Introduction

Chia－Ping Chen

Professor
National Sun Yat－sen University
Department of Computer Science and Engineering

Machine Learning

- Example: Curve Fitting
- Probability Theory
- Model Selection
- Curse of Dimensionality
- Decision Theory
- Information Theory

Pattern Recognition

Patterns are structures within data.

- shapes
- objects
- words/phrases
- phonemes
- stock market

Recognition of patterns leads to scientific breakthroughs.
Brahe
(data) $\underset{\text { Kepler }}{\text { (description) }} \rightarrow \underset{\text { Newton }}{\text { (explanation) }}$

In this course, we are interested in learning patterns from a collection of data, and then recognizing patterns in unseen data.

Machine Learning

The use of computers (machines) to learn from data.

- classification
- regression
- transcription
- detection
- translation
- synthesis
- much more

Elements of Machine Learning

A machine learning system is characterized by task, data, model, algorithm, and evaluation.

- A task is specified in terms of input and output.
- Task-related data is used for learning or inference.
- A model characterizes the mathematical relationship between input and output.
- An algorithm learns model parameters from training data or does inference on test data.

■ Evaluation measures system performance.

$$
\begin{aligned}
& 017234 \\
& 56789
\end{aligned}
$$

- task: to recognize the digit in an image
- data: images of hand-written digits
- model: a probability model $P\left(C_{k} \mid \boldsymbol{x}\right)$
- algorithm: learns model parameters or decides class
- evaluation: recognition accuracy

Example: Polynomial Curve Fitting

- Task: to output $y(x)$ as the prediction for input x
- Data: $\mathcal{D}=\left\{\left(x_{n}, t_{n}\right)\right\}_{n=1}^{N}$ and $\mathcal{D}^{\prime}=\left\{\left(x_{n}^{\prime}, t_{n}^{\prime}\right)\right\}_{n=1}^{N^{\prime}}$

■ Model: a polynomial function mapping input x to output y

$$
y(x, \boldsymbol{w})=w_{0}+w_{1} x+\cdots+w_{M} x^{M}
$$

- Algorithm: to decide \boldsymbol{w} by minimizing a cost function

$$
\boldsymbol{w}^{*}(\mathcal{D})=\arg \min _{\boldsymbol{w}} l(\mathcal{D} ; \boldsymbol{w})
$$

- Evaluation: mean squared error

$$
\operatorname{MSE}\left(\mathcal{D}^{\prime}\right)=\frac{1}{N^{\prime}} \sum_{n=1}^{N^{\prime}}\left(y\left(x_{n}^{\prime}, \boldsymbol{w}^{*}\right)-t_{n}^{\prime}\right)^{2}
$$

Let the training data $\mathcal{D}=\left\{\left(x_{n}, t_{n}\right)\right\}_{n=1}^{N}$ be generated by

$$
t_{n}=\sin \left(2 \pi x_{n}\right)+\epsilon_{n}
$$

The points x_{1}, \ldots, x_{10} are equally spaced between 0 and 1 , and the noises $\epsilon_{1}, \ldots, \epsilon_{10}$ are i.i.d. zero-mean Gaussian random variables.

Cost Function

A simple cost function for learning a prediction function is the sum of squared errors on the training set.

$$
\boldsymbol{w}^{*}(\mathcal{D})=\arg \min _{\boldsymbol{w}} \overbrace{\frac{1}{2} \sum_{n=1}^{N}\left\{y\left(x_{n}, \boldsymbol{w}\right)-t_{n}\right\}^{2}}^{l(\mathcal{D} ; \boldsymbol{w})}
$$

Results

Over-Fitting

For $M=9$, the learned output function fits the training data well, but fits unseen test data poorly.

- M controls the number of parameters in $y(x, \boldsymbol{w})$.
- For $M=9$, the learned output function $y\left(x, \boldsymbol{w}^{*}\right)$ passes all 10 points exactly.
■ However, $y\left(x, \boldsymbol{w}^{*}\right)$ is a very poor approximation to the true function $\sin (2 \pi x)$ used to generate data.
- What happens here is called over-fitting.

A simple performance measure for curve fitting is the root-meansquare error

$$
E_{\mathrm{RMS}}=\sqrt{\frac{2 E\left(\boldsymbol{w}^{*}\right)}{N}}
$$

The RMS errors on the training set and test set are different.

One way to deal with over-fitting is to add data points to the training set.

For $M=9$, increasing N overcomes over-fitting.

Another way to deal with over-fitting is to add norm penalty to the cost function

$$
\tilde{E}(\boldsymbol{w})=E(\boldsymbol{w})+\frac{\lambda}{2}\|\boldsymbol{w}\|^{2}
$$

Norm penalty is an example of regularization. It favors parameters with small magnitudes. λ controls the degree of regularization.

The results for $M=9$ with different $\lambda \mathrm{s}$.

Probability Theory (Quick Review)

Probability theory is fundamental to AI.

- input completion

$$
w_{\geq n}^{*}=\arg \max _{w_{\geq n}} P\left(w_{\geq n} \mid w_{<n}\right)
$$

- speech recognition

$$
W^{*}=\arg \max _{W} P(W \mid A)
$$

- machine translation

$$
e^{*}=\arg \max _{e} P(e \mid f)
$$

- information retrieval

$$
d^{*}=\arg \max _{d} P(d \mid q)
$$

Sum Rule and Product Rule

The sum rule and product rule of probability are fundamental relationships between the joint probability, the marginal probability, and the conditional probability of two (groups of) random variables.

Let X and Y be random variables.

- sum rule

$$
\begin{aligned}
& P(X)=\sum_{Y} P(X, Y) \\
& P(Y)=\sum_{X} P(X, Y)
\end{aligned}
$$

- product rule

$$
\begin{aligned}
& P(X, Y)=P(Y \mid X) P(X) \\
& P(X, Y)=P(X \mid Y) P(Y)
\end{aligned}
$$

Bayes' Rule

A conditional probability can be derived from the conditional probability in the other direction.

Bayes' rule. Let X and Y be random variables.

$$
P(Y \mid X)=\frac{P(X \mid Y) P(Y)}{\sum_{Y^{\prime}} P\left(X \mid Y^{\prime}\right) P\left(Y^{\prime}\right)}
$$

Proof.

$$
\begin{aligned}
P(Y \mid X) & =\frac{P(X, Y)}{P(X)}=\frac{P(X \mid Y) P(Y)}{P(X)}=\frac{P(X \mid Y) P(Y)}{\sum_{Y^{\prime}} P\left(X, Y^{\prime}\right)} \\
& =\frac{P(X \mid Y) P(Y)}{\sum_{Y^{\prime}} P\left(X \mid Y^{\prime}\right) P\left(Y^{\prime}\right)}
\end{aligned}
$$

Example

There are 2 apples and 6 oranges in a red box. There are 3 apples and 1 orange in a blue box. Choose a box at random (red chosen with probability 0.4) and then choose a fruit from the chosen box.

■ What is the probability that an orange is chosen?

- Given an orange is chosen, what is the probability that the red box has been chosen?

Let $Y \in\{r, b\}$ be the chosen box, and $X \in\{a, o\}$ be the chosen fruit.

Probability Density Function

Definition. Let X be a continuous random variable. The probability of event $X \in(x, x+\delta)$ is

$$
p_{X}(x) \delta+o(\delta)
$$

$p_{X}(x)$ is the probability density function (PDF) of X.

- density

$$
P(X \in(a, b))=\int_{a}^{b} p_{X}(x) d x
$$

- non-negativity

$$
p_{X}(x) \geq 0
$$

- normalization

$$
\int p_{X}(x) d x=1
$$

- marginal probability

$$
p_{X}(x)=\int p_{X Y}(x, y) d y
$$

- conditional probability

$$
p_{Y \mid X}(y \mid x)=\frac{p_{X Y}(x, y)}{p_{X}(x)}
$$

Cumulative Distribution Function

Definition. The probability of a random variable can also be specified by a cumulative distribution function (CDF)

$$
F_{X}(x)=P(X \leq x)
$$

The CDF and the PDF of X are related by

$$
p_{X}(x)=\frac{d}{d x} F_{X}(x)
$$

Inverse Function Method

Let X be a continuous random variable with CDF F_{X}. A sample of X can be generated by applying F_{X}^{-1} to a sample drawn from the uniform distribution.

- Draw an instance y from

$$
Y \sim \operatorname{uniform}(0,1)
$$

- Transform y by

$$
x=F_{X}^{-1}(y)
$$

Theorem

Let X be a continuous random variable with PDF $p_{X}(x)$ and CDF $F_{X}(x)$, and $Y=F_{X}(X)$. Then $Y \sim$ uniform $(0,1)$.

We have $0 \leq Y \leq 1$. Also, event $X \in\left(x, x+\delta_{x}\right)$ is equivalent to $Y \in\left(y, y+\delta_{y}\right)$, where $y=F_{X}(x)$. So

$$
p_{X}(x)\left|\delta_{x}\right|+o\left(\delta_{x}\right)=p_{Y}(y)\left|\delta_{y}\right|+o\left(\delta_{y}\right)
$$

Consider $\delta_{x} \rightarrow 0^{+}$.

$$
p_{Y}(y)=p_{X}(x)\left|\frac{\delta_{x}}{\delta_{y}}\right|=p_{X}(x)\left|\frac{d y}{d x}\right|^{-1}=p_{X}(x)\left(p_{X}(x)\right)^{-1}=1
$$

Thus

$$
Y \sim \operatorname{uniform}(0,1)
$$

Example: Exponential Random Variable

Consider $X \sim \operatorname{exponential}(\lambda)$. Since the CDF of X is

$$
F_{X}(x)=1-e^{-\lambda x}
$$

we have $Y=F_{X}(X)=1-e^{-\lambda X}$ is uniform $(0,1)$.

An instance x of X can be obtained by drawing an instance y of Y and transforming y to x by

$$
x=F_{X}^{-1}(y)=-\frac{1}{\lambda} \log (1-y)
$$

EXPECTATION

Definition. Let X be a random variable. The expectation of X is

$$
\mathbb{E}[X]=\sum_{x} x P(X=x)
$$

or

$$
\mathbb{E}[X]=\int x p_{X}(x) d x
$$

Expectation can be taken with respect to conditional probability, called conditional expectation. That is

$$
\mathbb{E}[X \mid Y=y]=\sum_{x} x P(X=x \mid Y=y)
$$

or

$$
\mathbb{E}[X \mid Y=y]=\int x p_{X \mid Y}(x \mid y) d x
$$

Let X be a random variable and $f(\cdot)$ be a function. Then $f(X)$ is a random variable.

The expectation of $f(X)$ is

$$
\mathbb{E}[f]=\int f(x) p_{X}(x) d x
$$

Or

$$
\mathbb{E}[f]=\sum_{x} f(x) P(X=x)
$$

Sample Mean

Definition. The sample mean of $f(X)$ based on sample $\left\{x_{1}, \ldots, x_{N}\right\}$ of X is

$$
\mathbb{E}[f] \approx \frac{1}{N} \sum_{n=1}^{N} f\left(x_{n}\right)
$$

Law of large numbers. A sequence of the sample means of a random variable converges to the expectation of the random variable.

Variance

Definition. Let X be a random variable. The variance of X is

$$
\operatorname{var}[X]=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]
$$

Let $f(\cdot)$ be a function. The variance of $f(X)$ is

$$
\operatorname{var}[f]=\mathbb{E}\left[(f(X)-\mathbb{E}[f(X)])^{2}\right]
$$

Covariance

Definition. Let X and Y be random variables. The covariance of X and Y is

$$
\operatorname{cov}[X, Y]=\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]
$$

It can be shown that

$$
\operatorname{cov}[X, Y]=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]
$$

Covariance Matrix

Definition. Let \mathbf{x} and \mathbf{y} be random vectors. The covariance matrix of \mathbf{x} and y is

$$
\operatorname{cov}[\mathbf{x}, \mathbf{y}]=\boldsymbol{\Sigma}=\mathbb{E}\left[(\mathbf{x}-\mathbb{E}[\mathbf{x}])(\mathbf{y}-\mathbb{E}[\mathbf{y}])^{\mathbf{T}}\right]
$$

Furthermore, the covariance matrix of x is

$$
\operatorname{cov}[\mathbf{x}]=\operatorname{cov}[\mathbf{x}, \mathbf{x}]
$$

The covariance matrix of \mathbf{x} and \mathbf{y} consists of pairwise covariances

$$
\sigma_{i j}=\mathbb{E}\left[\left(x_{i}-\mathbb{E}\left[x_{i}\right]\right)\left(y_{j}-\mathbb{E}\left[y_{j}\right]\right)\right]
$$

Gaussian Random Variable

Definition. A Gaussian PDF is

$$
\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{1 / 2}} \exp \left\{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right\}
$$

A Gaussian random variable has a Gaussian PDF.

Normalization

$$
\int \mathcal{N}\left(x \mid \mu, \sigma^{2}\right) d x=1
$$

Expectation

$$
\mathbb{E}[x]=\mu
$$

Variance

$$
\operatorname{var}[x]=\sigma^{2}
$$

Gaussian Random Vector

Definition. Let x be a random vector. x is a Gaussian random vector if it has PDF

$$
\mathcal{N}(\boldsymbol{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{(2 \pi)^{D / 2}} \frac{1}{|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left\{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right\}
$$

- The parameters are in $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$.
- $\boldsymbol{\mu}$ is the mean vector of \mathbf{x} and $\boldsymbol{\Sigma}$ is the covariance matrix of \mathbf{x}.

The logarithm of a Gaussian PDF is

$$
\begin{aligned}
& \log \left[\frac{1}{(2 \pi)^{D / 2}} \frac{1}{|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left\{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right\}\right] \\
& =-\frac{D}{2} \log (2 \pi)-\frac{1}{2} \log |\boldsymbol{\Sigma}|-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu}) \\
& =-\frac{1}{2} \boldsymbol{x}^{T} \boldsymbol{\Sigma}^{-1} \boldsymbol{x}+\boldsymbol{\mu}^{T} \boldsymbol{\Sigma}^{-1} \boldsymbol{x}+\mathrm{const}
\end{aligned}
$$

It is a quadratic function of \boldsymbol{x}.

- The second-order term depends on the covariance matrix.
- The first-order term depends on the covariance matrix and the mean vector.

Curve-Fitting with Probability Model

- We want to fit a data set $\mathcal{D}=\left\{\left(x_{n}, t_{n}\right)\right\}_{n=1}^{N}$.
- Suppose that the dataset is generated according to

$$
t_{n}=u\left(x_{n}\right)+\epsilon_{n}, n=1, \ldots, N
$$

where $\epsilon_{1}, \ldots, \epsilon_{N}$ are i.i.d. random variables.

- The function $u(x)$ is unknown to us. The distribution of ϵ_{n} is also unknown.
- Hence, we assume a parametric prediction function $y(x, \boldsymbol{w})$ to approximate $u(x)$ and a parametric distribution for ϵ_{n}.
- After setting up a probability model, we can learn the parameters in the model from \mathcal{D} via maximum likelihood or Bayesian learning.

■ Maximum likelihood. Treat the model parameters as unknowns. Learning is the process of deciding optimal values.

- Bayesian learning. Treat the model parameters as random variables (with parametric distribution). Learning is the process of updating their (parametric) distribution.

Learning without Probability Model

Earlier, we found optimal parameters \boldsymbol{w}^{*} by minimizing a cost function

$$
\boldsymbol{w}^{*}=\arg \max _{\boldsymbol{w}} E(\boldsymbol{w})
$$

For example, with norm penalty, we minimized

$$
\begin{aligned}
E(\boldsymbol{w}) & =E_{D}(\boldsymbol{w})+E_{W}(\boldsymbol{w}) \\
& =\sum_{n=1}^{N} E\left(y\left(x_{n}, \boldsymbol{w}\right), t_{n}\right)+\lambda R(\boldsymbol{w})
\end{aligned}
$$

This learning method has nothing to do with probability. Nonetheless, it can be derived from probabilistic models.

Gaussian Noise Model

We often assume a data point is corrupted by a Gaussian noise. More specifically, we assume

$$
t=u(x)+\epsilon
$$

where $u(x)$ is a function and $\epsilon \sim \mathcal{N}\left(e \mid 0, \beta^{-1}\right)$ is Gaussian.
It follows that the conditional distribution of t given x is Gaussian

$$
p(t \mid x)=\mathcal{N}\left(t \mid u(x), \beta^{-1}\right)
$$

Approximate the True Function

As $u(x)$ is unknown to us, we use a parametric function $y(x, \boldsymbol{w})$ to approximate $u(x)$, i.e.

$$
u(x) \approx y(x, \boldsymbol{w})
$$

With this approximation and Gaussian noise assumption, we have

$$
p(t \mid x) \approx \mathcal{N}\left(t \mid y(x, \boldsymbol{w}), \beta^{-1}\right)
$$

The likelihood of a data point $\left(x_{n}, t_{n}\right)$ is

$$
p\left(t_{n} \mid x_{n}\right) \approx \mathcal{N}\left(t_{n} \mid y\left(x_{n}, \boldsymbol{w}\right), \beta^{-1}\right)
$$

The data likelihood of $\mathcal{D}=\left\{\left(x_{n}, t_{n}\right)\right\}_{n=1}^{N}$ is

$$
p(\mathcal{D} \mid \boldsymbol{w}, \beta)=\prod_{n=1}^{N} \mathcal{N}\left(t_{n} \mid y\left(x_{n}, \boldsymbol{w}\right), \beta^{-1}\right)
$$

and the \log data-likelihood of \mathcal{D} is
$\log p(\mathcal{D} \mid \boldsymbol{w}, \beta)=-\frac{\beta}{2} \sum_{n=1}^{N}\left\{y\left(x_{n}, \boldsymbol{w}\right)-t_{n}\right\}^{2}+\frac{N}{2} \log \beta-\frac{N}{2} \log (2 \pi)$

Definition. The parameter values maximizing data likelihood are maximum-likelihood (ML) estimates.

For the above Gaussian noise model, the maximum-likelihood estimate is

$$
\begin{aligned}
\boldsymbol{w}_{\mathrm{ML}} & =\arg \min _{\boldsymbol{w}} \sum_{n=1}^{N}\left\{y\left(x_{n}, \boldsymbol{w}\right)-t_{n}\right\}^{2} \\
\frac{1}{\beta_{\mathrm{ML}}} & =\frac{1}{N} \sum_{n=1}^{N}\left(y\left(x_{n}, \boldsymbol{w}_{\mathrm{ML}}\right)-t_{n}\right)^{2}
\end{aligned}
$$

Likelihood and Error

Note $\boldsymbol{w}_{\mathrm{ML}}$ is the same as \boldsymbol{w}^{*} which minimizes the sum of squared errors. Here we see that the results based on squared-error cost function can be re-derived based on a Gaussian noise model.

Definition. In machine learning with probability models, the negative log-likelihood function is the error function.

Following this definition, we have maximum likelihood $=$ minimum error

Bayesian Learning

In Bayesian learning, we treat model parameters as random variables and update their distribution with data.

Specifically

- Assume a prior distribution $p(\boldsymbol{w})$ for parameters \mathbf{w}.
- Update the distribution of \mathbf{w} to posterior distribution $p(\boldsymbol{w} \mid \mathcal{D})$ by the Bayes' rule

$$
p(\boldsymbol{w} \mid \mathcal{D})=\frac{p(\mathcal{D}, \boldsymbol{w})}{p(\mathcal{D})}=\frac{p(\mathcal{D} \mid \boldsymbol{w}) p(\boldsymbol{w})}{p(\mathcal{D})} \propto p(\mathcal{D} \mid \boldsymbol{w}) p(\boldsymbol{w})
$$

Gaussian Prior

Let us assume a Gaussian prior distribution for \mathbf{w}

$$
\begin{aligned}
p(\boldsymbol{w} \mid \alpha) & =\mathcal{N}\left(\boldsymbol{w} \mid \mathbf{0}, \alpha^{-1} \boldsymbol{I}\right) \\
& =\left(\frac{\alpha}{2 \pi}\right)^{(M+1) / 2} \exp \left\{-\frac{\alpha}{2} \boldsymbol{w}^{T} \boldsymbol{w}\right\}
\end{aligned}
$$

For the posterior distribution of \mathbf{w}

$$
\begin{aligned}
p(\boldsymbol{w} \mid \mathcal{D}, \alpha, \beta) & \propto p(\boldsymbol{w}, \mathcal{D} \mid \alpha, \beta)=p(\mathcal{D} \mid \boldsymbol{w}, \alpha, \beta) p(\boldsymbol{w} \mid \alpha, \beta) \\
& =p(\mathcal{D} \mid \boldsymbol{w}, \beta) p(\boldsymbol{w} \mid \alpha)
\end{aligned}
$$

Taking logarithm, we get
$\log p(\boldsymbol{w} \mid \mathcal{D}, \alpha, \beta)$
$=-\frac{\beta}{2} \sum\left\{y\left(x_{n}, \boldsymbol{w}\right)-t_{n}\right\}^{2}-\frac{\alpha}{2} \boldsymbol{w}^{T} \boldsymbol{w}+($ terms independent of $\boldsymbol{w})$

Maximum a Posteriori (MAP)

Definition. Suppose model parameters are treated as random variables. The parameter values maximizing posterior distribution are maximum a posteriori (MAP) estimates.

In the current example, we have

$$
\begin{aligned}
\boldsymbol{w}_{\mathrm{MAP}} & =\arg \max _{\boldsymbol{w}} \log p(\boldsymbol{w} \mid \mathcal{D}, \alpha, \beta) \\
& =\arg \max _{\boldsymbol{w}}-\frac{\beta}{2} \sum\left\{y\left(x_{n}, \boldsymbol{w}\right)-t_{n}\right\}^{2}-\frac{\alpha}{2} \boldsymbol{w}^{T} \boldsymbol{w} \\
& =\arg \min _{\boldsymbol{w}} \frac{\beta}{2} \sum\left\{y\left(x_{n}, \boldsymbol{w}\right)-t_{n}\right\}^{2}+\frac{\alpha}{2} \boldsymbol{w}^{T} \boldsymbol{w}
\end{aligned}
$$

So $\boldsymbol{w}_{\text {MAP }}$ is the same as \boldsymbol{w}^{*} which minimizes the sum of squared errors with norm penalty. Again, we see that the results based on cost function can be re-derived based on a probability model.

It is unnecessary to settle for $w_{\text {MAP }}$ or $\boldsymbol{w}_{\mathrm{ML}}$, which are merely point estimates. With the posterior distribution of \mathbf{w}, the conditional distribution of the target variable t given x is

$$
\begin{aligned}
p(t \mid x, \mathcal{D}, \alpha, \beta) & =\int p(t, \boldsymbol{w} \mid x, \mathcal{D}, \alpha, \beta) d \boldsymbol{w} \\
& =\int p(t \mid x, \boldsymbol{w}, \mathcal{D}, \alpha, \beta) p(\boldsymbol{w} \mid x, \mathcal{D}, \alpha, \beta) d \boldsymbol{w} \\
& =\int p(t \mid y(x, \boldsymbol{w}), \beta) p(\boldsymbol{w} \mid \mathcal{D}, \alpha) d \boldsymbol{w}
\end{aligned}
$$

It will become clear later that the distribution is Gaussian, i.e.

$$
p(t \mid x, \mathcal{D}, \alpha, \beta)=\mathcal{N}\left(t \mid m(x, \mathcal{D}, \alpha, \beta), s^{2}(x, \mathcal{D}, \alpha, \beta)\right)
$$

$M=9$. Green curve: $f(x)$. Red curve: $\mathbb{E}[t \mid x]$. Shade: $\pm \operatorname{var}(t \mid x)$.

Model Selection

Hyper-parameters

Hyper-parameters are the parameters that are pre-determined before the training algorithm begins to run, such as

■ parameters related to model complexity, e.g. M

- parameters in the distribution of model parameters, e.g. α
- parameters in the learning algorithm, e.g. learning rate and batch size

Validation Set and Cross Validation

Suppose we have a set of candidate models. How do we choose from them?

■ One way for model selection is to use a validation set.

- Let each candidate model be trained with the training set.
- Choose the candidate model with the best performance on the validation set.
- When data is limited, we use cross-validation.
- Training data is partitioned into groups, each of which serves as a held-out set, i.e. not used for training but for validation.
- Choose the model with the best average performance.

Model Selection Without Validation Data

We want to fit the data well without over-fitting.
■ Information criteria. The over-fitting issue can be handled by the addition of a penalty term for complex models. For example, we can choose the model that maximizes

$$
\log p\left(\mathcal{D} \mid \boldsymbol{w}_{\mathrm{ML}}\right)-M
$$

where M is the number of parameters in a candidate model and $\boldsymbol{w}_{\mathrm{ML}}$ is the maximum-likelihood estimate.
■ Compute model evidence (to be shown later)

The Curse of Dimensionality

High-Dimensional Space

- In a real problem, we often has many input variables.
- It means we often have to work with a high-dimensional space.
- High-dimension spaces are different from low-dimension spaces in many ways.

Left: the volume of a shell of fraction ϵ of the radius of a sphere of dimension D. Right: the probability density with respect to r of an isotropic Gaussian vector of dimension D.

Data in High-Dimensional Space

Left: 3 classes of data points in 3 colors.
Right: partition into meshes for classification.
Issue: The number of meshes grows exponentially with dimension.

Decision Theory

Inference and Decision

Suppose we have a data set $\mathcal{D}=\left\{\boldsymbol{x}_{n}, \boldsymbol{t}_{n}\right\}_{n=1}^{N}$. Based on \mathcal{D}, our goal is to make an optimal decision for any input vector \boldsymbol{x}. We can break down this problem into two stages.

■ Inference. Learn the joint distribution $p(\boldsymbol{x}, \boldsymbol{t})$ from \mathcal{D}. This is the difficult part.

- Decision. With $p(\boldsymbol{x}, \boldsymbol{t})$, make an optimal decision for any input vector \boldsymbol{x}. This part is relatively simple.
The decision theory concerns with the decision stage.

Classification: An Example

Consider a medical diagnosis problem in which we have taken an x-ray image of a patient, and we wish to decide whether the patient has a certain disease or not.

The input \boldsymbol{x} is the set of pixel intensities in the image, and the output indicates a class: the presence (class \mathcal{C}_{1}) or non-presence (class \mathcal{C}_{2}) of the disease. What is the optimal output function $y(\boldsymbol{x})$?

Optimizing Decision Regions

Given $y(\boldsymbol{x})$, the input space is partitioned into decision regions, i.e. \mathcal{R}_{1} (where \mathcal{C}_{1} is the decision) and \mathcal{R}_{2} (where \mathcal{C}_{2} is the decision). Optimizing $y(\boldsymbol{x})$ is the same as optimizing decision regions.

Varying Decision Regions

A decision error occurs if an example of \mathcal{C}_{2} (resp. \mathcal{C}_{1}) lies in \mathcal{R}_{1} (resp. \mathcal{R}_{2}). Moving the decision boundary from \hat{x} to x_{0} reduces the probability of error by the area of the red region.

Analysis

The error event is

$$
E=\left(\left\{\mathbf{x} \in \mathcal{R}_{1}\right\} \cap\left\{\mathbf{t}=\mathcal{C}_{2}\right\}\right) \cup\left(\left\{\mathbf{x} \in \mathcal{R}_{2}\right\} \cap\left\{\mathbf{t}=\mathcal{C}_{1}\right\}\right)
$$

The probability of error is

$$
\begin{aligned}
P(E) & =P\left(\mathbf{x} \in \mathcal{R}_{1}, \mathbf{t}=\mathcal{C}_{2}\right)+P\left(\mathbf{x} \in \mathcal{R}_{2}, \mathbf{t}=\mathcal{C}_{1}\right) \\
& =\int_{\mathcal{R}_{1}} p\left(\boldsymbol{x}, \mathcal{C}_{2}\right) d \boldsymbol{x}+\int_{\mathcal{R}_{2}} p\left(\boldsymbol{x}, \mathcal{C}_{1}\right) d \boldsymbol{x}
\end{aligned}
$$

Consider a neighborhood $\delta \boldsymbol{x}$ of \boldsymbol{x}.
■ For $\boldsymbol{x} \in \mathcal{R}_{1}$, the contribution of $\delta \boldsymbol{x}$ to $P(E)$ is $p\left(\boldsymbol{x}, \mathcal{C}_{2}\right) \delta \boldsymbol{x}$.
■ For $\boldsymbol{x} \in \mathcal{R}_{2}$, the contribution of $\delta \boldsymbol{x}$ to $P(E)$ is $p\left(\boldsymbol{x}, \mathcal{C}_{1}\right) \delta \boldsymbol{x}$.
Hence, to minimize $P(E)$, we should let

$$
p\left(\boldsymbol{x}, \mathcal{C}_{1}\right)>p\left(\boldsymbol{x}, \mathcal{C}_{2}\right) \Leftrightarrow \boldsymbol{x} \in \mathcal{C}_{1}
$$

K-CLASS CLASSIFICATION

For K classes, the probability of correct decision is

$$
\begin{aligned}
P(C) & =\sum_{k=1}^{K} P\left(\mathbf{x} \in \mathcal{R}_{k}, \mathbf{t}=\mathcal{C}_{k}\right) \\
& =\sum_{k=1}^{K} \int_{\mathcal{R}_{k}} p\left(\boldsymbol{x}, \mathcal{C}_{k}\right) d \boldsymbol{x}
\end{aligned}
$$

Hence, to maximize $P(C)$, we should let

$$
\boldsymbol{x} \in \mathcal{C}_{k} \Leftrightarrow \mathcal{C}_{k}=\arg \max _{\mathcal{C}_{j}} p\left(\boldsymbol{x}, \mathcal{C}_{j}\right)
$$

For 2 classes, the decision rule

$$
p\left(\boldsymbol{x}, \mathcal{C}_{1}\right)>p\left(\boldsymbol{x}, \mathcal{C}_{2}\right) \Leftrightarrow \boldsymbol{x} \in \mathcal{C}_{1}
$$

is equivalent to (dividing by $p(\boldsymbol{x})$)

$$
P\left(\mathcal{C}_{1} \mid \boldsymbol{x}\right)>P\left(\mathcal{C}_{2} \mid \boldsymbol{x}\right) \Leftrightarrow \boldsymbol{x} \in \mathcal{C}_{1}
$$

For K classes, the classification rule

$$
\boldsymbol{x} \in \mathcal{C}_{k} \Leftrightarrow \mathcal{C}_{k}=\arg \max _{\mathcal{C}_{j}} p\left(\boldsymbol{x}, \mathcal{C}_{j}\right)
$$

is equivalent to

$$
\boldsymbol{x} \in \mathcal{C}_{k} \Leftrightarrow \mathcal{C}_{k}=\arg \max _{\mathcal{C}_{j}} p\left(\mathcal{C}_{j} \mid \boldsymbol{x}\right)
$$

Rejection Option

Costs of Decision Errors

Miss vs. False alarm

- (expensive) a patient with a disease is diagnosed as healthy
- (cheap) a healthy patient is diagnosed as having a disease

A loss matrix specifies the costs of different types of errors.

$$
\boldsymbol{L}=\left\{l_{i j}\right\}
$$

Specifically, a loss of $l_{i j}$ is incurred if an example of class \mathcal{C}_{i} is assigned to class \mathcal{C}_{j} (lies in \mathcal{R}_{j}).

Expected Loss

Let $\mathcal{R}_{1}, \ldots, \mathcal{R}_{K}$ be the decision regions. The expected loss is

$$
\begin{aligned}
\mathbb{E}[L] & =\sum_{i} \sum_{j} l_{i j} P\left(\mathbf{x} \in \mathcal{R}_{j}, \mathbf{t}=\mathcal{C}_{i}\right) \\
& =\sum_{j} \int_{\mathcal{R}_{j}}\left(\sum_{i} l_{i j} p\left(\boldsymbol{x}, \mathcal{C}_{i}\right)\right) d \boldsymbol{x}
\end{aligned}
$$

To minimize $\mathbb{E}[L]$, we should let

$$
\boldsymbol{x} \in \mathcal{C}_{k} \Leftrightarrow \mathcal{C}_{k}=\arg \max _{\mathcal{C}_{j}} \sum_{i=1}^{K} l_{i j} p\left(\boldsymbol{x}, \mathcal{C}_{i}\right)
$$

Regression

We can apply decision theory to regression problems.

The squared loss between a target variable t and output $y(\mathbf{x})$ is

$$
L=(y(\mathbf{x})-t)^{2}
$$

The expected loss given $\mathrm{x}=\boldsymbol{x}$ is

$$
\mathbb{E}[L \mid \mathbf{x}=\boldsymbol{x}]=\int(y(\boldsymbol{x})-t)^{2} p(t \mid \boldsymbol{x}) d t
$$

The total expected loss is

$$
\begin{aligned}
\mathbb{E}[L] & =\mathbb{E}[\mathbb{E}[L \mid \mathbf{x}]]=\int p(\boldsymbol{x}) d \boldsymbol{x} \int(y(\boldsymbol{x})-t)^{2} p(t \mid \boldsymbol{x}) d t \\
& =\iint(y(\boldsymbol{x})-t)^{2} p(\boldsymbol{x}, t) d \boldsymbol{x} d t
\end{aligned}
$$

The prediction function that minimizes the expected loss can be determined by calculus of variation.

For the squared loss, the optimal prediction function satisfies

$$
\frac{\delta \mathbb{E}[L]}{\delta y(\boldsymbol{x})}=2 \int(y(\boldsymbol{x})-t) p(\boldsymbol{x}, t) d t=0
$$

That is

$$
y^{*}(\boldsymbol{x})=\frac{\int t p(\boldsymbol{x}, t) d t}{p(\boldsymbol{x})}=\int t p(t \mid \boldsymbol{x}) d t=\mathbb{E}[t \mid \boldsymbol{x}]
$$

Information Theory

Information

- The occurrence of a sure event (an event with probability 1) conveys no information.
- Information is related to probability: the less likely an event, the more information is conveyed when it occurs.
- Let A and B be independent events. The occurrence of A and B in sequence should convey an amount of information that is the sum of the information conveyed by the occurrence of A and the occurrence of B.

Thus, the information of the occurrence of an event is

$$
I(A)=-\log P(A)
$$

The unit is bit (resp. nat) when the base of logarithm is 2 (resp e).

Entropy

Definition. Let X be a discrete random variable with distribution $p(x)$. The entropy of X is

$$
H[X]=-\sum_{x} p(x) \log p(x)
$$

It is also denoted by $H(p)$.

- It is the average of information when X takes a value.
- It is non-negative.
- It measures the disorder of X.

The entropy of a Bernoulli random variable is

$$
H[X]=-q \log _{2} q-(1-q) \log _{2}(1-q)
$$

where $q=P(X=0)$.

Relative Entropy or KL Divergence

Definition. Let X be a discrete random variable. The relative entropy or KL divergence (or KL distance) between distribution $p(x)$ and distribution $q(x)$ is

$$
\mathrm{KL}(p \| q)=\sum_{x} p(x) \log \frac{p(x)}{q(x)}
$$

For a continuous random variable X

$$
\mathrm{KL}(p \| q)=\int p(x) \log \frac{p(x)}{q(x)} d x
$$

It can be shown that

$$
\mathrm{KL}(p \| q) \geq 0
$$

It is important to note

$$
\mathrm{KL}(p \| q) \neq \mathrm{KL}(q \| p)
$$

Likelihood and KL Divergence

Let \mathbf{x} be a random vector with distribution $p(\boldsymbol{x})$. Suppose $p(\boldsymbol{x})$ is unknown, yet we have data points $\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right\}$ drawn from $p(\boldsymbol{x})$. We can approximate $p(\boldsymbol{x})$ via a parametric distribution $q(\boldsymbol{x} \mid \boldsymbol{\theta})$ with

$$
q\left(\boldsymbol{x} \mid \boldsymbol{\theta}^{*}\right)=\arg \min _{\boldsymbol{\theta}} \mathrm{KL}(p(\boldsymbol{x}) \| q(\boldsymbol{x} \mid \boldsymbol{\theta}))
$$

Note

$$
\begin{aligned}
\mathrm{KL}(p(\boldsymbol{x}) \| q(\boldsymbol{x} \mid \boldsymbol{\theta})) & =\mathbb{E}\left\{\log \frac{p(\mathbf{x})}{q(\mathbf{x} \mid \boldsymbol{\theta})}\right\} \\
& =\mathbb{E}\{\log p(\mathbf{x})\}-\mathbb{E}\{\log q(\mathbf{x} \mid \boldsymbol{\theta})\} \\
& \approx-H(p)-\frac{1}{N} \sum_{n=1}^{N}\left\{\log q\left(\boldsymbol{x}_{n} \mid \boldsymbol{\theta}\right)\right\}
\end{aligned}
$$

So minimizing $\mathrm{KL}(p \| q)$ is equivalent to maximizing the data likelihood under q.

Cross Entropy

Definition. Let X be a discrete random variable. The cross entropy between distribution $p(x)$ and distribution $q(x)$ is

$$
E(p, q)=-\sum_{x} p(x) \log q(x)
$$

For a continuous random variable X

$$
E(p, q)=-\int p(x) \log q(x) d x
$$

The KL divergence between distribution $p(x)$ and distribution $q(x)$ can be written as

$$
\mathrm{KL}(p \| q)=\sum_{x} p(x) \log \frac{p(x)}{q(x)}=E(p, q)-H(p)
$$

Hence minimizing $\mathrm{KL}(p \| q)$ over q is equivalent to minimizing $\underset{\underline{\underline{\underline{E}}}}{E}(p, q)$.

Cross Entropy and Data Likelihood

In a classification model, we use a parametric function $\boldsymbol{y}(\boldsymbol{x}, \boldsymbol{w})$ to approximate the class posterior probabilities. For a data point $(\boldsymbol{x}, \boldsymbol{t})$ from class \mathcal{C}_{j}, the cross entropy between \boldsymbol{t} and $\boldsymbol{y}(\boldsymbol{x}, \boldsymbol{w})$ is

$$
\begin{aligned}
E(\boldsymbol{t}, \boldsymbol{y}(\boldsymbol{x}, \boldsymbol{w})) & =-\sum_{k} t_{k} \log y_{k}(\boldsymbol{x}, \boldsymbol{w}) \\
& =-\left(\sum_{k \neq j} \delta_{k j} \log y_{k}(\boldsymbol{x}, \boldsymbol{w})+\delta_{j j} \log y_{j}(\boldsymbol{x}, \boldsymbol{w})\right) \\
& =-\log y_{j}(\boldsymbol{x}, \boldsymbol{w}) \\
& \approx-\log p\left(\mathcal{C}_{j} \mid \boldsymbol{x}\right)
\end{aligned}
$$

This is the negative log likelihood.

Conditional Entropy

Definition. Let X and Y be discrete random variables with joint distribution $p(\boldsymbol{x}, \boldsymbol{y})$. The conditional entropy of Y given X is

$$
\begin{aligned}
H[Y \mid X] & =-\sum_{x} p(x) \sum_{y} p(y \mid x) \log p(y \mid x) \\
& =-\sum_{x} \sum_{y} p(x, y) \log p(y \mid x)
\end{aligned}
$$

It can be shown that

$$
H[X, Y]=H[X]+H[Y \mid X]
$$

Definition. Let X and Y be discrete random variables with joint distribution $p(\boldsymbol{x}, \boldsymbol{y})$. The mutual information between X and Y is

$$
I[X, Y]=\mathrm{KL}(p(x, y) \| p(x) p(y))
$$

It can be shown that

$$
\begin{aligned}
I[X, Y] & =H[X]-H[X \mid Y] \\
& =H[Y]-H[Y \mid X]
\end{aligned}
$$

