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Kernel Methods

With a kernel method, the prediction for an unseen x is

y(x) =
∑

n

ank(xn,x)

k(x,x′) is a kernel function
n runs through a data set
an are trainable parameters
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Examples of Kernel Functions

Gaussian kernel

k(x,x′) = exp
(
−‖x− x′‖2/2σ2

)
exponential kernel

k(x, x′) = exp(−θ|x− x′|)
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From Linear Regression · · ·

Consider a linear regression model y(x) = wTφ(x). Let the model
parameters w be trained with D = {(xn, tn)}Nn=1 by minimizing

J(w) = 1
2

N∑
n=1

[
wTφ(xn)− tn

]2
+ λ

2w
Tw

where λ > 0. The solution for w takes the form

w = − 1
λ

N∑
n=1

[
wTφ(xn)− tn

]
φ(xn) = ΦTa

where Φ is the design matrix and a has components

an = − 1
λ

[
wTφ(xn)− tn

]
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· · · To Kernel Machine

With w = ΦTa, the prediction function of linear regression is equiv-
alent to a kernel machine

y(x) = wTφ(x)
= aT Φφ(x)

=
N∑

n=1
anφ(xn)Tφ(x)

=
N∑

n=1
ank(xn,x)

with the kernel function related to the basis functions by

k(xn,x) = φ(xn)Tφ(x)
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Dual Representation

If we substitute w = ΦTa, the objective function J(w) becomes

J(a) = 1
2a

T ΦΦT ΦΦTa− aT ΦΦT t + 1
2tT t + λ

2a
T ΦΦTa

= 1
2a

TKKa− aTKt + 1
2tT t + λ

2a
TKa

where K = ΦΦT is the Gram matrix. Note K is positive definite
and

Knm = φ(xn)Tφ(xm) = k(xn,xm)
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Prediction of a Kernel Machine

Setting the gradient of J(a) to zero, we obtain

a = (K + λIN )−1t

The prediction is

y(x) =
N∑

n=1
ank(xn,x) = k(x)T (K + λIN )−1t

where k(x) has components

kn(x) = k(xn,x)
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Discussion

We invert an N ×N matrix in determining a of a kernel machine

y(x) =
N∑

n=1
ank(xn,x)

In comparison, we invert an M ×M matrix in determining w of a
linear regression model

y(x) = wTφ(x)
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Constructing Kernel Functions
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Kernel and Inner Product

In dual representation of linear regression, we have defined a kernel
function as the inner product of the feature vectors

k(xn,x) = φ(xn)Tφ(x)

Thus, one way to define a kernel function is use the inner product
of a feature space.

Chen P Kernel Methods



12/53

Kernel and Basis
For one-dimensional input space, we have

k(x, x′) = φ(x)Tφ(x′) =
M∑

i=1
φi(x)φi(x′)

where φi(x) are the basis functions.
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Kernel: Direct Definition

Instead of defining kernel functions based on basis functions,
we can also define kernel functions directly.

For example, we can define

k(x,x′) =
(
xTx′

)2

This is equivalent to a particular set of basis functions, since(
xTx′

)2
= φ(x)Tφ(x′)

where
φ(x) = (x2

1,
√

2x1x2, x
2
2)

The point is that the feature space is implicit and not represented.
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Kernel Construction

Kernels can be constructed from kernels in various ways.

k(x,x′) = ck1(x,x′)
k(x,x′) = f(x)k1(x,x′)f(x′)
k(x,x′) = q(k1(x,x′))
k(x,x′) = exp(k1(x,x′))
k(x,x′) = k1(x,x′) + k2(x,x′)
k(x,x′) = k1(x,x′)k2(x,x′)
k(x,x′) = k3(φ(x′),φ(x′))
k(x,x′) = xTAx′

k(x,x′) = ka(xa,x
′
a)kb(xb,x

′
b)

k(x,x′) = ka(xa,x
′
a)kb(xb,x

′
b)

where c > 0, f(·) is any function, q(·) is polynomial with non-
negative coefficients, φ(·) is feature function, and (xa,xb) = x.
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Radial Basis Functions
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Definition

A radial function is a function whose value at a point depends
on the radial distance of the point from a center. That is

φ(x) = h(‖x− µ‖)

where µ is the center.
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Linear Regression with Radial Basis Function

Suppose we have input values {x1, . . . ,xN} along with target values
{t1, . . . , tN}. For linear regression, we can define N basis functions
each centered at an input point

f(x) =
N∑

n=1
wnh(‖x− xn‖)

Then {w1, . . . , wN} can be found to fit every data point exactly, i.e.

ti =
N∑

n=1
wnh(‖xi − xn‖)
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Kernel Regression

Suppose we have input values {x1, . . . ,xN} along with target values
{t1, . . . , tN}. A special form of prediction based on kernel functions
is

y(x) =
N∑

n=1
k(x,xn)tn

In this form, the kernel function k(·, ·) has parameters which are
decided by data.
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Nadaraya-Watson Model

Let D = {(x1, t1), . . . , (xN , tN )} be a data set. Let the joint prob-
ability p(x, t) be estimated by

p(x, t) ≈ 1
N

N∑
n=1

f(x− xn, t− tn)

where f(x, t) is a component density function with∫∫
f(x, t)dxdt = 1

and ∫
tf(x, t)dt = 0
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Optimum Regression
The prediction of t given x with the minimum expected squared
error is the conditional mean

y(x) = E[t|x] =
∫
tp(t|x)dt =

∫
tp(x, t)dt∫
p(x, t)dt

=

∑
n

∫
tf(x− xn, t− tn)dt∑

m

∫
f(x− xm, t− tm)dt

=

∑
n
g(x− xn)tn∑

m
g(x− xm) , g(x) =

∫
f(x, t)dt

=
∑

n

k(x,xn)tn

where
k(x,xn) = g(x− xn)∑

m
g(x− xm)
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Discussion and Example

Nadaraya-Watson model leads to a kernel regression
The kernel function is a radial function
Example: isotropic Gaussian component density

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

Chen P Kernel Methods



22/53

Gaussian Processes
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Stochastic Process and Gaussian Process

A stochastic process or random process is a collection of
indexed random variables.
A stochastic process is characterized by the joint distribution
of any finite set of random variables in the process.
A Gaussian process is a stochastic process such that the joint
distribution of any finite set of random variables is Gaussian.
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Specification of a Gaussian Process

A Gaussian process is completely specified by the means and
covariances of the random variables in the process.

This is because a Gaussian distribution is specified by a mean
vector and a covariance matrix.
Let y(t) be a Gaussian process. Then it is specified by

µ(t) = E[y(t)]

and
k(t, t′) = cov(y(t), y(t′))
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Examples of Gaussian Process

A zero-mean Gaussian process is specified by a kernel func-
tion for the covariance

k(t, t′) = E[y(t)y(t′)]
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From Linear Regression to Gaussian Process

A linear regression function in which the parameters have a
Gaussian distribution is a Gaussian process.

Consider y(x) = wTφ(x) with p(w) = N (w; 0, α−1I).

For any y = (y(x1), . . . , y(xN ))T , we have y = Φw. As y is a
linear function of w, it is Gaussian.
Thus y(x) is a Gaussian process.
The mean and kernel (covariance) functions of y(x) are

µ(x) = E[y(x)] = 0
k(x,x′) = E[y(x)y(x′)] = α−1φ(x)Tφ(x′)
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Regression with Gaussian Process

How do we fit a data set to a Gaussian process?

Let D = {(xn, tn)}Nn=1 be a data set.
We assume a zero-mean Gaussian process y(x) with kernel
function k(x,x′).
We assume noises on the target values tn = y(xn) + εn, where
εn are i.i.d. Gaussian noises with variance β−1. That is

p(tn|yn) = N (tn|yn, β
−1), yn = y(xn)

The parameters in the kernel function and the precision β can
be learned from D.
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Parametric Kernel Function
One widely used parametric kernel function is

k(x,x′) = θ0 exp
{
−θ1

2 ‖x− x
′‖2
}

+ θ2 + θ3x
Tx′
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Probability of a Vector of Targets

Denote y = [y1, . . . , yN ]T and t = [t1, . . . , tN ]T . We have

p(y) = N (y|0,K)

and
p(t|y) = N (t|y, β−1IN )

Thus
p(t) =

∫
p(t|y)p(y)dy = N (t; 0,C)

where
C = K + β−1IN
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Prediction

Given a Gaussian process y(x) and the parameter β of Gaus-
sian noise on targets, how do we predict t for input x?

The joint probability of tN+1 =
[
tN , t

]T
is

p(tN+1) = N (tN+1; 0,CN+1)

Note CN+1 =
(
CN k
kT c

)
where k = [k1, . . . , kN ]T with kn =

k(xn,x) and c = k(x,x) + β−1.
It follows that p(t|tN ) = N (t;m(x), σ2(x)), where m(x) =
kTC−1

N tN and σ2(x) = c− kTC−1
N k.

Thus, the optimal prediction is a kernel regression function

m(x) =
N∑

n=1
ank(xn,x), a = C−1

N tN
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