NEURAL NETWORKS

Chia-Ping Chen

Professor National Sun Yat-sen University Department of Computer Science and Engineering

Machine Learning

- Feed-forward Networks
- Network Training
- Error Backpropagation
- Hessian Matrix
- Regularization in Neural Networks
- Mixture Density Networks
- Bayesian Neural Networks

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Feed-forward Network Functions

<□ > < @ > < ≧ > < ≧ > < ≧ > ○ Q (~ 3/76)

In our discussion of linear models for regression or classification, we use output functions based on **fixed basis functions**. That is

$$y_k(\boldsymbol{x}) = f\left(\boldsymbol{w}_k^T \boldsymbol{\phi} \right)$$

where

$$oldsymbol{\phi} = egin{bmatrix} \phi_1(oldsymbol{x}) \ dots \ \phi_M(oldsymbol{x}) \end{bmatrix}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Instead of fixed basis functions, we can assume output functions

$$y_k(\boldsymbol{x}) = f\left(\boldsymbol{w}_k^T \boldsymbol{\phi}\right)$$

based on parametric basis functions

$$oldsymbol{\phi} = egin{bmatrix} \phi_1(oldsymbol{x},oldsymbol{ heta}_1) \ dots \ \phi_M(oldsymbol{x},oldsymbol{ heta}_M) \end{bmatrix}$$

The parameters $\theta_1, \ldots, \theta_M$ in the basis functions, as well as the parameters w_1, \ldots, w_K in the output functions, can be learned from data.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ■ 釣へで 5/76

Consider a neural network with 3 layers of units. (By the way, this is called a 2-layer network as there are 2 layers of weights.)

Input layer

$$\boldsymbol{x} = (x_1, \ldots, x_D)$$

Hidden layer

$$\boldsymbol{z}=(z_1,\ldots,z_M)$$

Output layer

$$\boldsymbol{y} = (y_1, \ldots, y_K)$$

HOW A BASIC NEURAL NETWORK RUNS

linear combination of input units

$$a_j = \sum_{j=1}^D w_{ji} x_i + w_{j0}$$

hidden-layer activation function

$$z_j = h(a_j)$$

linear combination of hidden units

$$a_k = \sum_{j=1}^M w_{kj} z_j + w_{k0}$$

output-layer activation function

$$y_k = f(a_k)$$

FORWARD PROPAGATION

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

Each hidden-layer unit corresponds to a basis function

$$\phi_j(\boldsymbol{x}) = h\left(\sum_{i=0}^D w_{ji}^{(1)} x_i\right)$$

Each output-layer unit corresponds to an output function acting on linear activations

$$egin{aligned} y_k(oldsymbol{x}) &= f\left(\sum_j w_{kj}^{(2)} \phi_j(oldsymbol{x})
ight) \ &= f(oldsymbol{w}_k^T oldsymbol{\phi}) \end{aligned}$$

OUTPUT FUNCTIONS

Let a be the activations of the output-layer units.

Regression: linear output activation function

$$y_k = a_k = \sum_{j=0}^{M} w_{kj}^{(2)} h\left(\sum_{i=0}^{D} w_{ji}^{(1)} x_i\right)$$

Binary classification: logistic sigmoid activation function

$$y_k = \sigma(a_k) = \sigma\left(\sum_{j=0}^M w_{kj}^{(2)} h\left(\sum_{i=0}^D w_{ji}^{(1)} x_i\right)\right)$$

K-ary classification: normalized exponential

$$y_k = \frac{\exp(a_k)}{\sum_{k'=1}^{K} \exp(a'_k)}$$

◆□ ▶ < @ ▶ < E ▶ < E ▶ E のへで 10/76</p>

In a **feed-forward net**, there are no cycles in the propagation of information from input to output.

< □ > < ■ > < ≣ > < ≣ > ■ ■ の Q @ 11/76

NN AS FUNCTION APPROXIMATOR (REGRESSION)

4 neural networks with 1 input-layer unit, 3 hidden-layer units (tanh activation), and 1 output-layer unit (linear activation). Each network is learned with 50 data points.

NN IN BINARY CLASSIFICATION

Binary classification with a synthetic data set.

- green: decision boundary based on data-generation distribution
- red: decision boundary (y = 0.5) based on a neural net
- dashed blue: contours of $z_j = 0.5$

Network Training

 Again, we assume the target variable is corrupted by a Gaussian noise

$$t = u(\boldsymbol{x}) + \epsilon$$

Further, we assume a parametric function for u(x)

$$u(\pmb{x})\approx y(\pmb{x},\pmb{w})$$

 \blacksquare For a data point $({\boldsymbol{x}},t),$ the conditional likelihood is

$$p(t|\boldsymbol{x}) = \mathcal{N}(t|y(\boldsymbol{x}, \boldsymbol{w}), \beta^{-1})$$

 \blacksquare The likelihood of a data set $\{({m x}_1,t_1),\ldots,({m x}_N,t_N)\}$ is

$$\prod_{n=1}^{N} p(t_n | \boldsymbol{x}_n) = \prod_{n=1}^{N} \mathcal{N}(t_n | y(\boldsymbol{x}_n, \boldsymbol{w}), \beta^{-1})$$

MAXIMUM LIKELIHOOD

Taking the negative logarithm of the data likelihood, we obtain

$$\frac{\beta}{2} \sum_{n=1}^{N} (y(\boldsymbol{x}_n, \boldsymbol{w}) - t_n)^2 - \frac{N}{2} \log \beta + \frac{N}{2} \log(2\pi)$$

Maximizing data likelihood with respect to w is equivalent to minimizing the sum of squared errors

$$\boldsymbol{w}_{\mathsf{ML}} = \operatorname*{arg\,min}_{\boldsymbol{w}} E(\boldsymbol{w}) = \operatorname*{arg\,min}_{\boldsymbol{w}} \frac{1}{2} \sum_{n=1}^{N} (y(\boldsymbol{x}_n, \boldsymbol{w}) - t_n)^2$$

Maximizing data likelihood with respect to β leads to

$$\frac{1}{\beta_{\mathsf{ML}}} = \frac{1}{N} \sum_{n=1}^{N} (y(\boldsymbol{x}_n, \boldsymbol{w}_{\mathsf{ML}}) - t_n)^2$$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

BINARY CLASSIFICATION

Again, we assume a parametric function for the posterior probability of class \mathcal{C}_1

$$p(\mathcal{C}_1|\boldsymbol{x}) \approx y(\boldsymbol{x}, \boldsymbol{w})$$

By using t = 1 for class C_1 and t = 0 for class C_2 , the likelihood of a data point (x, t) can be written as

$$p(t|\boldsymbol{x}) = y(\boldsymbol{x}, \boldsymbol{w})^t (1 - y(\boldsymbol{x}, \boldsymbol{w}))^{1-t}$$

 \blacksquare The likelihood of a data set $\{({m x}_1,t_1),\ldots,({m x}_N,t_N)\}$ is

$$\prod_{n=1}^{N} p(t_n | \boldsymbol{x}_n) = \prod_{n=1}^{N} y(\boldsymbol{x}_n, \boldsymbol{w})^t (1 - y(\boldsymbol{x}_n, \boldsymbol{w}))^{1-t}$$

 Maximizing data likelihood is equivalent to minimizing the sum of cross-entropy errors

$$E(\boldsymbol{w}) = -\sum_{n=1}^{N} t_n \log y_n + (1 - t_n) \log(1 - y_n)$$

K-ARY CLASSIFICATION

Again, we assume a parametric function for the class posteriors

$$p(\mathcal{C}_k|\boldsymbol{x}) \approx y_k(\boldsymbol{x}, \boldsymbol{w})$$

By using 1-of-K target vectors, the likelihood of a data point $(\boldsymbol{x}, \boldsymbol{t})$ can be written as

$$p(oldsymbol{t}|oldsymbol{x}) = \prod_{k=1}^{K} y_k(oldsymbol{x},oldsymbol{w})^{t_k}$$

 \blacksquare The likelihood of a data set $\{({m x}_1,{m t}_1),\ldots,({m x}_N,{m t}_N)\}$ is

$$\prod_{n=1}^{N} p(\boldsymbol{t}_n | \boldsymbol{x}_n) = \prod_{n=1}^{N} \prod_{k=1}^{K} y_k(\boldsymbol{x}_n, \boldsymbol{w})^{t_{nk}}$$

 Maximizing data likelihood is equivalent to minimizing the crossentropy error function

$$E(\boldsymbol{w}) = -\sum_{n=1}^{N} \sum_{k=1}^{K} t_{nk} \log y_{nk}, \ y_{nk} = y_k(\boldsymbol{x}_n, \boldsymbol{w})$$

GRADIENT AND LINEAR APPROXIMATION

The local linear approximation near a point w_0 is

$$E(\boldsymbol{w}) \approx E(\boldsymbol{w}_0) + (\boldsymbol{w} - \boldsymbol{w}_0)^T \boldsymbol{\nabla} E(\boldsymbol{w}_0)$$

where

Chen P NEURAL NETWORKS

Gradient descent

$$\boldsymbol{w}^{(\tau+1)} = \boldsymbol{w}^{(\tau)} - \eta \boldsymbol{\nabla} E(\boldsymbol{w}^{(\tau)})$$

Stochastic gradient descent

$$\boldsymbol{w}^{(\tau+1)} = \boldsymbol{w}^{(\tau)} - \eta \boldsymbol{\nabla} E_n(\boldsymbol{w}^{(\tau)})$$

Iterative methods: update weight and re-evaluate gradient.

The local quadratic approximation near a point w_0 is

$$E(\boldsymbol{w}) \approx E(\boldsymbol{w}_0) + (\boldsymbol{w} - \boldsymbol{w}_0)^T \boldsymbol{\nabla} E(\boldsymbol{w}_0) + \frac{1}{2} (\boldsymbol{w} - \boldsymbol{w}_0)^T \boldsymbol{H} (\boldsymbol{w} - \boldsymbol{w}_0)$$

where $oldsymbol{H}$ is the Hessian matrix at $oldsymbol{w}_0$ with

$$(\boldsymbol{H})_{ij} = E_{w_i w_j}(\boldsymbol{w}_0)$$

CHEN P NEURAL NETWORKS

NEWTON'S METHOD

The critical point of the local quadratic approximation near $oldsymbol{w}_0$ is

$$\boldsymbol{w}' = \boldsymbol{w}_0 - \boldsymbol{H}^{-1} \boldsymbol{\nabla} E(\boldsymbol{w}_0)$$

This equation can be applied iteratively to update w.

It may converge to a local minimum where ∇E vanishes and H is positive definite.

Error Backpropagation

In the **error backpropagation**, the gradient is computed by propagating the derivatives **backwards** through the network, starting from the **errors** between targets and outputs.

- We begin with the derivatives of the cost function with respect to the **output-layer unit activations**.
- The derivatives of the cost function with respect to the hiddenlayer unit activations are computed by propagating information backwards in the network.
- The derivatives of the cost function with respect to the link weights are computed from the derivatives with respect to the unit activations.

The activation at a unit j is a weighted sum of its inputs

$$a_j = \sum_i w_{ji} z_i$$

Here w_{ji} is the weight of the link connecting unit *i* and unit *j*. Moreover, unit *i* is the input of this link and unit *j* is the output of this link. An activation function transforms the activation

$$z_j = h(a_j)$$

for propagation of information to the next level.

Let E(w) be the cost function to be minimized.

• Output-layer units: for each unit k, define

$$\delta_k = \frac{\partial E}{\partial a_k}$$

• Hidden-layer units: for each unit j, define

$$\delta_j = \frac{\partial E}{\partial a_j}$$

• Link weights: for the link from unit i to unit j, we have

$$\frac{\partial E}{\partial w_{ji}} = \frac{\partial E}{\partial a_j} \frac{\partial a_j}{\partial w_{ji}} = \delta_j z_i$$

The derivatives at the hidden-layer units are related to the derivatives at the output-layer units by

$$\delta_j = h'(a_j) \sum_k w_{kj} \delta_k$$

Note

$$\frac{\partial a_k}{\partial a_j} = \frac{\partial a_k}{\partial z_j} \frac{\partial z_j}{\partial a_j} = w_{kj} h'(a_j)$$

It follows that

$$\delta_j = \frac{\partial E}{\partial a_j} = \sum_k \frac{\partial E}{\partial a_k} \frac{\partial a_k}{\partial a_j} = \sum_k \delta_k w_{kj} h'(a_j) = h'(a_j) \sum_k w_{kj} \delta_k$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シタペ

BACK PROPAGATION OF THE DERIVATIVES

The derivative at a hidden-layer unit is a linear combination of the derivatives at the output-layer units.

 δ_j can be interpreted as a backward output at unit j with the δ_k 's as inputs followed by a scalar multiplication of $h'(a_j)$.

The Derivatives at the Output Layer

By design, the derivative at an output layer unit is the error between output and target, i.e.

$$\delta_k = y_k - t_k$$

 Regression: sum of squared errors cost function and linear activation function

$$\delta_k = \frac{\partial E}{\partial a_k} = \frac{\partial E}{\partial y_k} \frac{\partial y_k}{\partial a_k} = y_k - t_k$$

 Binary classification: cross-entropy cost function and logistic sigmoid activation function

$$\delta_k = \frac{\partial E}{\partial y_k} \frac{\partial y_k}{\partial a_k} = -\left(\frac{t_k}{y_k} - \frac{1 - t_k}{1 - y_k}\right) \left(y_k(1 - y_k)\right) = y_k - t_k$$

■ K-ary classification: cross-entropy cost function and normalized exponential activation function (next slide)

$$E = -\sum_{k} t_k \log y_k$$

$$\begin{split} \delta_k &= \frac{\partial E}{\partial a_k} \\ &= \sum_{k'} \frac{\partial E}{\partial y_{k'}} \frac{\partial y_{k'}}{\partial a_k} \\ &= \sum_{k'} \left(-\frac{t_{k'}}{y_{k'}} \right) \left(y_{k'} (\delta_{k'k} - y_k) \right) \\ &= \sum_{k'} -t_{k'} (\delta_{k'k} - y_k) \\ &= \sum_{k'} y_k t_{k'} - \sum_{k'} t_{k'} \delta_{k'k} \\ &= y_k - t_k \end{split}$$

Chen P NEURAL NETWORKS

Forward propagation for

 a_j, z_j, a_k, y_k

Derivatives of cost function at the output layer (= errors)

$$\delta_k = y_k - t_k$$

Backpropagation of the derivatives (to the hidden layer)

$$\delta_j = h'(a_j) \sum_k \delta_k w_{kj}$$

Derivatives with respect to the weights

$$\frac{\partial E}{\partial w_{kj}} = \delta_k z_j, \quad \frac{\partial E}{\partial w_{ji}} = \delta_j x_i$$

Output-layer activation function

 $y_k = a_k$

Hidden-layer activation function

$$h(a_j) = \tanh(a_j) = \frac{e^{a_j} - e^{-a_j}}{e^{a_j} + e^{-a_j}}$$

Note

$$h'(a_j) = 1 - h^2(a_j) = 1 - z_j^2$$

Sum of squared errors cost function

$$E(\boldsymbol{w}) = \frac{1}{2} \sum_{k=1}^{K} (y_k - t_k)^2$$

Forward propagation

$$a_j = \sum_{i=0}^{D} w_{ji} x_i, \ z_j = \tanh(a_j), \ a_k = \sum_{j=0}^{M} w_{kj} z_j, \ y_k = a_k$$

Derivatives at the output units (= errors)

$$\delta_k = y_k - t_k$$

Derivatives at the hidden units

$$\delta_j = h'(a_j) \sum_k w_{kj} \delta_k = (1 - z_j^2) \sum_{k=1}^K w_{kj} \delta_k$$

The weight derivatives

$$\frac{\partial E}{\partial w_{ji}} = \delta_j x_i, \quad \frac{\partial E}{\partial w_{kj}} = \delta_k z_j$$

CHEN P NEURAL NETWORKS

The **Jacobian** consists of the derivatives of a group of dependent variables with respect to a group of input variables.

Let $\boldsymbol{x} = (x_1, \dots, x_D)^T$ be the input variables and $\boldsymbol{y} = (y_1, \dots, y_K)^T$ be the output variables. Note $y_i = y_i(x_1, \dots, x_D)$. The Jacobian is

$$\boldsymbol{J} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \cdots & \frac{\partial y_1}{\partial x_D} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_K}{\partial x_1} & \cdots & \frac{\partial y_K}{\partial x_D} \end{bmatrix}$$

That is, $J_{ki} = \frac{\partial y_k}{\partial x_i}$.

COMPUTING JACOBIAN WITH BACKPROPAGATION

The Jacobian of a feed-forward network function can be computed with **backpropagation**.

Let x be the input and y be the output. We want $J_{ki} = \frac{\partial y_k}{\partial x_i}$. Begin with the output-layer derivatives

$$\frac{\partial y_k}{\partial a_{k'}} = \delta_{kk'} f'(a_{k'}) \text{ or } \frac{\partial y_k}{\partial a_{k'}} = \delta_{kk'} y_k - y_k y_{k'}$$

Backpropagate the output-layer derivatives to the hidden-layer

$$\frac{\partial y_k}{\partial a_j} = \sum_{k'} \frac{\partial y_k}{\partial a_{k'}} \frac{\partial a_{k'}}{\partial a_j} = \sum_{k'} \frac{\partial y_k}{\partial a_{k'}} w_{k'j} h'(a_j)$$

End with

$$J_{ki} = \frac{\partial y_k}{\partial x_i} = \sum_j \frac{\partial y_k}{\partial a_j} \frac{\partial a_j}{\partial x_i} = \sum_j \frac{\partial y_k}{\partial a_j} w_{ji}$$

JACOBIAN AND MODULAR NETWORK

Jacobian is convenient in a system built from distinct modules. For example, the derivative of the cost function with respect to w in

involves a Jacobian

$$\frac{\partial E}{\partial w} = \sum_{k,j} \frac{\partial E}{\partial y_k} \frac{\partial y_k}{\partial z_j} \frac{\partial z_j}{\partial w}$$
Hessian

The **Hessian** of a function consists of the second-order partial derivatives of the function with respect to the variables.

Let $\boldsymbol{w} = (w_1, \ldots, w_W)^T$ be the trainable parameters (weights and biases) of a neural network and $E(\boldsymbol{w})$ be the cost function. The Hessian is

$$\boldsymbol{H} = \begin{bmatrix} E_{w_1w_1} & \dots & E_{w_1w_W} \\ \vdots & \ddots & \vdots \\ E_{w_Ww_1} & \dots & E_{w_Ww_W} \end{bmatrix}$$

where

$$E_{w_m w_n} = \frac{\partial}{\partial w_n} \left(\frac{\partial E}{\partial w_m} \right) = \frac{\partial^2 E}{\partial w_n \partial w_m} = \frac{\partial^2 E}{\partial w_m \partial w_n} = E_{w_n w_m}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Non-linear optimization algorithm for training netwrok
- Fast procedure for re-training network
- To identify least significant weights for pruning network
- Laplace approximation for Bayesian learning of network

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Consider a basic neural network with 2 layers of weights.

- Let i and i' index input-layer units, j and j' index hidden-layer units, and k and k' index output-layer units.
- The Hessian matrix has 3 different blocks

$$\frac{\partial^2 E}{\partial w_{kj} \partial w_{k'j'}}, \ \frac{\partial^2 E}{\partial w_{ji} \partial w_{j'i'}}, \ \frac{\partial^2 E}{\partial w_{ji} \partial w_{j'j'}}$$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

COMPUTING HESSIAN WITH BACKPROPAGATION

Start with output-layer derivatives

$$\delta_k = \frac{\partial E}{\partial a_k}, \ M_{kk'} = \frac{\partial^2 E}{\partial a_k \partial a_{k'}}$$

Backpropagate the derivatives. For the first block

$$\begin{aligned} \frac{\partial^2 E}{\partial w_{kj} \partial w_{k'j'}} &= \frac{\partial}{\partial w_{kj}} \left(\frac{\partial E}{\partial w_{k'j'}} \right) \\ &= \frac{\partial}{\partial w_{kj}} \left(\frac{\partial E}{\partial a_{k'}} \frac{\partial a_{k'}}{\partial w_{k'j'}} \right) \\ &= z_{j'} \frac{\partial}{\partial w_{kj}} \left(\frac{\partial E}{\partial a_{k'}} \right) \\ &= z_{j'} \frac{\partial a_k}{\partial w_{kj}} \left(\frac{\partial^2 E}{\partial a_k \partial a_{k'}} \right) \\ &= z_{j'} z_j M_{kk'} \end{aligned}$$

For the off-diagonal block

$$\frac{\partial^{2}E}{\partial w_{ji}\partial w_{kj'}} = \frac{\partial}{\partial w_{ji}} \left(\frac{\partial E}{\partial w_{kj'}} \right) = \frac{\partial}{\partial w_{ji}} \left(\frac{\partial E}{\partial a_{k}} \frac{\partial a_{k}}{\partial w_{kj'}} \right)$$

$$= \frac{\partial}{\partial w_{ji}} \left(\frac{\partial E}{\partial a_{k}} z_{j'} \right)$$

$$= z_{j'} \frac{\partial}{\partial w_{ji}} \left(\frac{\partial E}{\partial a_{k}} \right) + \frac{\partial z_{j'}}{\partial w_{ji}} \left(\frac{\partial E}{\partial a_{k}} \right)$$

$$= z_{j'} \sum_{k'} \frac{\partial a_{k'}}{\partial w_{ji}} \left(\frac{\partial^{2}E}{\partial a_{k'}\partial a_{k}} \right) + \frac{\partial z_{j'}}{\partial w_{ji}} \left(\frac{\partial E}{\partial a_{k}} \right)$$

$$= z_{j'} \sum_{k'} \frac{\partial a_{k'}}{\partial z_{j}} \frac{\partial z_{j}}{\partial w_{ji}} \left(\frac{\partial^{2}E}{\partial a_{k'}\partial a_{k}} \right) + \frac{\partial z_{j'}}{\partial w_{ji}} \left(\frac{\partial E}{\partial a_{k}} \right)$$

$$= z_{j'} \sum_{k'} w_{k'j} x_{i} h'(a_{j}) M_{k'k} + \delta_{jj'} x_{i} h'(a_{j}) \delta_{k}$$

$$= x_{i} h'(a_{j}) \left(z_{j'} \sum_{k'} w_{k'j} M_{k'k} + \delta_{jj'} \delta_{k} \right)$$

Finally (an exercise)

$$\frac{\partial^2 E}{\partial w_{ji} \partial w_{j'i'}} = x_i x_{i'} h''(a_{j'}) \delta_{jj'} \sum_k w_{kj'} \delta_k$$
$$+ x_i x_{i'} h'(a_j) h'(a_{j'}) \sum_k \sum_{k'} w_{kj} w_{k'j'} M_{kk'}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

In diagonal approximation, we replace off-diagonal elements of a Hessian by 0, and retains the diagonal elements. For the weights between the input layer and the hidden layer, the diagonal elements are

$$\frac{\partial^2 E}{\partial w_{ji}^2} = x_i^2 \left(h^{\prime\prime}(a_j) \sum_k w_{kj} \delta_k + h^{\prime}(a_j)^2 \sum_k \sum_{k^{\prime}} w_{kj} w_{k^{\prime}j} M_{kk^{\prime}} \right)$$

Further approximation may be applied by neglecting the off-diagonal elements of M. We then have

$$\frac{\partial^2 E}{\partial w_{ji}^2} = x_i^2 \left(h''(a_j) \sum_k w_{kj} \delta_k + h'(a_j)^2 \sum_k w_{kj}^2 M_{kk} \right)$$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

OUTER-PRODUCT APPROXIMATIONS

The Hessian of the sum-of-squared-errors cost function is

$$egin{aligned} m{H} &= \sum_n m{
abla} y_n (m{
abla} y_n)^T + \sum_n (y_n - t_n) m{
abla} m{
abla} y_n \ &pprox \sum_n m{b}_n m{b}_n^T \end{aligned}$$

where

$$\boldsymbol{b}_n = \boldsymbol{\nabla} y_n$$

The Hessian of the cross-entropy cost function is

$$oldsymbol{H} pprox \sum_n y_n (1-y_n) oldsymbol{b}_n oldsymbol{b}_n^T$$

In both cases, the Hessians are approximated as the sum of outerproduct terms.

<□ > < @ > < E > < E > E の Q @ 45/76

The outer-product approximation of a Hessian facilitates a procedure for computing its inverse. Define

$$oldsymbol{H}_L = \sum_{n=1}^L oldsymbol{b}_n oldsymbol{b}_n^T$$

Then

$$\boldsymbol{H}_{L+1} = \boldsymbol{H}_L + \boldsymbol{b}_{L+1} \boldsymbol{b}_{L+1}^T$$

and

$$\boldsymbol{H}_{L+1}^{-1} = \boldsymbol{H}_{L}^{-1} - \frac{\boldsymbol{H}_{L}^{-1} \boldsymbol{b}_{L+1} \boldsymbol{b}_{L+1}^{T} \boldsymbol{H}_{L}^{-1}}{1 + \boldsymbol{b}_{L+1}^{T} \boldsymbol{H}_{L}^{-1} \boldsymbol{b}_{L+1}}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Regularization

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Avoid over-fitting
- Include terms in the cost function to reduce generalization error
- Reduce the effective number of parameters
- Put model complexity under control

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

OVER-FITTING WITH NEURAL NETWORKS

Two-layer networks trained on 10 data points with a sum-of-squarederrors cost function. The number of hidden-layer units M is shown.

イロト イポト イヨト イヨト 一日

The sum-of-squared errors of polynomial data test set. For each hidden-layer size, 30 random initializations of the parameters, with isotropic zero-mean Gaussian distribution, are used.

(日) (圖) (E) (E) (E)

In weight decay, we use a regularized cost function

$$ilde{E}(oldsymbol{w}) = E(oldsymbol{w}) + rac{\lambda}{2}oldsymbol{w}^Toldsymbol{w}$$

The regularization term (a.k.a. **regularizer**) $\frac{\lambda}{2} w^T w$ can be interpreted as the negative logarithm of a zero-mean Gaussian prior distribution for w.

For a basic neural network with 2 layers of weights, a regularizer that is consistent with the invariance to linear transformation of the input/output variables is

$$\frac{\lambda_1}{2} \sum_{w \in \mathcal{W}_1} w^2 + \frac{\lambda_2}{2} \sum_{w \in \mathcal{W}_2} w^2$$

More generally, we can consider priors

$$p(\boldsymbol{w}|\boldsymbol{\alpha}) \propto \exp\left(-\frac{1}{2}\sum_{k} \alpha_{k} \|\boldsymbol{w}\|_{k}^{2}\right)$$

where

$$\|\boldsymbol{w}\|_k^2 = \sum_{w \in \mathcal{W}_k} w^2$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Samples of network functions using 4 hyperparameters for the prior distribution $p(w|\alpha)$ over the weights and biases in a 2-layer network with 12 hidden units with tanh activation function.

◆□ → ◆□ → ◆ = → ◆ = → ○ ◆ ○ 53/76

EARLY STOPPING

Training set error and validation set error as a function of the iteration step. Early stopping has a similar effect as weight decay.

In many classification problems, the prediction should be unchanged under certain transformation of the input.

- collect sufficiently many examples (very expensive)
- use replicas of training data subject to transformation
- add a term to the cost function to penalize output changes
- extract features that are invariant under certain transformation
- build the invariance properties into the model

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

DATA AUGMENTATION

Data augmentation with a hand-written digit.

CHEN P NEURAL NETWORKS

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の Q O 56/76

TANGENT PROPAGATION

Consider a continuous transformation starting from point x.

- \blacksquare Suppose the transformation is governed by a parameter ξ
- \blacksquare A trajectory $\mathcal{M}: \xi \mapsto \boldsymbol{s}(\boldsymbol{x}_n, \xi)$ with $\boldsymbol{s}(\boldsymbol{x}_n, 0) = \boldsymbol{x}_n$ is traced
- \blacksquare The tangent vector of $oldsymbol{s}(oldsymbol{x}_n,\xi)$ at $oldsymbol{x}_n$ is

$$oldsymbol{ au}_n = \left. rac{\partial oldsymbol{s}}{\partial \xi}
ight|_{\xi=0}$$

Along trajectory \mathcal{M} we have

$$oldsymbol{x} = oldsymbol{s}(oldsymbol{x}_n,\xi)$$

Consider output function $y_k(\boldsymbol{x})$ along trajectory \mathcal{M} . At \boldsymbol{x}_n

$$\frac{\partial y_k}{\partial \xi}\Big|_{\boldsymbol{x}=\boldsymbol{x}_n,\xi=0} = \sum_{i=1}^D \frac{\partial y_k}{\partial x_i} \frac{\partial x_i}{\partial \xi}\Big|_{\boldsymbol{x}=\boldsymbol{x}_n,\xi=0} = \sum_{i=1}^D J_{nki}\tau_{ni}$$

If we want the output to remain invariant with respect to tangent direction of the transformation, we add a term to the cost function

$$\tilde{E} = E + \lambda \sum_{n} \sum_{k} \left(\sum_{i} J_{nki} \tau_{ni} \right)^2$$

The tangent vector of a transformation can be approximated by finite differences.

- (a) original image
- (b) tangent vector for clockwise rotation
- (c) synthetic data using tangent vector
- (d) true image rotated

<□ > < 母 > < 臣 > < 臣 > 臣 < ○ < 59/76</p>

CONVOLUTIONAL NEURAL NETWORKS

- local receptive field
- weight sharing
- sub-sampling

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ(?)

Mixture Density Networks

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

FORWARD PROBLEM AND INVERSE PROBLEM

In a **forward problem**, the causes are given and the effects are to be decided. In an **inverse problem**, the effects are given and the causes are to be decided. In an inverse problem, it is common to have multiple causes for given effects.

<□ > < 母 > < 臣 > < 臣 > 臣 < ○ 62/76</p>

EXAMPLE

Fitting a data set with a 2-layer network with 6 hidden-layer units.

The data set is generated according to

$$t_n = f(x_n) + \epsilon_n, \ f(x) = x + 0.3\sin(2\pi x)$$

In the forward problem, we fit a data set to $t \approx y(x, w)$. In the inverse problem, we fit a data set to $x \approx y'(t, w')$.

HETEROSCEDASTIC MIXTURE MODELS

- If there are multiple choices for a given input, such as in an inverse problem, we need a mixture model for the conditional distribution.
- A general framework is

$$p(\boldsymbol{t}|\boldsymbol{x}) \approx \sum_{k} c_k(\boldsymbol{x}) p_k(\boldsymbol{t}|\boldsymbol{w}(\boldsymbol{x}))$$

where the model parameters, including the mixing coefficients and the parameters in the component densities, depend on $\boldsymbol{x}.$

Using Gaussian component densities, we have

$$p(\boldsymbol{t}|\boldsymbol{x}) pprox \sum_k \pi_k(\boldsymbol{x}) \mathcal{N}(\boldsymbol{t}|\boldsymbol{\mu}_k(\boldsymbol{x}), \boldsymbol{\Sigma}_k(\boldsymbol{x}))$$

It approximates arbitrary conditional distributions.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 → ○ ○ 64/76

In **mixture density network**, we use a neural network to model the functions relating the parameters in the mixture density to the input variables.

Consider a mixture model with Gaussian component densities, each with a diagonal covariance matrix $\Sigma_k(x) = \sigma_k^2(x)I$.

- Normalized mixing coefficients can be achieved by softmax
- Positive variances can be achieved by exponential activation
- Gaussian means can be approximated by simple linear activation

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

TRAINING A MIXTURE DENSITY NETWORK

The error function is

$$E(\boldsymbol{w}) = -\sum_{n} \log p(\boldsymbol{t}_{n} | \boldsymbol{x}_{n})$$
$$= -\sum_{n} \log \left(\sum_{k} \pi_{k}(\boldsymbol{x}_{n}, \boldsymbol{w}) \mathcal{N}(\boldsymbol{t}_{n} | \boldsymbol{\mu}_{k}(\boldsymbol{x}_{n}, \boldsymbol{w}), \sigma_{k}^{2}(\boldsymbol{x}_{n}, \boldsymbol{w}) \boldsymbol{I}) \right)$$

The derivatives of E with respect to the network output activations are

$$\frac{\partial E_n}{\partial a_k^{\pi}} = \pi_k - \gamma_{nk} \quad \text{where } \gamma_{nk} = \frac{\pi_k \mathcal{N}_{nk}}{\sum_l \pi_l \mathcal{N}_{nl}}$$

and

$$\frac{\partial E_n}{\partial a_{kl}^{\mu}} = \gamma_{nk} \left(\frac{\mu_{kl} - t_{nl}}{\sigma_k^2} \right), \ \frac{\partial E_n}{\partial a_k^{\sigma}} = \gamma_{nk} \left(L - \frac{\|\boldsymbol{t}_n - \boldsymbol{\mu}_k\|^2}{\sigma_k^2} \right)$$

Network architecture: $5 \tanh hidden-layer units$, 9 output-layer units

- (a) mixing coefficients $\pi_k(x), \ k=1,2,3$
- (b) mean $\mu_k(x)$
- (c) contours of conditional density
- (d) conditional mode (red)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シタペ

Bayesian Neural Networks

▲日▼▲留▼▲田▼▲田▼▲日▼

 Make the Gaussian noise assumption and parametric function approximation

$$p(t|\boldsymbol{x}, \boldsymbol{w}, \beta) = \mathcal{N}(t|y(\boldsymbol{x}, \boldsymbol{w}), \beta^{-1})$$

 \blacksquare Assume a Gaussian prior for w

$$p(\boldsymbol{w}|\alpha) = \mathcal{N}(\boldsymbol{w}|\boldsymbol{0}, \alpha^{-1}\boldsymbol{I})$$

 \blacksquare The likelihood of data set $\mathcal{D} = \{({\boldsymbol{x}}_n, t_n)\}$ is

$$p(\mathcal{D}|\boldsymbol{w},\beta) = \prod_{n} \mathcal{N}(t_n|y(\boldsymbol{x}_n, \boldsymbol{w}), \beta^{-1})$$

 \blacksquare The posterior distribution of w is non-Gaussian, with

$$\log p(\boldsymbol{w}|\mathcal{D}) = -\frac{\alpha}{2}\boldsymbol{w}^T\boldsymbol{w} - \frac{\beta}{2}\sum_n (y(\boldsymbol{x}_n, \boldsymbol{w}) - t_n)^2 + \text{const}$$

 \blacksquare Apply the Laplace approximation for the posterior of w

$$p(\boldsymbol{w}|\mathcal{D}) \approx q(\boldsymbol{w}|\mathcal{D}) = \mathcal{N}(\boldsymbol{w}|\boldsymbol{w}_{\mathsf{MAP}}, \boldsymbol{A}^{-1})$$

where

$$oldsymbol{A} = -oldsymbol{
abla}
abla \log p(oldsymbol{w} | \mathcal{D}) = lpha oldsymbol{I} + eta oldsymbol{H}(oldsymbol{w}_{\mathsf{MAP}})$$

• The predictive distribution of t is

$$p(t|\boldsymbol{x}, \mathcal{D}) = \int p(t|\boldsymbol{x}, \boldsymbol{w}) p(\boldsymbol{w}|\mathcal{D}) d\boldsymbol{w} \approx \int p(t|\boldsymbol{x}, \boldsymbol{w}) q(\boldsymbol{w}|\mathcal{D}) d\boldsymbol{w}$$

Approximate $y(\boldsymbol{x}, \boldsymbol{w}) \approx y(\boldsymbol{x}, \boldsymbol{w}_{\mathsf{MAP}}) + \boldsymbol{g}^T(\boldsymbol{w} - \boldsymbol{w}_{\mathsf{MAP}})$ where $\boldsymbol{g} = \boldsymbol{\nabla}_{\boldsymbol{w}} y(\boldsymbol{x}, \boldsymbol{w}_{\mathsf{MAP}})$. Then

$$p(t|\boldsymbol{x}, \mathcal{D}) \approx \mathcal{N}(t|y(\boldsymbol{x}, \boldsymbol{w}_{\mathsf{MAP}}), \sigma^{2}(\boldsymbol{x}))$$

where

$$\sigma^2(\boldsymbol{x}) = \beta^{-1} \boldsymbol{g}^T \boldsymbol{A}^{-1} \boldsymbol{g}$$

When the hyperparameters α and β are not fixed, we iteratively update α and β and the posterior distribution.

 \blacksquare Given α and $\beta,$ we update \pmb{w}_{MAP} by maximizing the posterior distribution

 $p(\boldsymbol{w}|\mathcal{D}, \alpha, \beta) \propto p(\boldsymbol{w}|\alpha)p(\mathcal{D}|\boldsymbol{w}, \beta)$

Given w_{MAP} , we update α and β by maximizing the marginal likelihood

$$p(\mathcal{D}|\alpha,\beta) = \int p(\boldsymbol{w}|\alpha)p(\mathcal{D}|\boldsymbol{w},\beta)d\boldsymbol{w}$$

<□ > < 母 > < 臣 > < 臣 > 臣 < ○ < ?2/76</p>
In Bayesian setting, the main difference between learning regression and learning binary classification is the likelihood function. In binary classification, the data likelihood is

$$\log p(\mathcal{D}|\boldsymbol{w}) = \sum_{n} t_n \log y_n + (1 - t_n) \log(1 - y_n)$$

Given α , the parameters that maximizes the posterior probability is

$$\boldsymbol{w}_{\mathsf{MAP}} = \operatorname*{arg\,min}_{\boldsymbol{w}} - \log p(\mathcal{D}|\boldsymbol{w}) + \frac{lpha}{2} \boldsymbol{w}^T \boldsymbol{w}$$

Again we alternate between updating the hyperparameter α and updating the posterior distribution.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

HYPERPARAMETER OPTIMIZATION

The optimal decision boundary (green), the decision boundary learned by maximum likelihood (black), and the decision boundary learned by a regularizer whose hyperparameter α is optimized using the evidence procedure (red). A 2-layer network with 8 hidden-layer units is used to fit data.

イロト イポト イヨト イヨト 一日

PREDICTIVE DISTRIBUTION

A 2-layer network with 8 hidden-layer \tanh units is used to fit data. Left: point estimate

$$y(\boldsymbol{x}) = p(t|\boldsymbol{x}, \mathcal{D}) \approx p(t|\boldsymbol{x}, \boldsymbol{w}_{\mathsf{MAP}})$$

Right: Bayesian

$$y(\boldsymbol{x}) = p(t|\boldsymbol{x}, \mathcal{D}) = \int p(t|\boldsymbol{x}, \boldsymbol{w}) q(\boldsymbol{w}|\mathcal{D}) d\boldsymbol{w}$$

- DeepSpeech (automatic speech recognition)
- WaveNet (speech synthesis)
- ImageNet (image classification)
- Translator (machine translation)
- AlphaGo (honorary 10 dan)

LeCun, Bengio, and Hinton, "Deep Learning", Nature

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ・ ク へ で 76/76