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Classification

Definition. The goal of classification is to take an input
instance x and assign it to one discrete class. The assignment
is achieved by a classification function.

In AlphaGo, decide the next move given previous moves
Given a speech waveform, decide its emotional category
Given an image of written digit, decide the digit
Decide whether to buy, sell, or keep for a stock portfolio
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Decision Regions

Definition. By a classification function, an input space
or feature space is divided into decision regions for the
classes. The boundary between adjacent decision regions is
a decision boundary or decision surface.
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Linear Models for Classification

Definition. A linear model for classification means that
the decision boundaries are linear functions of the input vec-
tor x. That is, the decision boundaries are hyperplanes. A
generalized linear model means that the decision bound-
aries are linear functions of a feature vector φ.
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Linearly Separable

Definition. A data set whose data points of different classes
can be separated cleanly by linear decision boundaries is lin-
early separable.
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Classification Paradigms

Discriminants. Classification via yk(x).

k̂ = arg max
k

yk(x)

Generative models. Classification via p(Ck) and p(x|Ck).

k̂ = arg max
k

p(Ck|x) = arg max
k

p(x|Ck)p(Ck)

Discriminative models. Classification via p(Ck|x).

k̂ = arg max
k

p(Ck|x)
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Labels for Binary Classification

In binary classification, we may use the 0/1 target values for
the class labels, i.e. t = 1 for a data point of class C1 and
t = 0 for a data point of class C2.

This labeling scheme allows the interpretation that t is the proba-
bility of class C1.
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Labels for K-ary Classification

In K-ary classification, we often use K 1-hot vectors for the
class labels.

The 1-hot vector t(k) has components t(k)
j = δkj .

We use t = t(k) for a data point of class Ck.

This labeling scheme allows the interpretation that component tj is
the probability of class Cj .
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Binary Classification and Activation

Definition. In binary classification, we may make decision
based on the posterior probability of class C1. This is achieved
by an activation function f(·) with range (0, 1) such that

p(C1|x) ≈ f(a(x))

Note that the activation function act on an activation, which
is denoted by a(x), of x.
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Linear Activation Implies Linear Model

Definition. A linear activation is linear in the input vari-
ables

a(x) = wTx+ w0

With linear activation, the decision boundary is determined by

a(x) = wTx+ w0 = f−1
(1

2

)
Note that this is a hyperplane, and we have a linear model.
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From Input Space to Feature Space

Consideration in the input space can be extended to a feature space
defined by a set of basis functions

φ = φ(x)

It is often assumed that activation is linear in the features. Then
we have

p(C1|x) ≈ f(a(x)) = f(wTφ+ w0)

Note that the decision boundary is a hyperplane in a feature space,
and non-flat in the input space.
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Input Space and Feature Space
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The basis functions φ1(x) and φ2(x) are Gaussian basis functions.
A linear decision boundary in the feature space (right) corresponds
to a non-linear decision boundary in the input space (left).
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K-ary Classification and Activations

In K-ary classification, we may make decision based on the
posterior probabilities of K classes. This is achieved by an
activation function y(x) such that the components of y are
non-negative and sum to 1, so

(p(C1|x), . . . , p(CK |x))T ≈ f(a(x))

Again, the activation function f(·) acts on class activations

a(x) = (a1(x), . . . , aK(x))T

And again, if the class activations are linear functions of the input
vector (or feature vector), then we have a (or generalized) linear
model.
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Discriminants
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Linear Discriminants

Definition. A discriminant is a function that takes an input
vector (or feature vector) and assign it to a class. A discrim-
inant is linear if the corresponding decision boundaries are
hyperplanes.
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Simplest Linear Discriminant

The simplest linear discriminant is a linear function of the
input vector

y(x) = wTx+ w0

Here w is the weight vector, and w0 is the bias. The neg-
ative bias is the threshold.

Sometimes we write

y(x) = wTx+ w0 = w̃T x̃

where w̃T = (w0,w
T ) and x̃T = (1,xT ).

Chen P Linear Models for Classification



18/84

Binary Discriminant

Definition. In a binary discriminant, there is a discriminant
function y(x), and an input vector x is assigned to class
C1 if y(x) ≥ 0 and class C2 otherwise. A binary linear
discriminant has a linear discriminant function.

The decision boundary of a binary discriminant is given by

y(x) = 0

The decision boundary is a hyperplane for a binary linear discrimi-
nant.
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Properties of a Binary Linear Discriminant

w is orthogonal to the decision boundary.
The distance from x to the decision boundary is y(x)

‖w‖ .

x2

x1

w
x

y(x)
‖w‖

x⊥

−w0
‖w‖

y = 0
y < 0

y > 0

R2

R1
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K-ary Discriminant

Definition. In a K-ary discriminant, there are K discrim-
inant functions y1(x), . . . , yK(x), and an input vector x is
assigned to class Ck if

yk(x) > yj(x) for all j 6= k

A K-ary linear discriminant has K linear discriminant func-
tions of the input variables

yk(x) = wT
k x+ wk0, k = 1, . . . ,K

Chen P Linear Models for Classification



21/84

Decision Boundaries and Decision Regions

With a K-ary linear discriminant, the decision boundaries are
hyperplanes and the decision regions are convex.

The decision boundary between class Ck and class Cj is given by
yk(x) = yj(x), i.e.

(wk −wj)Tx+ (wk0 − wj0) = 0

which is a hyperplane. Convex decision regions are illustrated below.
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xB
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Learning Linear Discriminants

The parameters in a linear discriminant (binary or K-ary) can
be learned from data.

Let D = {(xn, tn)}Nn=1 be a data set
Let X̃ be the input matrix whose nth row is

x̃Tn = (1, xn1, . . . , xnD)

Let T be the target matrix whose nth row is

tTn = (tn1, . . . , tnK)

Let W̃ be the weight matrix whose kth column is

w̃k =


wk0
wk1

...
wkD
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Minimizing the Sum of Squared Errors

For a K-ary linear discriminant, define the output y(xn)T of xn
as the nth row of X̃W̃ . The sum of squared errors between the
outputs and the targets of D is

E(W̃ ) =
N∑
n=1
‖y(xn)− tn‖2

= tr
{

(X̃W̃ − T )(X̃W̃ − T )T
}

Set the derivative with respect to W̃ to 0

W̃ = (X̃T
X̃)−1X̃

T
T = X̃

†
T

For a test input vector x, the output y(x) is

y(x) = W̃
T
x̃ = T T

(
X̃
†)T

x̃
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Issue: Robustness
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Left: With outlier data points
Right: Without outlier data
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Issue: Correctness
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Left: Least squares learning
Right: Logistic regression learning
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Projection to a Line

Projection is often used in dimension reduction. We want
to look for an optimum direction.

Consider projection to a line defined by a unit vector w. Let mkw
is the mean of the projection points of Ck, i.e.

mkw = 1
nk

∑
xn∈Ck

(wTxn)w = wT

 1
nk

∑
xn∈Ck

xn

w = (wTmk)w

where mk = 1
nk

∑
xn∈Ck

xn is the mean of data points of class Ck.
The separation between classes C1 and C2 after the projection can be
measured by (m2 −m1)2. Since (m2 −m1)2 = (wT (m2 −m1))2,
it is maximized when

w ∝ (m2 −m1)
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An Issue

As is shown, there may be considerable overlap between the classes
when

w ∝ (m2 −m1)
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Fisher’s Criterion for Binary Classification

Idea. Minimize the class overlap by large separation between
class means and small variance within each class.

Let w be a unit vector defining a line and yn = wTxn, so ynw is the
projection of xn on the line. We define the within-class variance
of class Ck as

s2
k =

∑
xn∈Ck

(yn −mk)2

and the total within-class variance as s2
1 + s2

2.

Criterion. Maximize

J(w) = (m2 −m1)2

s2
1 + s2

2
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Covariance Matrices Based on Data

The numerator of J(w) can be written as

(m2 −m1)2 = wT (m2 −m1)(m2 −m1)Tw = wTSBw

where SB is the between-class covariance matrix defined by

SB = (m2 −m1)(m2 −m1)T

The denominator can be written as

s2
1 + s2

2 =
∑
xn∈C1

(yn −m1)2 +
∑
xn∈C2

(yn −m2)2 = wTSWw

where SW is the total within-class covariance matrix defined by

SW =
∑
xn∈C1

(xn−m1)(xn−m1)T +
∑
xn∈C2

(xn−m2)(xn−m2)T
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Optimization

Thus, the Fisher’s criterion can be written as

J(w) = (m2 −m1)2

s2
1 + s2

2
= wTSBw

wTSWw

Setting the gradient of J(w) to 0, we get

(wTSBw)SWw = (wTSWw)SBw
∝ SBw
∝ (m2 −m1)

Hence
w ∝ S−1

W (m2 −m1)
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K-ary Classification

For K classes, we define the between-class covariance matrix as

SB =
K∑
k=1

Nk(mk −m)(mk −m)T

the total within-class covariance matrix as

SW =
K∑
k=1

∑
xn∈Ck

(xn −mk)(xn −mk)T

and the total covariance matrix as

ST =
N∑
n=1

(xn −m)(xn −m)T

Note that SB + SW = ST .
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Multiple Linear Features

For K classes, more than one directions are needed.

Through w, a linear feature y(x) = wTx is extracted from x.
Multiple linear features can be extracted through multiple w’s

yi(x) = wT
i x, i = 1, . . . , D′

These features form a feature vector

y(x) =


y1
y2
...
yD′

 =


wT

1 x
wT

2 x
...

wT
D′x

 =


wT

1
wT

2
...

wT
D′

x = W Tx

The weight matrixW has the weight vectorsw1, . . . ,wD′ as columns.
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Covariance Matrices
Define yn = W Txn and

µk = 1
Nk

∑
xn∈Ck

yn, µ = 1
N

N∑
n=1

yn = 1
N

K∑
k=1

Nkµk

The total within-class covariance matrix in the feature space is

sW =
K∑
k=1

∑
xn∈Ck

(yn − µk)(yn − µk)T

= W T

 K∑
k=1

∑
xn∈Ck

(xn −mk)(xn −mk)T
W = W TSWW

The between-class covariance matrix is

sB =
K∑
k=1

Nk(µk − µ)(µk − µ)T = W TSBW

Chen P Linear Models for Classification



34/84

Fisher’s Criterion for Multiple Features

J(W ) = tr{s−1
W sB}

= tr{(W TSWW )−1(W TSBW )}

J(W ) is large when the between-class covariance is large and
when the within-class covariance is small.
W is determined by the eigenvectors of S−1

W SB with the D′
largest eigenvalues.
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Perceptron
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Class Labels in Perceptron

In perceptron, we use class label t ∈ {−1, 1}, where t = 1 represents
C1 and t = −1 represents C2, i.e.

tn =
{

1, if xn ∈ C1

−1, if xn ∈ C2

and the decision function of

y(x) = sgn(wTφ)

where φ = φ(x) is the feature vector based on fixed basis functions.
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Learning and Error Measure

The parameters w are learned by a set D = {(xn, tn)}Nn=1.

A perceptron makes an error for a data point (x, t) if

wTφt < 0

The error measure of data point (xn, tn) can be defined by

En(w) =
{
−wTφntn, wTφntn < 0
0, otherwise

Chen P Linear Models for Classification
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Perceptron Algorithm

For a misclassified example (xn, tn), update w by

w(τ+1) = w(τ) − η∇En(w)
= w(τ) + ηφntn

where η > 0 is a learning rate.

For misclassified xn with tn = −1, subtract ηφn from w.
For misclassified xn with tn = 1, add ηφn from w.

Chen P Linear Models for Classification
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Perceptron Convergence Theorem

For linearly separable data, the perceptron algorithm learns a
perfect decision boundary in finite steps.
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Probabilistic Generative Model
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Basic Idea

Definition. A generative model consists of the class priors
p(Ck) and the class-conditional distributions p(x|Ck).

Data generation. A generative model can be used to generate
artificial data.
Class posteriors. By Bayes’ rule, the posterior of class Ck is

p(Ck|x) = p(x, Ck)
p(x)

= p(x|Ck)p(Ck)
p(x)

∝ p(x|Ck) p(Ck)

p(C1|x), . . . , p(CK |x) are used in making decisions.
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Binary Classification

In binary classification of classes C1 and C2, the posterior of C1 is

p(C1|x) = p(x|C1)p(C1)
p(x|C1)p(C1) + p(x|C2)p(C2)

= 1
1 + p(x|C2)p(C2)

p(x|C1)p(C1)

= 1
1 + exp(−a)

= σ(a)

where exp(−a) = p(x|C2)p(C2)
p(x|C1)p(C1) or a = log p(x|C1)p(C1)

p(x|C2)p(C2) .
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Logistic Sigmoid Function

Definition. The function

σ(a) = 1
1 + exp(−a)

is the logistic sigmoid function.

S-shaped
squashing: mapping (−∞,∞) to (0, 1)
symmetry property

σ(−a) = 1− σ(a)

a differentiable approximation of the step function with

dσ

da
= σ(1− σ)
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Sigmoid and Inverse Probit Functions
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Plot of the logistic sigmoid function σ(a) (as shown in red)
and a scaled inverse probit function Φ(λa) for λ =

√
π
8 (blue)
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The Inverse of Logistic Sigmoid Function

Definition. The logit function is the inverse of the logistic
sigmoid function.

a(σ) = log
(

σ

1− σ

)

In binary classification of classes C1 and C2, we often have σ =
p(C1|x). Then the logit

a = log
(

σ

1− σ

)
= log

(
p(C1|x)

1− p(C1|x)

)
= log

(
p(C1|x)
p(C2|x)

)
is the log odds.
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K-ary Classification

In K-ary classification of classes C1, . . . , CK , the posterior of Ck is

p(Ck|x) = p(x, Ck)
p(x)

= p(x|Ck)p(Ck)
p(x)

= p(x|Ck)p(Ck)∑
j
p(x|Cj)p(Cj)

= exp(ak)∑
j

exp(aj)

where exp(ak) = p(x|Ck)p(Ck) or ak = log (p(x|Ck)p(Ck)). We call
ak the activation of class Ck.
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Normalized Exponential

Definition. A common transformation from class actions to
class posterior probabilities is the normalized exponential
function defined by

(a1, . . . , aK) 7→ (exp(a1), . . . , exp(aK))∑K
j=1 exp(aj)

The normalized exponential is also known as the softmax: for the
class Ck with the largest ak, we have

exp(ak)∑K
j=1 exp(aj)

≈ 1, exp(aj 6=k)∑K
j=1 exp(aj)

≈ 0

if ak � aj for j 6= k.
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Priors vs. Class-Conditionals

In a generative model
The class priors are simply the relative frequencies.
The key elements are the class-conditional distributions.
We now introduce a few instances.

Chen P Linear Models for Classification



49/84

Gaussian Class-Conditional Model

Definition. A Gaussian class-conditional distribution is

p(x|Ck) = N (x|µk,Σk)

= 1
(2π)D/2

1
|Σ|1/2 e

− 1
2 (x−µk)T Σ−1

k
(x−µk)

where µk is class mean and Σk is class covariance matrix.

A Gaussian class-conditional model assumes a Gaussian class-
conditional distribution for each class.
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Decision Boundaries

Consider a generative model with Gaussian class-conditional
distributions.

If the Gaussian class-conditional distributions do not
share a common covariance matrix, then the decision
boundaries are quadratic functions of the input vector.
If the Gaussian class-conditional distributions share a
common covariance matrix, i.e.

p(x|Ck) = N (x|µk,Σ)

= 1
(2π)D/2

1
|Σ|1/2 e

− 1
2 (x−µk)T Σ−1(x−µk)

then the decision boundaries are hyperplanes.
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Class-conditionals p(x|Ck) (left) and posterior p(C1|x) (right).
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Class-conditionals (left) and decision boundaries (right).
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Binary Classification with Shared Covariance

Substituting the Gaussian class-conditional distributions and elimi-
nating common factors (the quadratic terms), we get

p(C1|x) = σ(wTx+ w0) = σ(a)

where

w = Σ−1(µ1 − µ2)

w0 = −1
2µ

T
1 Σ−1µ1 + 1

2µ
T
2 Σ−1µ2 + log p(C1)

p(C2)

The decision boundary is the hyperplane a = wTx+ w0 = 0.
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K-ary Classification with Shared Covariance

Substituting the Gaussian class-conditional distributions and elimi-
nating common factors (the quadratic terms), we get

p(Ck|x) = exp(wT
k x+ wk0)∑

j exp(wT
j x+ wj0)

= exp(ak)∑
j exp(aj)

where

wk = Σ−1µk, wk0 = −1
2µ

T
kΣ−1µk + log p(Ck)

The boundary between Rj and Rk is decided by aj = ak, i.e.

wT
j x+ wj0 = wT

k x+ wk0
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Näıve Bayes Model and Binary Features

A näıve Bayes model is a generative model assuming inde-
pendent features for the class-conditional distributions.

In particular, for binary features x ∈ {0, 1}D, the class-conditional
distributions are

p(x|Ck) =
D∏
i=1

µxi
ki(1− µki)

1−xi , k = 1, . . . ,K

A näıve Bayes model with binary features is a linear model for clas-
sification. The activations are linear in x, as

ak = log(p(x|Ck)p(Ck))

=
D∑
i=1
{xi logµki + (1− xi) log(1− µki)}+ log p(Ck)

Chen P Linear Models for Classification
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Discriminative Model
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From Generative to Discriminative Models

In a generative model, we compute the posterior probabilities
based on the prior probabilities and conditional distributions.
In a discriminative model, we model the class posterior proba-
bilities directly.
In particular, in a generalized linear discriminative model,
we assume that the class activations are linear functions of the
feature vector

ak = wT
kφ+ wk0

Again, the activations are transformed to the posterior probabil-
ities by a non-linear function, e.g. logistic sigmoid or normalized
exponential.
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Logistic Regression

Definition. A logistic regression models the posterior prob-
ability of class C1 as the logistic sigmoid function acting on
a linear function of the feature vector

p(C1|x) ≈ y(x,w) = σ(wTφ)

The posterior probability of class C2 is

p(C2|x) = 1− p(C1|x) = 1− σ(wTφ)
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Data Likelihood

The parameters w in a logistic regression can be learned by
a data set D = {(xn, tn)}Nn=1.

The data likelihood of (x, t) is p(C1|x) if t = 1 and p(C2|x) if t = 0.
Since p(C1|x) = y(x,w) and p(C2|x) = 1 − y(x,w), the data
likelihood of (x, t) can be written as

p(t|x) = yt(1− y)1−t

where y = y(x,w). The likelihood of D is

p(D|w) =
N∏
n=1

ytnn (1− yn)1−tn

where yn = y(xn,w).
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Cross-Entropy Error Function

The negative log likelihood function (error function) is

E(w) = − log p(D|w)

= − log
(

N∏
n=1

ytnn (1− yn)1−tn

)

= −
N∑
n=1
{tn log yn + (1− tn) log(1− yn)}

=
N∑
n=1

En(w)

Note that En(w) = −{tn log yn + (1− tn) log(1− yn)} is the cross
entropy between (tn, 1− tn) and (yn, 1− yn).
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Gradient of Error Function

Recall that y(x,w) = σ(wTφ). The gradient of E(w) is

∇E(w) = −
N∑
n=1

∇ {tn log yn + (1− tn) log(1− yn)}

= −
N∑
n=1

tn
yn

∇yn +
( 1− tn

1− yn

)
∇(1− yn)

= −
N∑
n=1

tn
yn
yn(1− yn)φn −

( 1− tn
1− yn

)
yn(1− yn)φn

=
N∑
n=1

(yn − tn)φn

= ΦT (y− t)

where Φ is the design matrix.
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Gradient Descent

In gradient decent, the parameters are updated by

w′ = w − η∇E(w)
= w − ηΦT (y− t)

In stochastic gradient decent, w are updated by

w′ = w − η∇En(w)
= w − η(yn − tn)φn

where (tn,xn) is an example in D.
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Newton-Raphson Method

In Newton-Raphson method, w are updated by

w′ = w −H−1∇E(w)

where H is the Hessian matrix. For the cross entropy error function

H = ∇ΦT (y− t) =
N∑
n=1

yn(1− yn)φnφTn = ΦTRΦ

where R = diag{y1(1− y1), . . . , yn(1− yn)}. Thus

w′ = w −H−1∇E(w) = w − (ΦTRΦ)−1ΦT (y− t)
= (ΦTRΦ)−1{ΦTRΦw −ΦT (y− t)}
= (ΦTRΦ)−1ΦTRz

where z = Φw −R−1(y− t).
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Weighted Least-Squares Problems

A solution of the least-squares problem Ax = b satisfies the nor-
mal equation

ATAx = ATb

A solution of the weighted least-squares problem CAx = Cb,
where C is diagonal with positive diagonal elements, satisfies the
normal equation

ATCTCAx = ATCTCb

That is
x =

(
ATCTCA

)−1
ATCTCb
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Iterative Re-weighted Least Squares

Recall that the weight is updated by

w′ = (ΦTRΦ)−1ΦTRz

This is the solution of a weighted least-squares problem

CΦw = Cz

where
R = CTC

Since R depends on w, the weights are updated in each iteration.

Chen P Linear Models for Classification



65/84

K-ary Logistic Regression

Definition. A multiclass logistic regression models the
class posterior probabilities as the normalized exponential
function acting on linear functions of the feature vector.
Specifically, the posterior probability of class Ck

p(Ck|x) = exp(ak)∑K
j=1 exp(aj)

where the class activations are given by

ak = wT
kφ
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Data Likelihood

The parametersw1, . . . ,wK in a multiclass logistic regression
can be learned from data.

The likelihood of an example (x, t) is

p(t|x) =
K∏
k=1

ytkk

where
yk = yk(x) = exp(ak(x))∑K

j=1 exp(aj(x))

The likelihood of a data set D = {(xn, tn)}Nn=1 is

p(D|w) =
N∏
n=1

K∏
k=1

ytnk
nk

Chen P Linear Models for Classification



67/84

Cross-Entropy Error Function

Maximizing the data likelihood is equivalent to minimizing the neg-
ative log data likelihood, so we define

E(w) = − log
N∏
n=1

p(tn|xn)

= −
N∑
n=1

K∑
k=1

tnk log ynk

=
N∑
n=1

En(w)

Note that

En = −
K∑
k=1

tnk log ynk

is the cross entropy between tn and yn.
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Partial Derivatives

From aj = wT
j φ and yk = exp(ak)∑

j

exp(aj) , we have

∇wjal = δjlφ and ∂yk
∂aj

= yk(δkj − yj)

It follows that

∇wjyk =
∑
l

∂yk
∂al

(
∇wjal

)
=
∑
l

yk(δkl − yl)δjlφ

= yk(δkj − yj)φ
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Gradient
Consider the first-order derivatives of the error E = −

∑K
k=1 tk log yk

of a data point (t,x).

∇wj

(
−

K∑
k=1

tk log yk

)
= −

K∑
k=1

tk

( 1
yk

∇wjyk

)

= −
K∑
k=1

tk ((δkj − yj)φ)

= −tjφ+
K∑
k=1

tkyjφ

= −tjφ+ yjφ

= (yj − tj)φ
Thus, the gradient of E(w) of data set D is

∇wjE(w) = ∇wj

(
N∑
n=1

En(w)
)

=
N∑
n=1

(ynj−tnj)φn = ΦT (yj−tj)
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Hessian and IRLS

Consider the second-order derivatives of the error E = −
∑K
k=1 tk log yk

of a data point (t,x).

∇wk
∇wj

(
−

K∑
k=1

tk log yk

)
= ∇wk

(yj − tj)φ

= yk(δkj − yj)φφT

Thus, the Hessian of E(w) of data set D is

∇wk
∇wjE(w) = ∇wk

∇wj

(
N∑
n=1

En(w)
)

=
N∑
n=1

ynk(δkj − ynj)φnφTn

= ΦTR′Φ

The Newton-Raphson method (via iterative re-weighted least squares)
can be used to learn parameter iteratively.
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Activation Function for Binary Classification

Other than the logistic sigmoid function, there are many
choices for the activation function in a binary classification.

In fact, any CDF
f(a) =

∫ a

−∞
p(t)dt

where p(·) is a PDF, is a valid activation function for binary classi-
fication since

0 ≤ f(a) ≤ 1
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CDF and PDF
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Inverse Probit Function

Definition. The CDF of a standard Gaussian

Φ(a) =
∫ a

−∞
N (t|0, 1)dt

is the inverse probit function. A generalized linear model
with the inverse probit function as the activation function is
a probit regression.
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Accommodating Labeling Errors

The data labels may be subject to errors.

For binary classification, the conditional likelihood of (t,x) is

p(t|x) =
1∑
e=0

p(t, e|x)

=
1∑
e=0

p(e)p(t|e,x)

=
{

(1− ε)σ(x) + ε(1− σ(x)), t = 1
εσ(x) + (1− ε)(1− σ(x)), t = 0

= [(1− ε)σ(x) + ε(1− σ(x))]t[εσ(x) + (1− ε)(1− σ(x))]1−t

where ε = p(e) is the probability of error in labeling.
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Laplace Approximation
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Approximate PDF by Gaussian

Let p(x) be a PDF defined by unnormalized f(x) ≥ 0

p(x) = 1
Z
f(x)

In Laplace approximation, p(x) is approximated by a Gaussian
PDF centered on a mode x0 of f(x) (or p(x)). The precision
of the Gaussian is the negative Hessian of log f(x) at x0.
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Uni-Variate Laplace Approximation

Given f(z), find a mode (local maximum) z0 of f(z) with
df(z)
dz

∣∣∣∣
z=z0

= 0

Find the negative second derivative of log f(z) at z0

A = − d2

dz2 log f(z)
∣∣∣∣
z=z0

The second-order approximation of log f(z) around z0 is

log f(z) ≈ log f(z0)− 1
2A(z − z0)2

The Laplace approximation of p(z) is

q(z) ∝ exp
{
−A2 (z − z0)2

}
=
(
A

2π

)1/2
exp

{
−A2 (z − z0)2

}
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Multi-Variate Laplace Approximation

Given f(z), find a mode (local maximum) z0 of f(z) with

∇f(z)
∣∣∣∣
z=z0

= 0

Find the negative Hessian of log f(z) at z0

A = −∇∇ log f(z)
∣∣
z=z0

The second-order approximation of log f(z) around z0 is

log f(z) ≈ log f(z0)− 1
2(z − z0)TA(z − z0)

The Laplace approximation of p(z) is

q(z) ∝ exp
{
−1

2(z − z0)TA(z − z0)
}

= N (z|z0,A
−1)
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Bayesian Logistic Regression
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Prior and Posterior of Model Parameters

Consider a Gaussian prior for the parameters

p(w) = N (w|m0,S0)

For the posterior of the parameters, we have

p(w|D) ∝ p(w)p(D|w)

Taking the logarithm, we have

log p(w|D) =− 1
2(w −m0)TS−1

0 (w −m0)

+
N∑
n=1

tn log yn + (1− tn) log(1− yn) + const
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Laplace Approximation

To proceed, we apply the Laplace approximation to p(w|D).
The mode of p(w|D) is wMAP

The negative Hessian of log p(w|D) at wMAP is

−∇∇ log p(w|D) = S−1
0 +

N∑
n=1

yn(1− yn)φnφTn

Hence, the Laplace approximation to p(w|D) is

p(w|D) ≈ q(w) = N (w|wMAP,SN )

where

S−1
N = S−1

0 +
N∑
n=1

yn(1− yn)φnφTn
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Predictive Distribution

The prediction is the integration of the prediction over the
posterior distribution of the parameters.

With the Laplace approximation, we have

p(C1|x,D) =
∫
p(C1|x,w)p(w|D)dw

≈
∫
σ(wTφ)q(w)dw

=
∫
σ(a)p(a)da

where a = wTφ.
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Gaussian Marginalization

Note that a = wTφ is Gaussian as w is Gaussian. In particular, the
mean and variance of a = wTφ is

µa =
∫
a(w) q(w)dw =

∫
wTφ q(w)dw = wT

MAPφ

σ2
a =

∫
(wTφ− µa)2 q(w)dw = φTSNφ

Thus ∫
σ(a)p(a)da =

∫
σ(a)N (a|µa, σ2

a)da
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Further Approximation

A logistic sigmoid function can be approximated by an inverse probit
function

σ(a) ≈ Φ(λa), λ2 = π

8
It can be shown that∫

Φ(λa)N (a|µ, σ2)da = Φ
(

µ

(λ−2 + σ2)1/2

)
Thus we have∫

σ(a)N (a|µ, σ2)da ≈ σ
(
κ(σ2)µ

)
, κ(σ2) = (1 + λ2σ2)−1/2

So
p(C1|x,D) ≈ σ

(
κ(σ2

a)µa
)

Note that the decision boundary is given by µa = wT
MAPφ = 0.
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