NEURAL NETWORKS

Chia-Ping Chen

Professor
National Sun Yat-sen University
Department of Computer Science and Engineering

Machine Learning

ToPriCS

m Feed-forward Networks

m Network Training

m Error Backpropagation

m Hessian Matrix

m Regularization in Neural Networks
m Mixture Density Networks

m Bayesian Neural Networks

CHEN P NEURAL NETWORKS

Feed-forward Network Functions

o 5

e —

DAt 3/76

FIXED BASIS FUNCTIONS

In our discussion of linear models for regression or classification, we
use output functions based on fixed basis functions. That is

ye(x) = f (w;fqb)

where
¢1(x)
¢ = :
Pm ()

CHEN P NEURAL NETWORKS

PARAMETRIC BASIS FUNCTIONS

Instead of fixed basis functions, we can assume output functions
T
(@) = f (wio)

based on parametric basis functions

¢1 (QT, 91)
¢ = :
¢M (mv GM)
The parameters 61,...,80); in the basis functions, as well as the
parameters w1, ..., wg in the output functions, can be learned from

data.

CHEN P NEURAL NETWORKS

BAsiCc NEURAL NETWORK MODELS

Consider a neural network with 3 layers of units. (By the way, this
is called a 2-layer network as there are 2 layers of weights.)

m Input layer
x = (z1,...,7D)

m Hidden layer
z=(21,---,2M)

m Output layer
Y= (yla”'ayK)

CHEN P NEURAL NETWORKS

How A BASiC NEURAL NETWORK RUNS

m linear combination of input units

D

a; = Z WjiTi + Wjo
j=1

hidden-layer activation function

zj = h(ay)

m linear combination of hidden units

M

ap = Zwkaj + wWko
Jj=1

output-layer activation function

yr = flax)

CHEN P NEURAL NETWORKS

FORWARD PROPAGATION

hidden units

CHEN P NEURAL NETWORKS

LINEAR MODELS

Each hidden-layer unit corresponds to a basis function

D 1
9j(@) = h (Z wﬁ-ﬂxi)
1=0

Each output-layer unit corresponds to an output function acting on
linear activations

() = f (Z w,g?(pj(x))
J
= f(wf)

CHEN P NEURAL NETWORKS

OuTtpuT FUNCTIONS

Let a be the activations of the output-layer units.

m Regression: linear output activation function

M 2 D 1
Yp = ap = Zw,(fj)h (Z w](i)xZ)
=0 i=0

m Binary classification: logistic sigmoid activation function
o (2) ¢ (1)
yp =ol(ag) =0 Zwkj h (Z wj; xl>
j=0 i=0
m K-ary classification: normalized exponential

exp(a)

Yk = 7 <
Zgzl exp(a%)

CHEN P NEURAL NETWORKS

FEED-FORWARD NETWORKS

In a feed-forward net, there are no cycles in the propagation of
information from input to output.

2
T2 Y2
inputs z1 outputs
T Y1
<3

CHEN P NEURAL NETWORKS

NN As FUNCTION APPROXIMATOR (REGRESSION)

4 neural networks with 1 input-layer unit, 3 hidden-layer units (tanh
activation), and 1 output-layer unit (linear activation). Each network
is learned with 50 data points.

T
\\ . // // \

\
\ ALl
N RN
\
\k,./ S
1:2

\ // [‘
A
N\

|| H{(z)

CHEN P NEURAL NETWORKS

NN IN BINARY CLASSIFICATION

Binary classification with a synthetic data set.
m green: decision boundary based on data-generation distribution
m red: decision boundary (y = 0.5) based on a neural net

m dashed blue: contours of z; = 0.5

CHEN P NEURAL NETWORKS

Network Training

DA™ 1476

u]
‘ b}
1
n
[Tl

REGRESSION

m Again, we assume the target variable is corrupted by a Gaussian
noise
t=u(x)+e

m Further, we assume a parametric function for u(x)
u(z) ~ y(z, w)
m For a data point (x,t), the conditional likelihood is
p(tlz) = N(tly(z, w), 57

m The likelihood of a data set {(x1,t1),..., (xN,tN)]} is

N N
H p(tn|$n) = H N(tn|y(mn7 w)> 5_1)
n=1 n=1

CHEN P NEURAL NETWORKS

MAXIMUM LIKELIHOOD

Taking the negative logarithm of the data likelihood, we obtain

g;(y(mn> 'LU) - tn)2 - E log 8 + E log(zﬂ-)

Maximizing data likelihood with respect to w is equivalent to mini-
mizing the sum of squared errors

1 N
wyL = argmin E(w) = arg min — Z y(x,, w)2
w —

l\D

Maximizing data likelihood with respect to 3 leads to

2
y\xr ,wML —1
/BML HZ ")

CHEN P NEURAL NETWORKS

BINARY CLASSIFICATION

m Again, we assume a parametric function for the posterior prob-
ability of class Cy

p(Cilz) =~ y(z, w)

m By using ¢t = 1 for class C1 and ¢ = 0 for class Co, the likelihood
of a data point (x,t) can be written as

p(tle) = y(z, w)" (1 — y(z,w))'
m The likelihood of a data set {(x1,t1),..., (xN,tN)]} is

N N
I p(talzn) = T w(@n, w)" (1 = y(an, w))'
n=1 n=1

m Maximizing data likelihood is equivalent to minimizing the sum
of cross-entropy errors

Zt log yn + (1 — t) log(1 — yn)

CHEN P NEURAL NETWORKS

K-ARY CLASSIFICATION

m Again, we assume a parametric function for the class posteriors

p(Cilz) = yi(, w)
m By using 1-of-K target vectors, the likelihood of a data point
(x,t) can be written as

K
p(tle) =] va(e
=1

k=
m The likelihood of a data set {(x1,%1),...,(xN,tN)} is

N N K
H t ’mn = H H mn’
n=1 n=1 k=1

m Maximizing data likelihood is equivalent to minimizing the cross-
entropy error function
N K

E(w) =—=>"> tw10g Ynk: Ynk = y(Tn, w)
n=1k=1

CHEN P NEURAL NETWORKS

GRADIENT AND LINEAR APPROXIMATION

The local linear approximation near a point wy is
E(w) ~ E(wg) + (w — wo) VE(w)
where

V E(w) = lgﬂ

/W,J wl [
Q

w2 VE

CHEN P NEURAL NETWORKS

GRADIENT DESCENT METHODS

Gradient descent

w™ =) — yVE(w)
Stochastic gradient descent

w™ = w — VY E, (w™)

Iterative methods: update weight and re-evaluate gradient.

CHEN P NEURAL NETWORKS

HESSIAN AND QUADRATIC APPROXIMATION

The local quadratic approximation near a point wy is

1
E(w) ~ E(wo) + (w — wo)" VE(wo) + S(w— wo)" H (w — w)
where H is the Hessian matrix at wg with

(H)ij = Ew,uw,;(wo)

CHEN P NEURAL NETWORKS

NEWTON’S METHOD

The critical point of the local quadratic approximation near wy is
w =wy— H 'VE(w)

This equation can be applied iteratively to update w.

It may converge to a local minimum where V E' vanishes and H is
positive definite.

uz
uy

)\;1/2\ /
\"1/2
1

w

CHEN P NEURAL NETWORKS

Error Backpropagation

= =4 = DA 23/76

INTRODUCTION

In the error backpropagation, the gradient is computed by
propagating the derivatives backwards through the network,
starting from the errors between targets and outputs.

m We begin with the derivatives of the cost function with respect
to the output-layer unit activations.

m The derivatives of the cost function with respect to the hidden-
layer unit activations are computed by propagating informa-
tion backwards in the network.

m The derivatives of the cost function with respect to the link
weights are computed from the derivatives with respect to the
unit activations.

CHEN P NEURAL NETWORKS

A CLOSE LOOK AT A UNIT

The activation at a unit j is a weighted sum of its inputs
aj = Zwﬂzi
i

Here wj; is the weight of the link connecting unit ¢ and unit j.
Moreover, unit 7 is the input of this link and unit j is the output of
this link. An activation function transforms the activation

zj = h(a;)

for propagation of information to the next level.

CHEN P NEURAL NETWORKS

THE DERIVATIVES

Let E(w) be the cost function to be minimized.

m Output-layer units: for each unit k, define

oE

0p = —
k Oay,

m Hidden-layer units: for each unit j, define

oF
0;i = —
J Oa;
m Link weights: for the link from unit 4 to unit j, we have

oF OF 8aj
8'[1}]‘2' - 8aj 8wjl-

CHEN P NEURAL NETWORKS

RELATING THE DERIVATIVES

The derivatives at the hidden-layer units are related to the
derivatives at the output-layer units by

5j = h'(aj) Zwkjék
k

Note 9 Sar 8
ag ag 0z5 /
_ — wih (as
aaj 6,2] Oa; = wiih'(a;)
It follows that
oF 86Lk

%= 8% Zaak Oa; dewk] (az) = h'(a; Zwkjdk

CHEN P NEURAL NETWORKS

BACK PROPAGATION OF THE DERIVATIVES

The derivative at a hidden-layer unit is a linear combination
of the derivatives at the output-layer units.

scalar multiplication backward activation

—_— —
(5]‘ = h’(aj) Zwkjak
k

0; can be interpreted as a backward output at unit j with the d;'s
as inputs followed by a scalar multiplication of h'(a;).

CHEN P NEURAL NETWORKS

THE DERIVATIVES AT THE OUTPUT LAYER

By design, the derivative at an output layer unit is the error between
output and target, i.e.
Ok = Yk — tk

m Regression: sum of squared errors cost function and linear ac-
tivation function

OE _ OF oy,

5k:87ak78yk8aki

m Binary classification: cross-entropy cost function and logistic
sigmoid activation function

O

ye 11—k

8E8yk_(tk 1—tk

= Oy Oap)(l/k(l—yk:))—yk—tk

m K-ary classification: cross-entropy cost function and normal-
ized exponential activation function (next slide)

CHEN P NEURAL NETWORKS

=2 tilogy
%

OF
o, = 8_%
- Z a—ank/
= Oypr Oay,
tr
_ Z < k) yk/ (Sk/k _ yk))
= Z _tk-/ 5k’k _ yk)
k!

- Z yktk/
L/

B Z tk;/(sk/k
k!

=y — g

-~ CcueNP NiURAL NETWORKS

B g

ERROR BACKPROPAGATION

Forward propagation for
Qj, 25,0k, Yk
m Derivatives of cost function at the output layer (= errors)

Ok = Y — t

Backpropagation of the derivatives (to the hidden layer)
(Sj = h’(aj) Z 5kwkj
k

m Derivatives with respect to the weights

OF oE

= 0kzj, —— =04
B YR
awji

awkj

CHEN P NEURAL NETWORKS

A SIMPLE EXAMPLE

m Output-layer activation function
Yk = Gk

m Hidden-layer activation function
eaj _ e—CLj

h(aj) = tanh(aj) = m

Note
2

W(aj) =1~ h*a;) =1- z;
m Sum of squared errors cost function

K

> (ke — tr)?

k=1

E(w) =

N |

CHEN P NEURAL NETWORKS

Forward propagation

D M
a; =Y wjiz;, zj = tanh(a;), ap = > Wz, Yk = ai
1=0 j=0

Derivatives at the output units (= errors)

Ok = Yk — tk

Derivatives at the hidden units
K
(5j = h’(aj) Zwkj5k = (1 — ZJQ) Z wkjék
k k=1

The weight derivatives

oFE oFE

=025, ——— =0k%;
YEZX) k=<j
8wkj

6wji

CHEN P NEURAL NETWORKS

JACOBIAN MATRIX

The Jacobian consists of the derivatives of a group of de-
pendent variables with respect to a group of input variables.

Letz = (z1,...,2p)T betheinput variablesand y = (y1,...,yx)"
be the output variables. Note y; = y;(z1,...,2p). The Jacobian is
dy1 Oy1.
oz e oxp
J=1: L
Oy Oy
oz te oxp

That is, Jy; = 2

= ox; *

CHEN P NEURAL NETWORKS

COMPUTING JACOBIAN WITH BACKPROPAGATION

The Jacobian of a feed-forward network function can be com-
puted with backpropagation.

Let « be the input and y be the output. We want J; = gg’“.

m Begin with the output-layer derivatives

Yk,
dar Orer f (anr) or Py Okk' Yk — YkYr!
m Backpropagate the output-layer derivatives to the hidden-layer

Oyr _ x~ Oy Oaxr WY /
8CL]' n zk’: (‘)ak/ 8a] Z 8ak/ Dagy F h aj)

m End with

8yk Oyr 0a; <~ Oy
Z 6(1]' 8.1‘Z N zj: 8aj wﬂ

CHEN P NEURAL NETWORKS

JACOBIAN AND MODULAR NETWORK

Jacobian is convenient in a system built from distinct modules. For
example, the derivative of the cost function with respect to w in

involves a Jacobian

OF _ 5~ OF Oy 0z
ow o Oyy, 0z Ow

CHEN P NEURAL NETWORKS

9D_C 37/76

u]
v
8]
v
it
v
a
it
|||||

HESSIAN MATRIX

The Hessian of a function consists of the second-order partial
derivatives of the function with respect to the variables.

Let w = (wy,...,ww)T be the trainable parameters (weights and
biases) of a neural network and E(w) be the cost function. The
Hessian is

Eviwi - Buywy
H = :)
Evyw - Pupwy
where
2 2
Eww:(?(aE): 0°FE _ 0‘FE _EB, .
L Qwy, \ Ow, oW, 0wy, Ow,Owy, nem

CHEN P NEURAL NETWORKS

ROLES PLAYED BY HESSIAN

Non-linear optimization algorithm for training netwrok

Fast procedure for re-training network

To identify least significant weights for pruning network

Laplace approximation for Bayesian learning of network

CHEN P NEURAL NETWORKS

STRUCTURE OF HESSIAN

Consider a basic neural network with 2 layers of weights.

m Let 7 and ¢’ index input-layer units, j and j’ index hidden-layer
units, and k£ and k' index output-layer units.

m The Hessian matrix has 3 different blocks

O*F O*E O*E
8wkj8wk/j/’ awjiawj/i/’ 8wjl-8wkj/

CHEN P NEURAL NETWORKS

COMPUTING HESSIAN WITH BACKPROPAGATION

Start with output-layer derivatives

oFE 0*’FE
s My =
8ak 8ak8ak/

Backpropagate the derivatives. For the first block

PE 9 [OE
Owkjé?wk/j/ N 8wk]’ <8wk/j/>
0 OF Oay
- 8wkj <8ak/ ka/jr>
)
B Zj/% (3%/)

. 8ak 82E
— A 6wkj 8ak8ak/

= zj Zijk/

5 =

CHEN P NEURAL NETWORKS

For the off-diagonal block

*E 0 (0E\ 9 (OE da
6wj7;8wkj/ N Owji 8wkj/ N 8wji 6ak 6wkj/
__2 (GEZ.)
N 8wﬂ- Oak 7’
o) <aE> Ozjr (6E>
= Zjli —_— —|— P
awji 8% aw]’i 8ak
_ 8ak/ 82E 8Zj/ oF
A Z owj; <8ak/8ak> + owj; (&lk)
. &W aZj 0°FE 8Zj/ <6E)
N ZJ/ Z aZj 8wj¢ (3(%/80%) + Owji 86Lk

= zj Zwk/]xz CLJ Mk’k + (5jj/l'zh (aj)ék

= ﬂfih/(a]’) (Zj/ Zwk/ij/k + (5 ’5k>

k/

CHEN P NEURAL NETWORKS

Finally (an exercise)

0’E
8wji8wj/l-/

= TiTj h// (aj/)éjj/ Z wkaék
k

+ Ty h'(aj)h’(aj/) Z Z wkjwk/j/Mkk/
kK

o &

I —

£ DAC 43/76

DIAGONAL APPROXIMATION

In diagonal approximation, we replace off-diagonal elements of a
Hessian by 0, and retains the diagonal elements. For the weights
between the input layer and the hidden layer, the diagonal elements
are

O’E
672 = x? (a] Zwk]ék + h/ aj Z Zwkjwk/ Mkk’)
Wi kK

Further approximation may be applied by neglecting the off-diagonal
elements of M. We then have

O’E

ow? 22 <h"(aj) > wibk+ b (a)*) wl%JMkk>
L k

CHEN P NEURAL NETWORKS

OUTER-PRODUCT APPROXIMATIONS

The Hessian of the sum-of-squared-errors cost function is
H=3 Vy.(Vy)" 2) n = tn) V'V
n
~ Z b,bl
n

where
b, = Vyn

The Hessian of the cross-entropy cost function is

H ~ Z% — Yn) byl

In both cases, the Hessians are approximated as the sum of outer-
product terms.

CHEN P NEURAL NETWORKS

INVERSE HESSIAN

The outer-product approximation of a Hessian facilitates a procedure
for computing its inverse. Define

L
H =) byb}
n=1
Then
Hpi=Hj+bbl,,
and . . .
1 _ g1 Hpbppaby Hy
L+1 = Hp

1+b], H; b1

CHEN P NEURAL NETWORKS

Regularization

=] = = DG 4776

MOTIVATION OF REGULARIZATION

Avoid over-fitting

Include terms in the cost function to reduce generalization error

Reduce the effective number of parameters

Put model complexity under control

CHEN P NEURAL NETWORKS

OVER-FITTING WITH NEURAL NETWORKS

1 X x M=1 1 M=3 1 M =10
0:‘\(o O\ X 0
X x
x x

0 1 0 1 0 1

Two-layer networks trained on 10 data points with a sum-of-squared-
errors cost function. The number of hidden-layer units M is shown.

CHEN P NEURAL NETWORKS

EFFECT OF LOCAL MINIMUM

+
160
140
+ +
+
L H+ T |
200 4 4 4 .o+t
+++
1001 +j:+ ‘T‘F’
+ + +£
sl ++++%$%% |
EE I S S S S S
60,
0 2 4 6 8 10

The sum-of-squared errors of polynomial data test set. For each
hidden-layer size, 30 random initializations of the parameters, with
isotropic zero-mean Gaussian distribution, are used.

CHEN P NEURAL NETWORKS

WEIGHT DECAY

In weight decay, we use a regularized cost function

E(w) = E(w) + %wTw

The regularization term (a.k.a. regularizer) %'wTw can be inter-

preted as the negative logarithm of a zero-mean Gaussian prior dis-
tribution for w.

CHEN P NEURAL NETWORKS

PARAMETER GROUPS

For a basic neural network with 2 layers of weights, a regularizer
that is consistent with the invariance to linear transformation of the
input/output variables is

MY w2 Y W

weEWL weEWs

More generally, we can consider priors

1
p(wle) o< exp (-2 Z%Hw|i>
k

where

lwlf= > w’

weEW)

CHEN P NEURAL NETWORKS

ay =lab =1l,ay =1,ab =1 af =l,ab =1,ay =10,a =1
4 40

2 /_/ 20 §
oOp— 0

-2 -20 -\
4 -40

6 -60
-1 -05 0 05 1 -1 -0.5 0 0.5 1
ay =1000, a} =100, a¥ = 1,08 =1 ay = 1000, o} = 1000, o =1, ak =1
5 5
0 ;\
I
-5 ! [
~10 -10
-1 -05 0 05 1 -1 -0.5 0 0.5 1

Samples of network functions using 4 hyperparameters for the prior
distribution p(w|a) over the weights and biases in a 2-layer network
with 12 hidden units with tanh activation function.

CHEN P NEURAL NETWORKS

EARLY STOPPING

045

| |

| |
025 ! ! e
| | w

! 04 !

| |

02 | |

Training set error and validation set error as a function of the iter-
ation step. Early stopping has a similar effect as weight decay.

CHEN P NEURAL NETWORKS

INVARIANCE

In many classification problems, the prediction should be unchanged
under certain transformation of the input.

m collect sufficiently many examples (very expensive)

m use replicas of training data subject to transformation

m add a term to the cost function to penalize output changes

m extract features that are invariant under certain transformation

m build the invariance properties into the model

CHEN P NEURAL NETWORKS

.\ ,
‘\\\\\ HIA/\«\\\\&““HU

P =

ﬁ\ 7

{
Q\V\\\M«x

W //;/7

&Eé

DATA AUGMENTATION

Data augmentation with a hand-written digi

NEURAL NETWORKS

CHEN P

TANGENT PROPAGATION

Consider a continuous transformation starting from point .
m Suppose the transformation is governed by a parameter £
m A trajectory M : £ — s(xp, &) with s(xz,,0) = @, is traced

m The tangent vector of s(x,,§) at x,, is

o
gy

Tn

T2 o

5 4
R

CHEN P NEURAL NETWORKS

Along trajectory M we have

T = S(mn,f)

Consider output function yi(x) along trajectory M. At x,

D Oy, Ox;

Oy B

23

D
= Z JnkiTni

z=w,,=0 =1

r=xn,=0

If we want the output to remain invariant with respect to tangent
direction of the transformation, we add a term to the cost function

2
P 1YY (o)
n k)

CHEN P NEURAL NETWORKS

PRACTICE

The tangent vector of a transformation can be approximated by
finite differences.

r (© (d)

(a
(b
(c
(d

original image

tangent vector for clockwise rotation
synthetic data using tangent vector
true image rotated

~— — N —

CHEN P NEURAL NETWORKS

CONVOLUTIONAL NEURAL NETWORKS

m local receptive field

m weight sharing

m sub-sampling

Input image

Convolutional layer

Sub-sampling
layer
T ... NeTvoRcs

o &

Mixture Density Networks

o &

I —

DA 61/76

FORWARD PROBLEM AND INVERSE PROBLEM

In a forward problem, the causes are given and the effects are to
be decided. In an inverse problem, the effects are given and the
causes are to be decided. In an inverse problem, it is common to
have multiple causes for given effects.

CHEN P NEURAL NETWORKS

EXAMPLE

Fitting a data set with a 2-layer network with 6 hidden-layer units.

The data set is generated according to
tn = f(zn) + €0, f(2) =2+ 0.3sin(27z)

In the forward problem, we fit a data set to ¢t = y(z,w). In the
inverse problem, we fit a data set to x = ¢/(¢, w’).

CHEN P NEURAL NETWORKS

HETEROSCEDASTIC MIXTURE MODELS

m If there are multiple choices for a given input, such as in an
inverse problem, we need a mixture model for the conditional
distribution.

m A general framework is

p(tlz) =) cr(@)pr(tlw(z))
k
where the model parameters, including the mixing coefficients

and the parameters in the component densities, depend on x.

m Using Gaussian component densities, we have

p(tlz) = ZM N (], (), B, ()
It approximates arbitrary conditional distributions.

CHEN P NEURAL NETWORKS

MIXTURE DENSITY NETWORK

In mixture density network, we use a neural network to model the
functions relating the parameters in the mixture density to the input
variables.

p(tx)

CHEN P NEURAL NETWORKS

OuTPUT ACTIVATION FUNCTIONS

Consider a mixture model with Gaussian component densities, each
with a diagonal covariance matrix Xy (z) = o2 (x)I.

m Normalized mixing coefficients can be achieved by softmax

m Positive variances can be achieved by exponential activation

m Gaussian means can be approximated by simple linear activation

CHEN P NEURAL NETWORKS

TRAINING A MIXTURE DENSITY NETWORK

The error function is

E('w) = — Z Ing(tn’wn)

= — Zlog <Z Tk iBn, n“k(:rnaw)’o-l%(wN7w)I)>

The derivatives of E with respect to the network output activations

are
OB, _ T — where _ Nk
aag k TYnk Tnk El Wanl

a-En 1223 tnl aEn ||tn 1233 H 2
P — [— 1= kR
3 /]:l Tnk (0']% "9 g Ink 0']%

CHEN P NEURAL NETWORKS

and

RESULTS

Network architecture: 5 tanh hidden-layer units, 9 output-layer units
a) mixing coefficients i (z), £k =1,2,3

b) mean u(x)

c) contours of conditional density

d) conditional mode (red)

(
(
(
(

CHEN P NEURAL NETWORKS

Bayesian Neural Networks

o &

I —

DA 69/76

STEP BY STEP

m Make the Gaussian noise assumption and parametric function
approximation

p(tlz, w, B) = N(tly(x, w), 57)
m Assume a Gaussian prior for w
p(wla) = N (w|0,a7 1)
m The likelihood of data set D = {(x,, t,)}is

p(Dlw, B) = [[N (tuly(@n, w), 57)

m The posterior distribution of w is non-Gaussian, with

log p(w|D) = —%wT'w - gz (y(2n, w) — t,)* + const

CHEN P NEURAL NETWORKS

m Apply the Laplace approximation for the posterior of w
p(w|D) ~ g(w|D) = N (w|wwvap, A™")
where
A =-VVlogp(w|D) = al + SH(wwap)

m The predictive distribution of ¢ is
p(tle, D) = [pltle, wip(w|D)dw ~ [p(t]z, w)g(w|D)dw

m Approximate y(x,w) ~ y(x, wmap) + g7 (w — wyap) where
g = Vuy(x,wmap). Then

p(tle, D) = N (tly(z, wmap), o”(z))

where
o(x)=p"g"A"g

CHEN P NEURAL NETWORKS

HYPERPARAMETER OPTIMIZATION

When the hyperparameters « and (§ are not fixed, we iteratively
update a and 3 and the posterior distribution.

m Given a and (3, we update wmap by maximizing the posterior
distribution

p(w|D, o, B) o p(w|a)p(Dlw, 3)

m Given wpap, we update o and 8 by maximizing the marginal
likelihood

p(Dla,8) = [p(w|a)p(Dlw, B)dw

CHEN P NEURAL NETWORKS

BINARY CLASSIFICATION

In Bayesian setting, the main difference between learning regression
and learning binary classification is the likelihood function. In binary
classification, the data likelihood is

log p(Dlw) = tplogyn + (1 — tn) log(1 — yn)
n

Given «, the parameters that maximizes the posterior probability is

wmap = arg min — log p(D|w) + %wT'w
w

Again we alternate between updating the hyperparameter o and
updating the posterior distribution.

CHEN P NEURAL NETWORKS

HYPERPARAMETER OPTIMIZATION

The optimal decision boundary (green), the decision boundary learned
by maximum likelihood (black), and the decision boundary learned
by a regularizer whose hyperparameter « is optimized using the ev-
idence procedure (red). A 2-layer network with 8 hidden-layer units
is used to fit data.

CHEN P NEURAL NETWORKS

PREDICTIVE DISTRIBUTION

A 2-layer network with 8 hidden-layer tanh units is used to fit data.
Left: point estimate

y(x) = p(t|z, D) ~ p(t|z, wmap)
Right: Bayesian
y(@) = p(t2. D) = [pltle, w)g(w|D)dw

CHEN P NEURAL NETWORKS

GOING DEEP

DeepSpeech (automatic speech recognition)

WaveNet (speech synthesis)

ImageNet (image classification)

Translator (machine translation)
AlphaGo (honorary 10 dan)

LeCun, Bengio, and Hinton, "Deep Learning”, Nature

CHEN P NEURAL NETWORKS

http://www.nature.com/nature/journal/v521/n7553/pdf/nature14539.pdf

