
s% + 5%

J(w) =
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COVARIANCE MATRICES BASED ON DATA

The numerator of J(w) can be written as

(mg — ml)2 = 'wT(mz —my)(mg — ml)Tw = w! Spw

where Sp is the between-class covariance matrix defined by

Sp=(my—mq)(my — ml)T

The denominator can be written as

st+ss3= > (Wn—m)’+ D (yo—m2)® =w’ Syw

xn€C1 xnE€Co

where Sy is the total within-class covariance matrix defined by

Sw = Z (mn_ml)(wn_ml + Z _m2 _mQ)T

n€C1 Tn€Co
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OPTIMIZATION

Thus, the Fisher's criterion can be written as

(mg —mq)? w! Spw
J(w) = $2+s2  wlS
1 2 ww

Setting the gradient of J(w) to 0, we get

(w? Spw)Syww = (w’ Syw)Spw
0.8 SB'w

x (mg —my)

Hence
w o Sy} (ma — my)
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K-ARY CLASSIFICATION

For K classes, we define the between-class covariance matrix as

K
Sp = Ni(my —m)(my —m)"
=1

the total within-class covariance matrix as
K, T
SW = Z Z (wn_mk)(wn_mk)
k=1 axnECy

and the total covariance matrix as

N
St = Z(xn —m)(x, — m)T

n=1

Note that Sg + Sy = St.
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MULTIPLE LINEAR FEATURES

For K classes, more than one directions are needed. ]

Through w, a linear feature y(x) = w’x is extracted from x.

Multiple linear features can be extracted through multiple w's
T .
yile) =w;z, i=1,...,D

These features form a feature vector

Y1 wiz wi
y(z) = y.2 = w?Tm = wg x=WTg
y.D’ wg/m ’UJ.%;/
The weight matrix W has the weight vectors w1, ..., wpr as columns.
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COVARIANCE MATRICES

Define y,, = W7x,, and
1 1 Y 1 &
py, = ng;c]eym = N;yn = N};Nkﬂk
The total within-class covariance matrix in the feature space is

K
sw=> > (Un— 1)y — )"

k=1xz,€Cy
K
=wT Z Z (T, — my)(xy — mk)T wW=wT'sS,w
k=1x,€Cy
The between-class covariance matrix is
K
sp = Nl — )y — )" = W'SpWw
k=1
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FisHER’S CRITERION FOR MULTIPLE FEATURES

J(W) = tr{s;VlsB}
=tr{( WISy W) {(WTSzw)}

m J(W) is large when the between-class covariance is large and
when the within-class covariance is small.

m W is determined by the eigenvectors of S;VlSB with the D’
largest eigenvalues.
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PerCe pt ron
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CrLASS LABELS IN PERCEPTRON

In perceptron, we use class label t € {—1, 1}, where t = 1 represents
Cy1 and t = —1 represents Cy, i.e.

. 1, if ¢, € Cy
" -1, ifx, €0

and the decision function of
y(x) = sgn(w” ¢)

where ¢ = ¢(x) is the feature vector based on fixed basis functions.
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LEARNING AND ERROR MEASURE

The parameters w are learned by a set D = {(x,,,t,)}2_;. ]

A perceptron makes an error for a data point (x,t) if
wl ¢t <0
The error measure of data point (x,, t,) can be defined by

—wlo,tn, wle,t, <0
0, otherwise

E,(w) = {
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PERCEPTRON ALGORITHM

For a misclassified example (x,,t,), update w by
w™ = ) -y VE, (w)
= w(T) + nd)ntn

where 7 > 0 is a learning rate.

m For misclassified x,, with t, = —1, subtract n¢,, from w.

m For misclassified x,, with t, = 1, add n¢,, from w.
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PERCEPTRON CONVERGENCE THEOREM

For linearly separable data, the perceptron algorithm learns a
perfect decision boundary in finite steps.
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Probabilistic Generative Model
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BAsic IDEA

Definition. A generative model consists of the class priors
p(Ck) and the class-conditional distributions p(x|Cy).

m Data generation. A generative model can be used to generate
artificial data.

m Class posteriors. By Bayes' rule, the posterior of class Cy, is

2 = P@.Cr)

_ p(=[Cr)p(Cr)
p(z)
o p(x|Cx) p(Ck)

p(Cilx),...,p(Cx|x) are used in making decisions.
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BINARY CLASSIFICATION

In binary classification of classes C; and Cs, the posterior of C; is

p(x|C1)p(C1)

x|C1)p(C1) + p(x|C2)p(C2)
1

PRI
L+ e

1
1+ exp(—a)

= o(a)

Where exp(—a) = % or a = log %
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LoGIsTIC SIGMOID FUNCTION

Definition. The function

o(a) !

" T+ exn(-a)

is the logistic sigmoid function.

S-shaped
squashing: mapping (—o0, o) to (0,1)

symmetry property
o(—a)=1-o0(a)

m a differentiable approximation of the step function with

d
%za(l—a)
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SIGMOID AND INVERSE PROBIT FUNCTIONS

Plot of the logistic sigmoid function o(a) (as shown in red)
and a scaled inverse probit function ®(Aa) for A = \/g (blue)
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THE INVERSE OF LOGISTIC SIGMOID FUNCTION

Definition. The logit function is the inverse of the logistic

sigmoid function.
o
=1
alo) =tog (1)

In binary classification of classes C; and Cs, we often have o =
p(Ci|x). Then the logit

(52, v (L) o 262

is the log odds.

\.

J
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K-ARY CLASSIFICATION

In K-ary classification of classes Cy,...,Ck, the posterior of Cy, is

p(x,Cy)
p(Cklx) = (@)
_ p(=[Cr)p(Cr)
p(x)
__p(x|C)p(Cr)
%Ip(wlcj)p(cj)

exp(ag)

~ T exp(ay)
J

where exp(ax) = p(x|Ck)p(Ck) or ar, = log (p(x|Cx)p(Ck)). We call
ay, the activation of class Cy.
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NORMALIZED EXPONENTIAL

Definition. A common transformation from class actions to
class posterior probabilities is the normalized exponential

function defined by
(exp(ai),...,exp(ak))
Zngl exp(a;)

(a1,...,ax)

J

.

The normalized exponential is also known as the softmax: for the
class Ci with the largest ag, we have

exp(ag) ~1 exp(a;j£k) ~0

ZJK:1 exp(a;) ’ Z]K:I exp(a;)

if ap > aj for j # k.
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PRIORS VS. CLASS-CONDITIONALS

In a generative model
m The class priors are simply the relative frequencies.

m The key elements are the class-conditional distributions.

m We now introduce a few instances.
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GAUSSIAN CLASS-CONDITIONAL MODEL

Definition. A Gaussian class-conditional distribution is

p(x|Cr) = N (x|pg, Xi)
1 1

—te—p )T (-
Wwe 2( M) k( M)

where ;. is class mean and Xy, is class covariance matrix.

A Gaussian class-conditional model assumes a Gaussian class-
conditional distribution for each class.
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DECISION BOUNDARIES

Consider a generative model with Gaussian class-conditional
distributions.

m If the Gaussian class-conditional distributions do not
share a common covariance matrix, then the decision
boundaries are quadratic functions of the input vector.

m If the Gaussian class-conditional distributions share a
common covariance matrix, i.e.

p(x|Cr) = N (z|py, )

1 1 lem)TE em)

(2m)D/2 |E|1/2€

then the decision boundaries are hyperplanes.
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Class-conditionals p(x|Ci) (left) and posterior p(C1|x) (right).

25
2
15
1
0.5
0

1 (©)

-2
-2.5

-2 -1 0 1 2

Class-conditionals (left) and decision boundaries (right).
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BINARY CLASSIFICATION WITH SHARED COVARIANCE

Substituting the Gaussian class-conditional distributions and elimi-
nating common factors (the quadratic terms), we get

p(Cile) = o(w”e + wo) = o(a)
where

w =" (g — o)
p(C1)
p(Ca)

The decision boundary is the hyperplane a = w”a + wg = 0.

1 _ 1 _
wo = —§M1T2 g+ §H2TE 'y + log
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K-ARY CLASSIFICATION WITH SHARED COVARIANCE

Substituting the Gaussian class-conditional distributions and elimi-
nating common factors (the quadratic terms), we get

p(Colar) = exp(wfac + wio) _ exp(ag)
> exp(w;‘-rar: +wjo)  >ojexp(ay)
where
_ 1 _
wi =37y, who = — 5 B g +1og p(Ci)

The boundary between R; and Ry, is decided by a; = ay, i.e.

T T
w; T+ Wjo = Wy T + Wko
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NAIVE BAYES MODEL AND BINARY FEATURES

A naive Bayes model is a generative model assuming inde-
pendent features for the class-conditional distributions.

In particular, for binary features = € {0,1}?, the class-conditional
distributions are

:B|Ck H:ukz Mk’bl 177;7 kzlvyK

A naive Bayes model with binary features is a linear model for clas-
sification. The activations are linear in x, as

ar, = log(p(x|Cy)p(Ck))

D
= > {wilog pi + (1 — i) log(1 — pxs)} + log p(Cy)

CHEN P LINEAR MODELS FOR CLASSIFICATION



Discriminative Model
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FrROM GENERATIVE TO DISCRIMINATIVE MODELS

m In a generative model, we compute the posterior probabilities
based on the prior probabilities and conditional distributions.

m In a discriminative model, we model the class posterior proba-
bilities directly.

m In particular, in a generalized linear discriminative model,
we assume that the class activations are linear functions of the
feature vector

ap = wj ¢ + wio

m Again, the activations are transformed to the posterior probabil-
ities by a non-linear function, e.g. logistic sigmoid or normalized
exponential.

CHEN P LINEAR MODELS FOR CLASSIFICATION



LoGIsTIC REGRESSION

Definition. A logistic regression models the posterior prob-
ability of class C; as the logistic sigmoid function acting on
a linear function of the feature vector

p(Cilz) = y(z, w) = o(w’¢)

The posterior probability of class Cs is

p(Colz) =1 —p(Cilz) =1 —o(w’ ¢)
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DATA LIKELIHOOD

The parameters w in a logistic regression can be learned by
a data set D = {(x, 1)},

The data likelihood of (z,t) is p(C1|x) if t = 1 and p(Ca|x) if t = 0.
Since p(Ci|z) = y(x,w) and p(C2lxz) = 1 — y(x,w), the data
likelihood of (x,t) can be written as

p(tle) = y'(1—y)'"

where y = y(x, w). The likelihood of D is

p(Dlw) = H Y 1 tn

where y, = y(x,, w).

CHEN P LINEAR MODELS FOR CLASSIFICATION



CRrOSS-ENTROPY ERROR FUNCTION

The negative log likelihood function (error function) is

E(w) = —log p(D|w)
s ([T )

= — Z {tnlogyn + (1 —t,)log(l —yn)}

Note that F,,(w) = — {ty, logy, + (1 — t,,) log(1 — y,,)} is the cross
entropy between (t,,1 —t,,) and (yn, 1 — yn).
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GRADIENT OF ERROR FUNCTION

Recall that y(x, w) = o(w’ ¢). The gradient of E(w) is

n=1
Nt 1—t,
—_;nvyn‘f'(l_yn)v(l_yn)
Nt 1—t,
= - 7n1 n)®Pn nl_ n)®Pn
3 n( = (77w - w)e
N
:Z(yn_tn)(»bn
n=1
=®"(y—t)

where @® is the design matrix.
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GRADIENT DESCENT

In gradient decent, the parameters are updated by

w' =w—nVE(w)
=w—n®(y—t)

In stochastic gradient decent, w are updated by

w' =w —nVE,(w)
=w —n(Yn — tn) Py,

where (t,,x,) is an example in D.
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NEWTON-RAPHSON METHOD

In Newton-Raphson method, w are updated by
w =w— H 'VE(w)

where H is the Hessian matrix. For the cross entropy error function
H=vae'(y Z Un(1 = ya) by, = BT R®

where R = diag{y1(1 —y1),...,yn(1 —yn)}. Thus
w=w-H 'VEw)=w—- (®TR®) &7 (y — 1)
= (®"R®) " H{®TRPw — ®T(y - t)}
= (®"R®)'®TRz
where z = dw — R !(y — t).

CHEN P LINEAR MODELS FOR CLASSIFICATION



WEIGHTED LEAST-SQUARES PROBLEMS

A solution of the least-squares problem Ax = b satisfies the nor-

mal equation
AT Az = ATb

A solution of the weighted least-squares problem CAx = Cb,
where C' is diagonal with positive diagonal elements, satisfies the
normal equation

ATcTcAx = ATCTchb

That is »
x = (ATCTCA) ATCTCh
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ITERATIVE RE-WEIGHTED LEAST SQUARES

Recall that the weight is updated by
w = (®TR®)'®" Rz
This is the solution of a weighted least-squares problem
Cow=C=z

where
R=C"C

Since R depends on w, the weights are updated in each iteration.

CHEN P LINEAR MODELS FOR CLASSIFICATION



K-ARY LogGIisTic REGRESSION

Definition. A multiclass logistic regression models the
class posterior probabilities as the normalized exponential
function acting on linear functions of the feature vector.
Specifically, the posterior probability of class Cy

i) = Plar)
PO =, explar)

where the class activations are given by

T
ar = wy ¢
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DATA LIKELIHOOD

can be learned from data.

The parameters wy, ..., wg in a multiclass logistic regression

The likelihood of an example (x,t) is

K
p(tlx) = H

where
exp(ag(x))

i1 explaj())
The likelihood of a data set D = {(x,,,t,)}_; is

Yk = yr(x) =

p(Dlw) = H Hy

n=1k=1
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CRrOSS-ENTROPY ERROR FUNCTION

Maximizing the data likelihood is equivalent to minimizing the neg-
ative log data likelihood, so we define

N
E(w) = —log H p(tn‘wn)

n=1

N K
= > > tnklog Yk

n=1k=1

N
= Z En(w)

n=1
Note that

K
En = - Z tnk IOg Ynk
k=1

is the cross entropy between t,, and y,,.
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PARTIAL DERIVATIVES

From a; = wl¢ and y;, = %, we have

0
Vw,;a = 0j¢ and Tyk = yk(Ok; — vj)
aj

It follows that

Vo, Yk = ZZ: ZZ’; (Va,a1)

—Zyk Okt — y1)dp
k(5kj —yj)P
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GRADIENT

Consider the first-order derivatives of the error £ = — Zle ti log yx

of a data point (¢, x).
K K 1
Vau, (— Z 23 10gyk> == Z 23 <ijyk)
k=1 k=1 Yk
K
=- Z tr ((Orj — vj)P)
k=1

K
=—tjp+ >ty
k=1

=—tjo+yo
=y — ;)¢
Thus, the gradient of E(w) of data set D is
N

Vo, E(w) = Vy, (Z En ) B Z(ynj_tnj)¢’n = (I)T(yj_

n=1
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HessiaAN AND IRLS

Consider the second-order derivatives of the error £ = — Z,If:l ti log yx
of a data point (¢, x).

K
Vwkvw]- <_ Z 123 10g yk) = V'wk (yj - tj)d)
k=1

= y(Oj — yj)pd”

Thus, the Hessian of F(w) of data set D is

N N
VwkijE(w) = Vwkij (Z En(w)> = Z ynk((skj - ynj)¢n¢z:
n=1 n=1
=o'R'®

The Newton-Raphson method (via iterative re-weighted least squares)
can be used to learn parameter iteratively.
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ACTIVATION FUNCTION FOR BINARY CLASSIFICATION

Other than the logistic sigmoid function, there are many
choices for the activation function in a binary classification.

In fact, any CDF

where p(-) is a PDF, is a valid activation function for binary classi-
fication since
0< f(a) <1
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INVERSE PROBIT FUNCTION

Definition. The CDF of a standard Gaussian
B(a) = / N (#0, 1)dt

is the inverse probit function. A generalized linear model
with the inverse probit function as the activation function is
a probit regression.
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ACCOMMODATING LABELING ERRORS

[ The data labels may be subject to errors. ]

For binary classification, the conditional likelihood of (¢, x) is

1

p(tlz) =) pt elz)

e= 0
:ZP p(tle, x)
:{(1— Jo(z) +e(l—o(x)), t=1
(1—o(x)), t=0

() +(1—¢)
=[(1—o(x) + (1 - o(@))]'[eo(@) + (1 = €)(1 — o(x))]'~*

where € = p(e) is the probability of error in labeling.
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Laplace Approximation

[m] = -

DA™
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APPROXIMATE PDF By GAUSSIAN

7~

Let p(x) be a PDF defined by unnormalized f(x) >0

p() = (@)

In Laplace approximation, p(x) is approximated by a Gaussian
PDF centered on a mode xq of f(x) (or p(x)). The precision
of the Gaussian is the negative Hessian of log f(x) at xo.
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UNI-VARIATE LAPLACE APPROXIMATION

m Given f(z), find a mode (local maximum) zy of f(z) with

df (2)

=0
dz

z=z0

m Find the negative second derivative of log f(z) at z

2

d
g —71
A 73 log f(z)

z2=2z0

m The second-order approximation of log f(z) around zj is

log (=) ~ log (z0) — 3 Az — 20)’

m The Laplace approximation of p(z) is

o) xexp {5z~ 0)?)

= <;r> v exp {—1;1(,2 - 20)2}
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MULTI-VARIATE LAPLACE APPROXIMATION

m Given f(z), find a mode (local maximum) zg of f(z) with

Vf(z) =0

z=z(

m Find the negative Hessian of log f(z) at zg

A=-VVliogf(z)]

z=zg

m The second-order approximation of log f(z) around zg is
log f(2) = log f(0) — 5(= ~ z0)" (= ~ 20)
m The Laplace approximation of p(z) is
q(z) ox exp {—;(z —z0)TA(z - zo)}
= N(z|z0,A™)
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Bayesian Logistic Regression

[m] = =
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PRIOR AND POSTERIOR OF MODEL PARAMETERS

Consider a Gaussian prior for the parameters
p(w) = N(wlmy, So)
For the posterior of the parameters, we have
p(w[D) o p(w)p(D|w)

Taking the logarithm, we have

1 _
logp(w|D) = — i(w — mO)TSO 1('w —my)
N
+ Z tnlogy, + (1 —t,,) log(1 — yy,,) + const
n=1
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LAPLACE APPROXIMATION

To proceed, we apply the Laplace approximation to p(w|D).
m The mode of p(w|D) is wuap
m The negative Hessian of log p(w|D) at wmap is

N
*VV1ng(w|D) = Sal =+ Z yn(l - yn)(bn(bz:

n=1

Hence, the Laplace approximation to p(w|D) is
p(w|D) = q(w) = N (w|wmap, SN)

where

N
Sy =80+ >yl — yn) b,k
n=1

CHEN P LINEAR MODELS FOR CLASSIFICATION



PREDICTIVE DISTRIBUTION

The prediction is the integration of the prediction over the
posterior distribution of the parameters.

With the Laplace approximation, we have
p(Cilz.D) = [ p(Cila, w)p(w|D)dw

z/a(quf))q(w)dw
/a(a)p(a)da

where a = w” ¢.
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(GAUSSIAN MARGINALIZATION

Note that a = wT¢ is Gaussian as w is Gaussian. In particular, the
mean and variance of a = w’ ¢ is

pa = [ atw) gw)dw = [ "¢ gw)dw = whp

ot = [(w" )~ ) qlw)dw = ¢ Snep

Thus
/a(a)p(a)da = /a(a)./\f(a]ua,ag)da
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FURTHER APPROXIMATION

A logistic sigmoid function can be approximated by an inverse probit
function -

o(a) = ®(\a), \* = 3
It can be shown that

Thus we have
/a(a)j\f(a|u,a2)da ~ o (K(GQ)M) , k(02) = (14 A262)"1/2

So
p(Cilz, D) ~ o (r(07)1a)

Note that the decision boundary is given by p, = 'w,f\F/lAqu =0.
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