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Topics

Example: Curve Fitting
Probability Theory
Model Selection
Curse of Dimensionality
Decision Theory
Information Theory
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Pattern Recognition

Patterns are structures within data.

shapes
objects
words/phrases
phonemes
stock market
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From Classic to Modern

Recognition of patterns leads to scientific breakthroughs.

Brahe → Kepler → Newton
(data) (description) (explanation)

In this course, we are interested in learning patterns from a collection
of data, and then recognizing patterns in unseen data.
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Machine Learning

The use of computers (machines) to learn from data.

classification
regression
transcription
detection
translation
synthesis
much more
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Elements of Machine Learning

A machine learning system is characterized by task, data,
model, algorithm, and evaluation.

A task is specified in terms of input and output.
Task-related data is used for learning or inference.
A model characterizes the mathematical relationship between
input and output.
An algorithm learns model parameters from training data or
does inference on test data.
Evaluation measures system performance.
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Example: Hand-written Digit Recognition

task: to recognize the digit in an image
data: images of hand-written digits
model: a probability model P (Ck|x)
algorithm: learns model parameters or decides class
evaluation: recognition accuracy
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Example: Polynomial Curve Fitting
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Polynomial Curve Fitting

Task: to output y(x) as the prediction for input x
Data: D = {(xn, tn)}Nn=1 and D′ = {(x′n, t′n)}N ′n=1

Model: a polynomial function mapping input x to output y

y(x,w) = w0 + w1x+ · · ·+ wMx
M

Algorithm: to decide w by minimizing a cost function

w∗(D) = arg min
w

l(D;w)

Evaluation: mean squared error

MSE(D′) = 1
N ′

N ′∑
n=1

(y(x′n,w∗)− t′n)2
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Training Data

Let the training data D = {(xn, tn)}Nn=1 be generated by

tn = sin(2πxn) + εn

The points x1, . . . , x10 are equally spaced between 0 and 1, and the
noises ε1, . . . , ε10 are i.i.d. zero-mean Gaussian random variables.
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Cost Function

A simple cost function for learning a prediction function is the sum
of squared errors on the training set.

w∗(D) = arg min
w

l(D;w)︷ ︸︸ ︷
1
2

N∑
n=1
{y(xn,w)− tn}2

t

x

y(xn,w)

tn

xn
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Results
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Over-Fitting

For M = 9, the learned output function fits the training data
well, but fits unseen test data poorly.

M controls the number of parameters in y(x,w).
For M = 9, the learned output function y(x,w∗) passes all 10
points exactly.
However, y(x,w∗) is a very poor approximation to the true
function sin(2πx) used to generate data.
What happens here is called over-fitting.
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Performance Measure

A simple performance measure for curve fitting is the root-mean-
square error

ERMS =

√
2E(w∗)
N

The RMS errors on the training set and test set are different.
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More Data

One way to deal with over-fitting is to add data points to the
training set.
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For M = 9, increasing N overcomes over-fitting.
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Norm Penalty

Another way to deal with over-fitting is to add norm penalty
to the cost function

Ẽ(w) = E(w) + λ

2 ‖w‖
2

Norm penalty is an example of regularization. It favors parameters
with small magnitudes. λ controls the degree of regularization.
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The results for M = 9 with different λs.
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Probability Theory (Quick Review)
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Probability in Artificial Intelligence

Probability theory is fundamental to AI.

input completion

w∗≥n = arg max
w≥n

P (w≥n|w<n)

speech recognition

W ∗ = arg max
W

P (W |A)

machine translation

e∗ = arg max
e
P (e|f)

information retrieval

d∗ = arg max
d

P (d|q)
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Sum Rule and Product Rule

The sum rule and product rule of probability are fundamen-
tal relationships between the joint probability, the marginal
probability, and the conditional probability of two (groups of)
random variables.

Let X and Y be random variables.
sum rule

P (X) =
∑
Y

P (X,Y )

P (Y ) =
∑
X

P (X,Y )

product rule
P (X,Y ) = P (Y |X)P (X)
P (X,Y ) = P (X|Y )P (Y )
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Bayes’ Rule

A conditional probability can be derived from the conditional
probability in the other direction.

Bayes’ rule. Let X and Y be random variables.

P (Y |X) = P (X|Y )P (Y )∑
Y ′
P (X|Y ′)P (Y ′)

Proof.

P (Y |X) = P (X,Y )
P (X) = P (X|Y )P (Y )

P (X) = P (X|Y )P (Y )∑
Y ′
P (X,Y ′)

= P (X|Y )P (Y )∑
Y ′
P (X|Y ′)P (Y ′)
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Example

There are 2 apples and 6 oranges in a red box. There are 3 apples
and 1 orange in a blue box. Choose a box at random (red chosen
with probability 0.4) and then choose a fruit from the chosen box.

What is the probability that an orange is chosen?
Given an orange is chosen, what is the probability that the red
box has been chosen?

Let Y ∈ {r, b} be the chosen box, and X ∈ {a, o} be the chosen
fruit.
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Probability Density Function

Definition. Let X be a continuous random variable. The
probability of event X ∈ (x, x+ δ) is

pX(x)δ + o(δ)

pX(x) is the probability density function (PDF) of X.

xδx

p(x) P (x)
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Properties of PDF

density

P (X ∈ (a, b)) =
∫ b

a
pX(x)dx

non-negativity
pX(x) ≥ 0

normalization ∫
pX(x)dx = 1

marginal probability

pX(x) =
∫
pXY (x, y)dy

conditional probability

pY |X(y|x) = pXY (x, y)
pX(x)
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Cumulative Distribution Function

Definition. The probability of a random variable can also be
specified by a cumulative distribution function (CDF)

FX(x) = P (X ≤ x)

The CDF and the PDF of X are related by

pX(x) = d

dx
FX(x)

xδx

p(x) P (x)
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Inverse Function Method

Let X be a continuous random variable with CDF FX . A
sample of X can be generated by applying F−1

X to a sample
drawn from the uniform distribution.

Draw an instance y from

Y ∼ uniform(0, 1)

Transform y by
x = F−1

X (y)

Chen P Introduction
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Theorem

Let X be a continuous random variable with PDF pX(x) and
CDF FX(x), and Y = FX(X). Then Y ∼ uniform(0, 1).

We have 0 ≤ Y ≤ 1. Also, event X ∈ (x, x + δx) is equivalent to
Y ∈ (y, y + δy), where y = FX(x). So

pX(x)|δx|+ o(δx) = pY (y)|δy|+ o(δy)

Consider δx → 0+.

pY (y) = pX(x)
∣∣∣∣∣δxδy

∣∣∣∣∣ = pX(x)
∣∣∣∣dydx

∣∣∣∣−1
= pX(x) (pX(x))−1 = 1

Thus
Y ∼ uniform(0, 1)
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Example: Exponential Random Variable

Consider X ∼ exponential(λ). Since the CDF of X is

FX(x) = 1− e−λx

we have Y = FX(X) = 1− e−λX is uniform(0, 1).

An instance x of X can be obtained by drawing an instance y of Y
and transforming y to x by

x = F−1
X (y) = − 1

λ
log(1− y)
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Expectation

Definition. Let X be a random variable. The expectation
of X is

E[X] =
∑
x

xP (X = x)

or
E[X] =

∫
x pX(x)dx

Expectation can be taken with respect to conditional probability,
called conditional expectation. That is

E[X|Y = y] =
∑
x

xP (X = x|Y = y)

or
E[X|Y = y] =

∫
x pX|Y (x|y)dx

Chen P Introduction
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Function of Random Variable

Let X be a random variable and f(·) be a function. Then
f(X) is a random variable.

The expectation of f(X) is

E[f ] =
∫
f(x)pX(x)dx

or
E[f ] =

∑
x

f(x)P (X = x)
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Sample Mean

Definition. The sample mean of f(X) based on sample
{x1, . . . , xN} of X is

E[f ] ≈ 1
N

N∑
n=1

f(xn)

Law of large numbers. A sequence of the sample means of a
random variable converges to the expectation of the random
variable.
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Variance

Definition. Let X be a random variable. The variance of
X is

var[X] = E
[
(X − E[X])2

]
Let f(·) be a function. The variance of f(X) is

var[f ] = E
[
(f(X)− E[f(X)])2

]
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Covariance

Definition. Let X and Y be random variables. The covari-
ance of X and Y is

cov[X,Y ] = E [(X − E[X])(Y − E[Y ])]

It can be shown that

cov[X,Y ] = E[XY ]− E[X]E[Y ]
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Covariance Matrix

Definition. Let x and y be random vectors. The covariance
matrix of x and y is

cov[x,y] = Σ = E
[
(x− E[x])(y− E[y])T

]
Furthermore, the covariance matrix of x is

cov[x] = cov[x,x]

The covariance matrix of x and y consists of pairwise covariances

σij = E [(xi − E[xi])(yj − E[yj ])]
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Gaussian Random Variable

Definition. A Gaussian PDF is

N (x|µ, σ2) = 1
(2πσ2)1/2

exp
{
− 1

2σ2 (x− µ)2
}

A Gaussian random variable has a Gaussian PDF.

N (x|µ, σ2)

x

2σ

µ
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Properties

Normalization ∫
N (x|µ, σ2)dx = 1

Expectation
E[x] = µ

Variance
var[x] = σ2
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Gaussian Random Vector

Definition. Let x be a random vector. x is a Gaussian
random vector if it has PDF

N (x|µ,Σ) = 1
(2π)D/2

1
|Σ|1/2

exp
{
−1

2(x− µ)TΣ−1(x− µ)
}

The parameters are in µ and Σ.
µ is the mean vector of x and Σ is the covariance matrix of x.
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Log Gaussian

The logarithm of a Gaussian PDF is

log
[ 1

(2π)D/2

1
|Σ|1/2

exp
{
−1

2(x− µ)TΣ−1(x− µ)
}]

= −D2 log(2π)− 1
2 log |Σ| − 1

2(x− µ)TΣ−1(x− µ)

= −1
2x

TΣ−1x+ µTΣ−1x+ const

It is a quadratic function of x.
The second-order term depends on the covariance matrix.
The first-order term depends on the covariance matrix and the
mean vector.
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Curve-Fitting with Probability Model

We want to fit a data set D = {(xn, tn)}Nn=1.
Suppose that the dataset is generated according to

tn = u(xn) + εn, n = 1, . . . , N

where ε1, . . . , εN are i.i.d. random variables.
The function u(x) is unknown to us. The distribution of εn is
also unknown.
Hence, we assume a parametric prediction function y(x,w)
to approximate u(x) and a parametric distribution for εn.
After setting up a probability model, we can learn the parame-
ters in the model from D via maximum likelihood or Bayesian
learning.
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Learning Schemes

Maximum likelihood. Treat the model parameters as un-
knowns. Learning is the process of deciding optimal values.
Bayesian learning. Treat the model parameters as random
variables (with parametric distribution). Learning is the process
of updating their (parametric) distribution.
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Learning without Probability Model

Earlier, we found optimal parameters w∗ by minimizing a cost func-
tion

w∗ = arg max
w

E(w)

For example, with norm penalty, we minimized

E(w) = ED(w) + EW (w)

=
N∑
n=1

E(y(xn,w), tn) + λR(w)

This learning method has nothing to do with probability.
Nonetheless, it can be derived from probabilistic models.
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Gaussian Noise Model

We often assume a data point is corrupted by a Gaussian
noise. More specifically, we assume

t = u(x) + ε

where u(x) is a function and ε ∼ N (e|0, β−1) is Gaussian.

It follows that the conditional distribution of t given x is Gaussian

p(t|x) = N (t|u(x), β−1)

Chen P Introduction
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Approximate the True Function

As u(x) is unknown to us, we use a parametric function y(x,w) to
approximate u(x), i.e.

u(x) ≈ y(x,w)

With this approximation and Gaussian noise assumption, we have

p(t|x) ≈ N (t|y(x,w), β−1)

t

xx0

2σy(x0,w)

y(x,w)

p(t|x0,w, β)
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Data Likelihood

The likelihood of a data point (xn, tn) is

p(tn|xn) ≈ N (tn|y(xn,w), β−1)

The data likelihood of D = {(xn, tn)}Nn=1 is

p(D|w, β) =
N∏
n=1
N (tn|y(xn,w), β−1)

and the log data-likelihood of D is

log p(D|w, β) = −β2

N∑
n=1
{y(xn,w)− tn}2 + N

2 log β − N

2 log(2π)
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Maximum-Likelihood Estimation

Definition. The parameter values maximizing data likelihood
are maximum-likelihood (ML) estimates.

For the above Gaussian noise model, the maximum-likelihood esti-
mate is

wML = arg min
w

N∑
n=1
{y(xn,w)− tn}2

1
βML

= 1
N

N∑
n=1

(y(xn,wML)− tn)2
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Likelihood and Error

Note wML is the same as w∗ which minimizes the sum of squared
errors. Here we see that the results based on squared-error cost
function can be re-derived based on a Gaussian noise model.

Definition. In machine learning with probability models, the
negative log-likelihood function is the error function.

Following this definition, we have

maximum likelihood = minimum error
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Bayesian Learning

In Bayesian learning, we treat model parameters as random
variables and update their distribution with data.

Specifically
Assume a prior distribution p(w) for parameters w.
Update the distribution of w to posterior distribution p(w|D)
by the Bayes’ rule

p(w|D) = p(D,w)
p(D) = p(D|w)p(w)

p(D) ∝ p(D|w)p(w)
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Gaussian Prior

Let us assume a Gaussian prior distribution for w

p(w|α) = N (w|0, α−1I)

=
(
α

2π

)(M+1)/2
exp

{
−α2w

Tw

}
For the posterior distribution of w

p(w|D, α, β) ∝ p(w,D|α, β) = p(D|w, α, β)p(w|α, β)
= p(D|w, β)p(w|α)

Taking logarithm, we get

log p(w|D, α, β)

= −β2
∑
{y(xn,w)− tn}2 −

α

2w
Tw + (terms independent of w)
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Maximum a Posteriori (MAP)

Definition. Suppose model parameters are treated as ran-
dom variables. The parameter values maximizing posterior
distribution are maximum a posteriori (MAP) estimates.

In the current example, we have

wMAP = arg max
w

log p(w|D, α, β)

= arg max
w
−β2

∑
{y(xn,w)− tn}2 −

α

2w
Tw

= arg min
w

β

2
∑
{y(xn,w)− tn}2 + α

2w
Tw

So wMAP is the same as w∗ which minimizes the sum of squared
errors with norm penalty. Again, we see that the results based on
cost function can be re-derived based on a probability model.
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Exploiting Full Information

It is unnecessary to settle for wMAP or wML, which are merely
point estimates. With the posterior distribution of w, the
conditional distribution of the target variable t given x is

p(t|x,D, α, β) =
∫
p(t,w|x,D, α, β)dw

=
∫
p(t|x,w,D, α, β)p(w|x,D, α, β)dw

=
∫
p(t|y(x,w), β)p(w|D, α)dw

It will become clear later that the distribution is Gaussian, i.e.

p(t|x,D, α, β) = N (t|m(x,D, α, β), s2(x,D, α, β))
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Full Bayesian Learning Result
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M = 9. Green curve: f(x). Red curve: E[t|x]. Shade: ±var(t|x).

Chen P Introduction



51/82

Model Selection
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Hyper-parameters

Hyper-parameters are the parameters that are pre-determined before
the training algorithm begins to run, such as

parameters related to model complexity, e.g. M
parameters in the distribution of model parameters, e.g. α
parameters in the learning algorithm, e.g. learning rate and
batch size
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Validation Set and Cross Validation

Suppose we have a set of candidate models. How do we choose
from them?

One way for model selection is to use a validation set.
Let each candidate model be trained with the training set.
Choose the candidate model with the best performance on the
validation set.

When data is limited, we use cross-validation.
Training data is partitioned into groups, each of which serves
as a held-out set, i.e. not used for training but for validation.
Choose the model with the best average performance.
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Model Selection Without Validation Data

We want to fit the data well without over-fitting.
Information criteria. The over-fitting issue can be handled
by the addition of a penalty term for complex models. For
example, we can choose the model that maximizes

log p(D|wML)−M

where M is the number of parameters in a candidate model
and wML is the maximum-likelihood estimate.
Compute model evidence (to be shown later)
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The Curse of Dimensionality
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High-Dimensional Space

In a real problem, we often has many input variables.
It means we often have to work with a high-dimensional space.
High-dimension spaces are different from low-dimension spaces
in many ways.
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Data in High-Dimensional Space
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Left: 3 classes of data points in 3 colors.

Right: partition into meshes for classification.

Issue: The number of meshes grows exponentially with dimension.
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Decision Theory
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Inference and Decision

Suppose we have a data set D = {xn, tn}Nn=1. Based on D, our
goal is to make an optimal decision for any input vector x. We can
break down this problem into two stages.

Inference. Learn the joint distribution p(x, t) from D. This is
the difficult part.
Decision. With p(x, t), make an optimal decision for any input
vector x. This part is relatively simple.

The decision theory concerns with the decision stage.
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Classification: An Example

Consider a medical diagnosis problem in which we have taken an
x-ray image of a patient, and we wish to decide whether the patient
has a certain disease or not.

The input x is the set of pixel intensities in the image, and the output
indicates a class: the presence (class C1) or non-presence (class C2)
of the disease. What is the optimal output function y(x)?
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Optimizing Decision Regions

Given y(x), the input space is partitioned into decision regions, i.e.
R1 (where C1 is the decision) and R2 (where C2 is the decision).
Optimizing y(x) is the same as optimizing decision regions.
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Varying Decision Regions

R1 R2

x0 x̂

p(x, C1)

p(x, C2)

x

A decision error occurs if an example of C2 (resp. C1) lies in
R1 (resp. R2). Moving the decision boundary from x̂ to x0
reduces the probability of error by the area of the red region.
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Analysis

The error event is

E = ({x ∈ R1} ∩ {t = C2}) ∪ ({x ∈ R2} ∩ {t = C1})

The probability of error is

P (E) = P (x ∈ R1, t = C2) + P (x ∈ R2, t = C1)

=
∫
R1
p(x, C2) dx+

∫
R2
p(x, C1) dx

Consider a neighborhood δx of x.
For x ∈ R1, the contribution of δx to P (E) is p(x, C2)δx.
For x ∈ R2, the contribution of δx to P (E) is p(x, C1)δx.

Hence, to minimize P (E), we should let

p(x, C1) > p(x, C2) ⇔ x ∈ C1
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K-class Classification

For K classes, the probability of correct decision is

P (C) =
K∑
k=1

P (x ∈ Rk, t = Ck)

=
K∑
k=1

∫
Rk

p(x, Ck) dx

Hence, to maximize P (C), we should let

x ∈ Ck ⇔ Ck = arg max
Cj

p(x, Cj)
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Decision Based on Posterior Probability

For 2 classes, the decision rule

p(x, C1) > p(x, C2) ⇔ x ∈ C1

is equivalent to (dividing by p(x))

P (C1|x) > P (C2|x) ⇔ x ∈ C1

For K classes, the classification rule

x ∈ Ck ⇔ Ck = arg max
Cj

p(x, Cj)

is equivalent to

x ∈ Ck ⇔ Ck = arg max
Cj

p(Cj |x)

Chen P Introduction
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Rejection Option

x

p(C1|x) p(C2|x)

0.0

1.0
θ

reject region
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Costs of Decision Errors

Miss vs. False alarm
(expensive) a patient with a disease is diagnosed as healthy
(cheap) a healthy patient is diagnosed as having a disease

A loss matrix specifies the costs of different types of errors.

L = {lij}

Specifically, a loss of lij is incurred if an example of class Ci is
assigned to class Cj (lies in Rj).
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Expected Loss

Let R1, . . . ,RK be the decision regions. The expected loss is

E[L] =
∑
i

∑
j

lij P (x ∈ Rj , t = Ci)

=
∑
j

∫
Rj

(∑
i

lij p(x, Ci)
)
dx

To minimize E[L], we should let

x ∈ Ck ⇔ Ck = arg max
Cj

K∑
i=1

lij p(x, Ci)
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Regression

We can apply decision theory to regression problems.

The squared loss between a target variable t and output y(x) is

L = (y(x)− t)2

The expected loss given x = x is

E[L|x = x] =
∫

(y(x)− t)2p(t|x)dt

The total expected loss is

E[L] = E[E[L|x]] =
∫
p(x)dx

∫
(y(x)− t)2p(t|x)dt

=
∫ ∫

(y(x)− t)2p(x, t)dxdt
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Minimization of Expected Squared Loss

The prediction function that minimizes the expected loss can
be determined by calculus of variation.

For the squared loss, the optimal prediction function satisfies

δE[L]
δy(x) = 2

∫
(y(x)− t)p(x, t)dt = 0

That is

y∗(x) =
∫
t p(x, t)dt
p(x) =

∫
t p(t|x)dt = E[t|x]
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Information Theory
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Information

The occurrence of a sure event (an event with probability 1)
conveys no information.
Information is related to probability: the less likely an event,
the more information is conveyed when it occurs.
Let A and B be independent events. The occurrence of A and
B in sequence should convey an amount of information that is
the sum of the information conveyed by the occurrence of A
and the occurrence of B.

Thus, the information of the occurrence of an event is

I(A) = − logP (A)

The unit is bit (resp. nat) when the base of logarithm is 2 (resp e).
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Entropy

Definition. Let X be a discrete random variable with distri-
bution p(x). The entropy of X is

H[X] = −
∑
x

p(x) log p(x)

It is also denoted by H(p).

It is the average of information when X takes a value.
It is non-negative.
It measures the disorder of X.
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Example

The entropy of a Bernoulli random variable is

H[X] = −q log2 q − (1− q) log2(1− q)

where q = P (X = 0).
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Relative Entropy or KL Divergence

Definition. Let X be a discrete random variable. The rel-
ative entropy or KL divergence (or KL distance) between
distribution p(x) and distribution q(x) is

KL(p‖q) =
∑
x

p(x) log p(x)
q(x)

For a continuous random variable X

KL(p‖q) =
∫
p(x) log p(x)

q(x)dx

It can be shown that
KL(p‖q) ≥ 0

It is important to note

KL(p‖q) 6= KL(q‖p)
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Likelihood and KL Divergence

Let x be a random vector with distribution p(x). Suppose p(x) is
unknown, yet we have data points {x1, . . . ,xN} drawn from p(x).
We can approximate p(x) via a parametric distribution q(x|θ) with

q(x|θ∗) = arg min
θ

KL(p(x)‖q(x|θ))

Note

KL(p(x)‖q(x|θ)) = E
{

log p(x)
q(x|θ)

}
= E {log p(x)} − E {log q(x|θ)}

≈ −H(p)− 1
N

N∑
n=1
{log q(xn|θ)}

So minimizing KL(p‖q) is equivalent to maximizing the data likeli-
hood under q.
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Cross Entropy

Definition. Let X be a discrete random variable. The cross
entropy between distribution p(x) and distribution q(x) is

E(p, q) = −
∑
x

p(x) log q(x)

For a continuous random variable X

E(p, q) = −
∫
p(x) log q(x)dx

The KL divergence between distribution p(x) and distribution q(x)
can be written as

KL(p‖q) =
∑
x

p(x) log p(x)
q(x) = E(p, q)−H(p)

Hence minimizing KL(p‖q) over q is equivalent to minimizing E(p, q).
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Cross Entropy and Data Likelihood

In a classification model, we use a parametric function y(x,w) to
approximate the class posterior probabilities. For a data point (x, t)
from class Cj , the cross entropy between t and y(x,w) is

E(t,y(x,w)) = −
∑
k

tk log yk(x,w)

= −

∑
k 6=j

δkj log yk(x,w) + δjj log yj(x,w)


= − log yj(x,w)
≈ − log p(Cj |x)

This is the negative log likelihood.

Chen P Introduction



81/82

Conditional Entropy

Definition. Let X and Y be discrete random variables with
joint distribution p(x,y). The conditional entropy of Y
given X is

H[Y |X] = −
∑
x

p(x)
∑
y

p(y|x) log p(y|x)

= −
∑
x

∑
y

p(x, y) log p(y|x)

It can be shown that

H[X,Y ] = H[X] +H[Y |X]
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Mutual Information

Definition. Let X and Y be discrete random variables with
joint distribution p(x,y). The mutual information between
X and Y is

I[X,Y ] = KL(p(x, y)‖p(x)p(y))

It can be shown that

I[X,Y ] = H[X]−H[X|Y ]
= H[Y ]−H[Y |X]
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