
Neural Networks

Chia-Ping Chen

Professor
National Sun Yat-sen University

Department of Computer Science and Engineering

Machine Learning

1/76

2/76

Topics

Feed-forward Networks
Network Training
Error Backpropagation
Hessian Matrix
Regularization in Neural Networks
Mixture Density Networks
Bayesian Neural Networks

Chen P Neural Networks

3/76

Feed-forward Network Functions

Chen P Neural Networks

4/76

Fixed Basis Functions

In our discussion of linear models for regression or classification, we
use output functions based on fixed basis functions. That is

yk(x) = f
(
wT
kφ
)

where

φ =

 φ1(x)
...

φM (x)

Chen P Neural Networks

5/76

Parametric Basis Functions

Instead of fixed basis functions, we can assume output functions

yk(x) = f
(
wT
kφ
)

based on parametric basis functions

φ =

 φ1(x,θ1)
...

φM (x,θM)

The parameters θ1, . . . ,θM in the basis functions, as well as the
parametersw1, . . . ,wK in the output functions, can be learned from
data.

Chen P Neural Networks

6/76

Basic Neural Network Models

Consider a neural network with 3 layers of units. (By the way, this
is called a 2-layer network as there are 2 layers of weights.)

Input layer
x = (x1, . . . , xD)

Hidden layer
z = (z1, . . . , zM)

Output layer
y = (y1, . . . , yK)

Chen P Neural Networks

7/76

How a Basic Neural Network Runs

linear combination of input units

aj =
D∑
j=1

wjixi + wj0

hidden-layer activation function

zj = h(aj)

linear combination of hidden units

ak =
M∑
j=1

wkjzj + wk0

output-layer activation function

yk = f(ak)

Chen P Neural Networks

8/76

Forward Propagation

x0

x1

xD

z0

z1

zM

y1

yK

w
(1)
MD w

(2)
KM

w
(2)
10

hidden units

inputs outputs

Chen P Neural Networks

9/76

Linear Models

Each hidden-layer unit corresponds to a basis function

φj(x) = h

(
D∑
i=0

w
(1)
ji xi

)

Each output-layer unit corresponds to an output function acting on
linear activations

yk(x) = f

∑
j

w
(2)
kj φj(x)

= f(wT

kφ)

Chen P Neural Networks

10/76

Output Functions

Let a be the activations of the output-layer units.
Regression: linear output activation function

yk = ak =
M∑
j=0

w
(2)
kj h

(
D∑
i=0

w
(1)
ji xi

)

Binary classification: logistic sigmoid activation function

yk = σ(ak) = σ

 M∑
j=0

w
(2)
kj h

(
D∑
i=0

w
(1)
ji xi

)
K-ary classification: normalized exponential

yk = exp(ak)∑K
k′=1 exp(a′k)

Chen P Neural Networks

11/76

Feed-Forward Networks

In a feed-forward net, there are no cycles in the propagation of
information from input to output.

x1

x2

z1

z3

z2

y1

y2

inputs outputs

Chen P Neural Networks

12/76

NN as Function Approximator (Regression)

4 neural networks with 1 input-layer unit, 3 hidden-layer units (tanh
activation), and 1 output-layer unit (linear activation). Each network
is learned with 50 data points.

x2 sin x

|x| H(x)

Chen P Neural Networks

13/76

NN in Binary Classification

Binary classification with a synthetic data set.
green: decision boundary based on data-generation distribution
red: decision boundary (y = 0.5) based on a neural net
dashed blue: contours of zj = 0.5

−2 −1 0 1 2

−2

−1

0

1

2

3

Chen P Neural Networks

14/76

Network Training

Chen P Neural Networks

15/76

Regression

Again, we assume the target variable is corrupted by a Gaussian
noise

t = u(x) + ε

Further, we assume a parametric function for u(x)

u(x) ≈ y(x,w)

For a data point (x, t), the conditional likelihood is

p(t|x) = N (t|y(x,w), β−1)

The likelihood of a data set {(x1, t1), . . . , (xN , tN)} is

N∏
n=1

p(tn|xn) =
N∏
n=1
N (tn|y(xn,w), β−1)

Chen P Neural Networks

16/76

Maximum Likelihood

Taking the negative logarithm of the data likelihood, we obtain

β

2

N∑
n=1

(y(xn,w)− tn)2 − N

2 log β + N

2 log(2π)

Maximizing data likelihood with respect to w is equivalent to mini-
mizing the sum of squared errors

wML = arg min
w

E(w) = arg min
w

1
2

N∑
n=1

(y(xn,w)− tn)2

Maximizing data likelihood with respect to β leads to

1
βML

= 1
N

N∑
n=1

(y(xn,wML)− tn)2

Chen P Neural Networks

17/76

Binary Classification

Again, we assume a parametric function for the posterior prob-
ability of class C1

p(C1|x) ≈ y(x,w)

By using t = 1 for class C1 and t = 0 for class C2, the likelihood
of a data point (x, t) can be written as

p(t|x) = y(x,w)t(1− y(x,w))1−t

The likelihood of a data set {(x1, t1), . . . , (xN , tN)} is
N∏
n=1

p(tn|xn) =
N∏
n=1

y(xn,w)t(1− y(xn,w))1−t

Maximizing data likelihood is equivalent to minimizing the sum
of cross-entropy errors

E(w) = −
N∑
n=1

tn log yn + (1− tn) log(1− yn)

Chen P Neural Networks

18/76

K-ary Classification

Again, we assume a parametric function for the class posteriors
p(Ck|x) ≈ yk(x,w)

By using 1-of-K target vectors, the likelihood of a data point
(x, t) can be written as

p(t|x) =
K∏
k=1

yk(x,w)tk

The likelihood of a data set {(x1, t1), . . . , (xN , tN)} is
N∏
n=1

p(tn|xn) =
N∏
n=1

K∏
k=1

yk(xn,w)tnk

Maximizing data likelihood is equivalent to minimizing the cross-
entropy error function

E(w) = −
N∑
n=1

K∑
k=1

tnk log ynk, ynk = yk(xn,w)

Chen P Neural Networks

19/76

Gradient and Linear Approximation
The local linear approximation near a point w0 is

E(w) ≈ E(w0) + (w −w0)T∇E(w0)
where

∇E(w) =
[
Ew1

Ew2

]

w1

w2

E(w)

wA wB wC

∇E

Chen P Neural Networks

20/76

Gradient Descent Methods

Gradient descent

w(τ+1) = w(τ) − η∇E(w(τ))

Stochastic gradient descent

w(τ+1) = w(τ) − η∇En(w(τ))

Iterative methods: update weight and re-evaluate gradient.

Chen P Neural Networks

21/76

Hessian and Quadratic Approximation

The local quadratic approximation near a point w0 is

E(w) ≈ E(w0) + (w−w0)T∇E(w0) + 1
2(w−w0)TH(w−w0)

where H is the Hessian matrix at w0 with

(H)ij = Ewiwj (w0)

Chen P Neural Networks

22/76

Newton’s Method

The critical point of the local quadratic approximation near w0 is

w′ = w0 −H−1∇E(w0)

This equation can be applied iteratively to update w.

It may converge to a local minimum where ∇E vanishes and H is
positive definite.

w1

w2

λ
−1/2
1

λ
−1/2
2

u1

w?

u2

Chen P Neural Networks

23/76

Error Backpropagation

Chen P Neural Networks

24/76

Introduction

In the error backpropagation, the gradient is computed by
propagating the derivatives backwards through the network,
starting from the errors between targets and outputs.

We begin with the derivatives of the cost function with respect
to the output-layer unit activations.
The derivatives of the cost function with respect to the hidden-
layer unit activations are computed by propagating informa-
tion backwards in the network.
The derivatives of the cost function with respect to the link
weights are computed from the derivatives with respect to the
unit activations.

Chen P Neural Networks

25/76

A Close Look at a Unit

The activation at a unit j is a weighted sum of its inputs

aj =
∑
i

wjizi

Here wji is the weight of the link connecting unit i and unit j.
Moreover, unit i is the input of this link and unit j is the output of
this link. An activation function transforms the activation

zj = h(aj)

for propagation of information to the next level.

Chen P Neural Networks

26/76

The Derivatives

Let E(w) be the cost function to be minimized.
Output-layer units: for each unit k, define

δk = ∂E

∂ak

Hidden-layer units: for each unit j, define

δj = ∂E

∂aj

Link weights: for the link from unit i to unit j, we have

∂E

∂wji
= ∂E

∂aj

∂aj
∂wji

= δjzi

Chen P Neural Networks

27/76

Relating the Derivatives

The derivatives at the hidden-layer units are related to the
derivatives at the output-layer units by

δj = h′(aj)
∑
k

wkjδk

Note
∂ak
∂aj

= ∂ak
∂zj

∂zj
∂aj

= wkjh
′(aj)

It follows that

δj = ∂E

∂aj
=
∑
k

∂E

∂ak

∂ak
∂aj

=
∑
k

δkwkjh
′(aj) = h′(aj)

∑
k

wkjδk

Chen P Neural Networks

28/76

Back Propagation of the Derivatives

The derivative at a hidden-layer unit is a linear combination
of the derivatives at the output-layer units.

δj =
scalar multiplication︷ ︸︸ ︷

h′(aj)

backward activation︷ ︸︸ ︷∑
k

wkjδk

δj can be interpreted as a backward output at unit j with the δk’s
as inputs followed by a scalar multiplication of h′(aj).

zi

zj

δj
δk

δ1

wji wkj

Chen P Neural Networks

29/76

The Derivatives at the Output Layer
By design, the derivative at an output layer unit is the error between
output and target, i.e.

δk = yk − tk

Regression: sum of squared errors cost function and linear ac-
tivation function

δk = ∂E

∂ak
= ∂E

∂yk

∂yk
∂ak

= yk − tk

Binary classification: cross-entropy cost function and logistic
sigmoid activation function

δk = ∂E

∂yk

∂yk
∂ak

= −
(
tk
yk
− 1− tk

1− yk

)
(yk(1− yk)) = yk − tk

K-ary classification: cross-entropy cost function and normal-
ized exponential activation function (next slide)

Chen P Neural Networks

30/76

E = −
∑
k

tk log yk

δk = ∂E

∂ak

=
∑
k′

∂E

∂yk′

∂yk′

∂ak

=
∑
k′

(
− tk

′

yk′

)
(yk′(δk′k − yk))

=
∑
k′

−tk′(δk′k − yk)

=
∑
k′

yktk′ −
∑
k′

tk′δk′k

= yk − tk

Chen P Neural Networks

31/76

Error Backpropagation

Forward propagation for

aj , zj , ak, yk

Derivatives of cost function at the output layer (= errors)

δk = yk − tk

Backpropagation of the derivatives (to the hidden layer)

δj = h′(aj)
∑
k

δkwkj

Derivatives with respect to the weights

∂E

∂wkj
= δkzj ,

∂E

∂wji
= δjxi

Chen P Neural Networks

32/76

A Simple Example

Output-layer activation function

yk = ak

Hidden-layer activation function

h(aj) = tanh(aj) = eaj − e−aj

eaj + e−aj

Note
h′(aj) = 1− h2(aj) = 1− z2

j

Sum of squared errors cost function

E(w) = 1
2

K∑
k=1

(yk − tk)2

Chen P Neural Networks

33/76

Forward propagation

aj =
D∑
i=0

wjixi, zj = tanh(aj), ak =
M∑
j=0

wkjzj , yk = ak

Derivatives at the output units (= errors)

δk = yk − tk

Derivatives at the hidden units

δj = h′(aj)
∑
k

wkjδk = (1− z2
j)

K∑
k=1

wkjδk

The weight derivatives

∂E

∂wji
= δjxi,

∂E

∂wkj
= δkzj

Chen P Neural Networks

34/76

Jacobian Matrix

The Jacobian consists of the derivatives of a group of de-
pendent variables with respect to a group of input variables.

Let x = (x1, . . . , xD)T be the input variables and y = (y1, . . . , yK)T
be the output variables. Note yi = yi(x1, . . . , xD). The Jacobian is

J =

∂y1
∂x1

. . . ∂y1
∂xD...

∂yK
∂x1

. . . ∂yK
∂xD

That is, Jki = ∂yk

∂xi
.

Chen P Neural Networks

35/76

Computing Jacobian with Backpropagation

The Jacobian of a feed-forward network function can be com-
puted with backpropagation.

Let x be the input and y be the output. We want Jki = ∂yk
∂xi

.
Begin with the output-layer derivatives

∂yk
∂ak′

= δkk′f ′(ak′) or ∂yk
∂ak′

= δkk′yk − ykyk′

Backpropagate the output-layer derivatives to the hidden-layer
∂yk
∂aj

=
∑
k′

∂yk
∂ak′

∂ak′

∂aj
=
∑
k′

∂yk
∂ak′

wk′jh
′(aj)

End with

Jki = ∂yk
∂xi

=
∑
j

∂yk
∂aj

∂aj
∂xi

=
∑
j

∂yk
∂aj

wji

Chen P Neural Networks

36/76

Jacobian and Modular Network

Jacobian is convenient in a system built from distinct modules. For
example, the derivative of the cost function with respect to w in

x

u

w

y

z

v

involves a Jacobian

∂E

∂w
=
∑
k,j

∂E

∂yk

∂yk
∂zj

∂zj
∂w

Chen P Neural Networks

37/76

Hessian

Chen P Neural Networks

38/76

Hessian Matrix

The Hessian of a function consists of the second-order partial
derivatives of the function with respect to the variables.

Let w = (w1, . . . , wW)T be the trainable parameters (weights and
biases) of a neural network and E(w) be the cost function. The
Hessian is

H =

Ew1w1 . . . Ew1wW

...
EwWw1 . . . EwWwW

where

Ewmwn = ∂

∂wn

(
∂E

∂wm

)
= ∂2E

∂wn∂wm
= ∂2E

∂wm∂wn
= Ewnwm

Chen P Neural Networks

39/76

Roles Played by Hessian

Non-linear optimization algorithm for training netwrok
Fast procedure for re-training network
To identify least significant weights for pruning network
Laplace approximation for Bayesian learning of network

Chen P Neural Networks

40/76

Structure of Hessian

Consider a basic neural network with 2 layers of weights.
Let i and i′ index input-layer units, j and j′ index hidden-layer
units, and k and k′ index output-layer units.
The Hessian matrix has 3 different blocks

∂2E

∂wkj∂wk′j′
,

∂2E

∂wji∂wj′i′
,

∂2E

∂wji∂wkj′

Chen P Neural Networks

41/76

Computing Hessian with Backpropagation
Start with output-layer derivatives

δk = ∂E

∂ak
, Mkk′ = ∂2E

∂ak∂ak′

Backpropagate the derivatives. For the first block

∂2E

∂wkj∂wk′j′
= ∂

∂wkj

(
∂E

∂wk′j′

)

= ∂

∂wkj

(
∂E

∂ak′

∂ak′

∂wk′j′

)

= zj′
∂

∂wkj

(
∂E

∂ak′

)

= zj′
∂ak
∂wkj

(
∂2E

∂ak∂ak′

)
= zj′zjMkk′

Chen P Neural Networks

42/76

For the off-diagonal block

∂2E

∂wji∂wkj′
= ∂

∂wji

(
∂E

∂wkj′

)
= ∂

∂wji

(
∂E

∂ak

∂ak
∂wkj′

)

= ∂

∂wji

(
∂E

∂ak
zj′

)
= zj′

∂

∂wji

(
∂E

∂ak

)
+ ∂zj′

∂wji

(
∂E

∂ak

)

= zj′
∑
k′

∂ak′

∂wji

(
∂2E

∂ak′∂ak

)
+ ∂zj′

∂wji

(
∂E

∂ak

)

= zj′
∑
k′

∂ak′

∂zj

∂zj
∂wji

(
∂2E

∂ak′∂ak

)
+ ∂zj′

∂wji

(
∂E

∂ak

)
= zj′

∑
k′

wk′jxih
′(aj)Mk′k + δjj′xih

′(aj)δk

= xih
′(aj)

(
zj′
∑
k′

wk′jMk′k + δjj′δk

)

Chen P Neural Networks

43/76

Finally (an exercise)

∂2E

∂wji∂wj′i′
= xixi′h

′′(aj′)δjj′
∑
k

wkj′δk

+ xixi′h
′(aj)h′(aj′)

∑
k

∑
k′

wkjwk′j′Mkk′

Chen P Neural Networks

44/76

Diagonal Approximation

In diagonal approximation, we replace off-diagonal elements of a
Hessian by 0, and retains the diagonal elements. For the weights
between the input layer and the hidden layer, the diagonal elements
are

∂2E

∂w2
ji

= x2
i

(
h

′′(aj)
∑
k

wkjδk + h′(aj)2∑
k

∑
k′

wkjwk′jMkk′

)

Further approximation may be applied by neglecting the off-diagonal
elements of M . We then have

∂2E

∂w2
ji

= x2
i

(
h

′′(aj)
∑
k

wkjδk + h′(aj)2∑
k

w2
kjMkk

)

Chen P Neural Networks

45/76

Outer-product Approximations

The Hessian of the sum-of-squared-errors cost function is

H =
∑
n

∇yn(∇yn)T +
∑
n

(yn − tn)∇∇yn

≈
∑
n

bnb
T
n

where
bn = ∇yn

The Hessian of the cross-entropy cost function is

H ≈
∑
n

yn(1− yn)bnbTn

In both cases, the Hessians are approximated as the sum of outer-
product terms.

Chen P Neural Networks

46/76

Inverse Hessian

The outer-product approximation of a Hessian facilitates a procedure
for computing its inverse. Define

HL =
L∑
n=1

bnb
T
n

Then
HL+1 = HL + bL+1b

T
L+1

and
H−1

L+1 = H−1
L −

H−1
L bL+1b

T
L+1H

−1
L

1 + bTL+1H
−1
L bL+1

Chen P Neural Networks

47/76

Regularization

Chen P Neural Networks

48/76

Motivation of Regularization

Avoid over-fitting
Include terms in the cost function to reduce generalization error
Reduce the effective number of parameters
Put model complexity under control

Chen P Neural Networks

49/76

Over-fitting with Neural Networks

M = 1

0 1

−1

0

1 M = 3

0 1

−1

0

1 M = 10

0 1

−1

0

1

Two-layer networks trained on 10 data points with a sum-of-squared-
errors cost function. The number of hidden-layer units M is shown.

Chen P Neural Networks

50/76

Effect of Local Minimum

0 2 4 6 8 10

60

80

100

120

140

160

The sum-of-squared errors of polynomial data test set. For each
hidden-layer size, 30 random initializations of the parameters, with
isotropic zero-mean Gaussian distribution, are used.

Chen P Neural Networks

51/76

Weight Decay

In weight decay, we use a regularized cost function

Ẽ(w) = E(w) + λ

2w
Tw

The regularization term (a.k.a. regularizer) λ
2w

Tw can be inter-
preted as the negative logarithm of a zero-mean Gaussian prior dis-
tribution for w.

Chen P Neural Networks

52/76

Parameter Groups

For a basic neural network with 2 layers of weights, a regularizer
that is consistent with the invariance to linear transformation of the
input/output variables is

λ1
2

∑
w∈W1

w2 + λ2
2

∑
w∈W2

w2

More generally, we can consider priors

p(w|α) ∝ exp
(
−1

2
∑
k

αk‖w‖2k

)

where
‖w‖2k =

∑
w∈Wk

w2

Chen P Neural Networks

53/76

αw
1 = 1, αb

1 = 1, αw
2 = 1, αb

2 = 1

−1 −0.5 0 0.5 1
−6

−4

−2

0

2

4
αw
1 = 1, αb

1 = 1, αw
2 = 10, αb

2 = 1

−1 −0.5 0 0.5 1
−60

−40

−20

0

20

40

αw
1 = 1000, αb

1 = 100, αw
2 = 1, αb

2 = 1

−1 −0.5 0 0.5 1
−10

−5

0

5
αw
1 = 1000, αb

1 = 1000, αw
2 = 1, αb

2 = 1

−1 −0.5 0 0.5 1
−10

−5

0

5

Samples of network functions using 4 hyperparameters for the prior
distribution p(w|α) over the weights and biases in a 2-layer network
with 12 hidden units with tanh activation function.

Chen P Neural Networks

54/76

Early Stopping

0 10 20 30 40 50
0.15

0.2

0.25

0 10 20 30 40 50
0.35

0.4

0.45

w1

w2

w̃

wML

Training set error and validation set error as a function of the iter-
ation step. Early stopping has a similar effect as weight decay.

Chen P Neural Networks

55/76

Invariance

In many classification problems, the prediction should be unchanged
under certain transformation of the input.

collect sufficiently many examples (very expensive)
use replicas of training data subject to transformation
add a term to the cost function to penalize output changes
extract features that are invariant under certain transformation
build the invariance properties into the model

Chen P Neural Networks

56/76

Data Augmentation

Data augmentation with a hand-written digit.

Chen P Neural Networks

57/76

Tangent Propagation
Consider a continuous transformation starting from point x.

Suppose the transformation is governed by a parameter ξ
A trajectory M : ξ 7→ s(xn, ξ) with s(xn, 0) = xn is traced
The tangent vector of s(xn, ξ) at xn is

τn = ∂s

∂ξ

∣∣∣∣
ξ=0

x1

x2

xn

τn

ξ

M

Chen P Neural Networks

58/76

Along trajectory M we have

x = s(xn, ξ)

Consider output function yk(x) along trajectory M. At xn

∂yk
∂ξ

∣∣∣∣
x=xn,ξ=0

=
D∑
i=1

∂yk
∂xi

∂xi
∂ξ

∣∣∣∣∣
x=xn,ξ=0

=
D∑
i=1

Jnkiτni

If we want the output to remain invariant with respect to tangent
direction of the transformation, we add a term to the cost function

Ẽ = E + λ
∑
n

∑
k

(∑
i

Jnkiτni

)2

Chen P Neural Networks

59/76

Practice

The tangent vector of a transformation can be approximated by
finite differences.

(a) (b) (c) (d)

(a) original image
(b) tangent vector for clockwise rotation
(c) synthetic data using tangent vector
(d) true image rotated

Chen P Neural Networks

60/76

Convolutional Neural Networks

local receptive field
weight sharing
sub-sampling

Input image Convolutional layer
Sub-sampling
layer

Chen P Neural Networks

61/76

Mixture Density Networks

Chen P Neural Networks

62/76

Forward Problem and Inverse Problem

L1

L2

θ1

θ2

(x1, x2) (x1, x2)

elbow
down

elbow
up

In a forward problem, the causes are given and the effects are to
be decided. In an inverse problem, the effects are given and the
causes are to be decided. In an inverse problem, it is common to
have multiple causes for given effects.

Chen P Neural Networks

63/76

Example

Fitting a data set with a 2-layer network with 6 hidden-layer units.

0 1

0

1

0 1

0

1

The data set is generated according to

tn = f(xn) + εn, f(x) = x+ 0.3 sin(2πx)

In the forward problem, we fit a data set to t ≈ y(x,w). In the
inverse problem, we fit a data set to x ≈ y′(t,w′).

Chen P Neural Networks

64/76

Heteroscedastic Mixture Models

If there are multiple choices for a given input, such as in an
inverse problem, we need a mixture model for the conditional
distribution.
A general framework is

p(t|x) ≈
∑
k

ck(x)pk(t|w(x))

where the model parameters, including the mixing coefficients
and the parameters in the component densities, depend on x.
Using Gaussian component densities, we have

p(t|x) ≈
∑
k

πk(x)N (t|µk(x),Σk(x))

It approximates arbitrary conditional distributions.

Chen P Neural Networks

65/76

Mixture Density Network

In mixture density network, we use a neural network to model the
functions relating the parameters in the mixture density to the input
variables.

x1

xD

θ1

θM

θ

t

p(t|x)

Chen P Neural Networks

66/76

Output Activation Functions

Consider a mixture model with Gaussian component densities, each
with a diagonal covariance matrix Σk(x) = σ2

k(x)I.
Normalized mixing coefficients can be achieved by softmax
Positive variances can be achieved by exponential activation
Gaussian means can be approximated by simple linear activation

Chen P Neural Networks

67/76

Training a Mixture Density Network

The error function is

E(w) = −
∑
n

log p(tn|xn)

= −
∑
n

log
(∑

k

πk(xn,w)N (tn|µk(xn,w), σ2
k(xn,w)I)

)

The derivatives of E with respect to the network output activations
are

∂En
∂aπk

= πk − γnk where γnk = πkNnk∑
l πlNnl

and

∂En
∂aµkl

= γnk

(
µkl − tnl

σ2
k

)
,
∂En
∂aσk

= γnk

(
L− ‖tn − µk‖

2

σ2
k

)

Chen P Neural Networks

68/76

Results

(a)

0 1

0

1

(b)

0 1

0

1

(c)

0 1

0

1

(d)

0 1

0

1

Network architecture: 5 tanh hidden-layer units, 9 output-layer units
(a) mixing coefficients πk(x), k = 1, 2, 3
(b) mean µk(x)
(c) contours of conditional density
(d) conditional mode (red)

Chen P Neural Networks

69/76

Bayesian Neural Networks

Chen P Neural Networks

70/76

Step by Step

Make the Gaussian noise assumption and parametric function
approximation

p(t|x,w, β) = N (t|y(x,w), β−1)

Assume a Gaussian prior for w

p(w|α) = N (w|0, α−1I)

The likelihood of data set D = {(xn, tn)}is

p(D|w, β) =
∏
n

N (tn|y(xn,w), β−1)

The posterior distribution of w is non-Gaussian, with

log p(w|D) = −α2w
Tw − β

2
∑
n

(y(xn,w)− tn)2 + const

Chen P Neural Networks

71/76

Apply the Laplace approximation for the posterior of w

p(w|D) ≈ q(w|D) = N (w|wMAP,A
−1)

where

A = −∇∇ log p(w|D) = αI + βH(wMAP)

The predictive distribution of t is

p(t|x,D) =
∫
p(t|x,w)p(w|D)dw ≈

∫
p(t|x,w)q(w|D)dw

Approximate y(x,w) ≈ y(x,wMAP) + gT (w −wMAP) where
g = ∇wy(x,wMAP). Then

p(t|x,D) ≈ N (t|y(x,wMAP), σ2(x))

where
σ2(x) = β−1gTA−1g

Chen P Neural Networks

72/76

Hyperparameter Optimization

When the hyperparameters α and β are not fixed, we iteratively
update α and β and the posterior distribution.

Given α and β, we update wMAP by maximizing the posterior
distribution

p(w|D, α, β) ∝ p(w|α)p(D|w, β)

Given wMAP, we update α and β by maximizing the marginal
likelihood

p(D|α, β) =
∫
p(w|α)p(D|w, β)dw

Chen P Neural Networks

73/76

Binary Classification

In Bayesian setting, the main difference between learning regression
and learning binary classification is the likelihood function. In binary
classification, the data likelihood is

log p(D|w) =
∑
n

tn log yn + (1− tn) log(1− yn)

Given α, the parameters that maximizes the posterior probability is

wMAP = arg min
w

− log p(D|w) + α

2w
Tw

Again we alternate between updating the hyperparameter α and
updating the posterior distribution.

Chen P Neural Networks

74/76

Hyperparameter Optimization

−2 −1 0 1 2

−2

−1

0

1

2

3

The optimal decision boundary (green), the decision boundary learned
by maximum likelihood (black), and the decision boundary learned
by a regularizer whose hyperparameter α is optimized using the ev-
idence procedure (red). A 2-layer network with 8 hidden-layer units
is used to fit data.

Chen P Neural Networks

75/76

Predictive Distribution

−2 −1 0 1 2

−2

−1

0

1

2

3

−2 −1 0 1 2

−2

−1

0

1

2

3

A 2-layer network with 8 hidden-layer tanh units is used to fit data.
Left: point estimate

y(x) = p(t|x,D) ≈ p(t|x,wMAP)

Right: Bayesian

y(x) = p(t|x,D) =
∫
p(t|x,w)q(w|D)dw

Chen P Neural Networks

76/76

Going Deep

DeepSpeech (automatic speech recognition)
WaveNet (speech synthesis)
ImageNet (image classification)
Translator (machine translation)
AlphaGo (honorary 10 dan)

Chen P Neural Networks

LeCun, Bengio, and Hinton, ”Deep Learning”, Nature

http://www.nature.com/nature/journal/v521/n7553/pdf/nature14539.pdf

