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Topics

We introduce the distributions of a few random variables.
Then we learn how to estimate such distributions from data.

Binary Variables
K-ary Variables
Gaussian Variables
Exponential Family
Non-parametric Methods for Density Estimation
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Binary Variables
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Bernoulli Random Variables

Definition. Let X be a random variable. X is a binary ran-
dom variable if it has exactly 2 possible values. In particular,
X is a Bernoulli random variable if the possible values are
0 and 1. The distribution of a Bernoulli random variable is a
binary distribution function given by

p(x) = Bern(x|µ) = µx(1− µ)1−x, x = 0, 1

It is clear that
p(1) = µ, p(0) = 1− µ

and
E(X) = µ

var[X] = µ(1− µ)
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Maximum Likelihood Estimation

Let X be a Bernoulli random variable with p(x) = Bern(x|µ).
What is the maximum-likelihood estimate of µ based on
D = {x1, . . . , xN}?

The likelihood of D as a function of µ is

p(D|µ) =
N∏
n=1

Bern(xn|µ) =
N∏
n=1

µxn(1− µ)1−xn

⇒ log p(D|µ) =
N∑
n=1

[xn logµ+ (1− xn) log(1− µ)]

Setting the derivative with respect to µ to 0, we get

µML = 1
N

N∑
n=1

xn
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Bayesian Learning

In Bayesian learning, we treat µ as a random variable.
1 We assume a prior distribution p(µ) of µ.
2 We update the distribution to p(µ|D) with data D.
3 We obtain approximate p(x) via p(µ|D) (point estimates

or integration).

Benefit: Consider the density estimation of a Bernoulli random vari-
able X based on D = {x1, . . . , xN}. When N is not large enough,
the maximum likelihood estimation of µ is prone to over-fitting. The
issue can be alleviated by Bayesian learning.
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Conjugate Prior

Definition. Consider Bayesian learning of a Bernoulli random
variable X with p(x) = Bern(x|µ) based on D. A conjugate
prior p(µ) of µ makes the posterior p(µ|D) have the same
functional form as p(µ).

According to the Bayes’ rule

p(µ|D) ∝ p(µ)p(D|µ)

Hence, the problem we face here is to make p(µ) and p(µ|D) belong
to the same family, given data likelihood p(D|µ).
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Deciding Prior from Likelihood Function

We can re-write the likelihood function as

p(D|µ) =
N∏
n=1

µxn(1− µ)1−xn

= µ
(∑N

n=1 xn

)
(1− µ)

(∑N

n=1(1−xn)
)

= µm(1− µ)N−m

where m =
∑N
n=1 xn is the number of 1s in D.

As a function of µ, the likelihood p(D|µ) is proportional to
powers of µ and (1 − µ). Thus, if we let the prior p(µ) be
proportional to powers of µ and (1 − µ), then the posterior
p(µ|D) ∝ p(µ)p(D|µ) will also be proportional to powers of
µ and (1− µ).
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Beta Distribution

Definition. A beta distribution is

p(µ) = Beta(µ|a, b) = Γ(a+ b)
Γ(a)Γ(b)µ

a−1(1− µ)b−1, 0 ≤ µ ≤ 1

The parameters in the distribution of a parameter, here a and
b of p(µ), are hyperparameters.
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Beta Prior and Posterior

Let X be a Bernoulli random variable with distribution p(x) =
Bern(x|µ). Then a beta distribution p(µ) = Beta(µ|a, b) is
a conjugate prior for µ.

Let m be the number of 1s and l = N −m be the number of 0s in
the data set D = {x1, . . . , xN}. Then

p(µ|D) ∝ p(µ)p(D|µ)
= Beta(µ|a, b)p(D|µ)
∝ µa−1(1− µ)b−1µm(1− µ)l

∝ µa+m−1(1− µ)b+l−1

⇒ p(µ|D) = Γ(a+m+ b+ l)
Γ(a+m)Γ(b+ l)µ

a+m−1(1− µ)b+l−1

= Beta(µ|a+m, b+ l)

Chen P Probability Distributions



12/92

µ

prior

0 0.5 1
0

1

2

µ

likelihood function

0 0.5 1
0

1

2

µ

posterior

0 0.5 1
0

1

2

One step of sequential Bayesian inference. µ ∼ Beta(µ|a, b) from
a = 2, b = 2 to a = 3, b = 2 with a single observation of x = 1.
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Interpretation of Hyperparameters

Let X be a Bernoulli random variable with p(x) = Bern(x|µ). We
see

p(µ) = Beta(µ|a, b)
↓
↓ Bayesian learning

↓
p(µ|D) = Beta(µ|a+m, b+ l)

The hyperparameters a and b in the prior distribution p(µ)
can be interpreted as the effective numbers of observations
for x = 1 and x = 0 prior to any observation.
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Predictive Distribution

Let X be a Bernoulli random variable with p(x) = Bern(x|µ).
When µ is treated as a random variable, the distribution of
X is the integration over the distribution of µ (the sum rule).

P (X = 1|D) =
∫ 1

0
P (X = 1, µ|D)dµ

=
∫ 1

0
P (X = 1|µ)p(µ|D)dµ

=
∫ 1

0
µ p(µ|D)dµ

= E[µ|D]

= a+m

a+m+ b+ l
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Reduction of Uncertainty

On average, data observation reduces parameter uncertainty.

By the total variance theorem of probability theory

varθ(θ) = ED[varθ(θ|D)] + varD(Eθ[θ|D])

It follows from varD(Eθ[θ|D]) ≥ 0 that

varθ(θ) ≥ ED[varθ(θ|D)]

Chen P Probability Distributions
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K-ary Variables
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1-of-K Representation

Definition. Let X be a discrete random variable. X is a
K-ary random variable if it has exactly K possible values.

A value (a.k.a. state) of X can be represented by a vector of size K,
i.e. x = (x1, . . . , xK)T , called 1-of-K (a.k.a. 1-hot) representation:
one component is 1 for state identity, and the other components are
0. The set of possible values are {x(1), . . . ,x(K)} with

x
(k)
j = δkj

For example
x(3) = (0, 0, 1, 0, 0, 0)T

We also denote a K-ary random variable by x since the values are
represented by vectors.
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K-ary Distribution

Definition. Let x be a K-ary random variable. The distri-
bution of x is a K-ary distribution

P
(
x = x(j)

)
= p

(
x(j)|µ

)
= µj , j = 1, . . . ,K

where µ = (µ1, . . . , µK)T is a vector of parameters.

The parameters µ must satisfy

µk ≥ 0,
K∑
k=1

µk = 1

The expectation of x is

E[x|µ] =
K∑
k=1

x(k) p
(
x(k)|µ

)
= (µ1, . . . , µK)T = µ
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Data Likelihood

Let x be aK-ary random variable withK-ary distribution p
(
x(j)|µ

)
,

and D = {x1, . . . ,xN} be observations of x. Using 1-of-K repre-
sentation, the likelihood of a data point xn can be written as

p(xn|µ) =
K∏
k=1

µxnk
k

So the likelihood of D is

p(D|µ) =
N∏
n=1

p(xn|µ) =
N∏
n=1

K∏
k=1

µxnk
k =

K∏
k=1

µ

(∑N

n=1 xnk

)
k

=
K∏
k=1

µmk
k

where mk is the number of points in D with xn = x(k) or xnk = 1.
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Maximum Likelihood Estimation

The log data likelihood is

log p(D|µ) =
K∑
k=1

mk logµk

Here the parameters µ1, . . . , µK are not independent, so we need to
maximize the Lagrangian

L(µ, λ) =
K∑
k=1

mk logµk + λ

(
K∑
k=1

µk − 1
)

Setting the derivative of L(µ, λ) with respect to µ to 0, we get

µML
k = mk

N
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Bayesian Learning

In Bayesian learning, we start with a distribution over the
parameters and update the distribution with data. Again,
we use conjugate prior so the posterior is an update of the
hyperparameters with data.

This dependency of the data likelihood function on µ decides the
conjugate prior of µ. In the case of a K-ary random variable, the
data likelihood function depends on powers of µk

p(D|µ) =
K∏
k=1

µmk
k

Chen P Probability Distributions
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Dirichlet Distribution

Definition. A Dirichlet distribution is

Dir(µ|α) = Γ(α0)
Γ(α1) . . .Γ(αK)

K∏
k=1

µαk−1
k

where

0 ≤ µk ≤ 1,
K∑
k=1

µk = 1

Here α = (α1, . . . , αK)T are hyperparameters, and

α0 =
K∑
k=1

αk

Note Dir(µ|α) depends on powers of µk.
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Dirichlet: Support and Density

µ1

µ2

µ3

Dirichlet distributions for αk = 0.1, 1, 10, respectively
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Prior and Posterior

Let x be a K-ary random variable with p
(
x(j)|µ

)
. Then a

Dirichlet distribution Dir(µ|α) is a conjugate prior for µ.

Based on D, the posterior distribution of µ is

p(µ|D) ∝ p(µ)p(D|µ) = Dir(µ|α)p(D|µ) ∝
K∏
k=1

µαk+mk−1
k

By normalization

p(µ|D) = Γ(α0 +N)
Γ(α1 +m1) . . .Γ(αK +mK)

K∏
k=1

µαk+mk−1
k = Dir(µ|α′)

where α′k = αk +mk.

Chen P Probability Distributions



25/92

Gaussian Variables
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Gaussian Distribution

Definition. A Gaussian distribution or Gaussian PDF is

N (x|µ, σ2) = 1
(2πσ2)

1
2

exp
{
− 1

2σ2 (x− µ)2
}

It is governed by parameters µ and σ2.

A random variable with a Gaussian distribution is a Gaussian random
variable. Let X be a Gaussian random variable with distribution
p(x) = N (x|µ, σ2). Then it can be shown that

µ = E[X], σ2 = var(X)
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Central Limit Theorem

The mean (or the sum) of a set of i.i.d. random variables
has a distribution that becomes increasingly Gaussian as the
number of terms in the sum increases.
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Histogram plots of the mean of N uniform random variables in
[0, 1] for N = 1, 2, 10 respectively.
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Gaussian Random Vector

Definition. A multi-variate Gaussian distribution is

N (x|µ,Σ) = 1
(2π)

D
2 |Σ|

1
2

exp
{
−1

2(x− µ)TΣ−1(x− µ)
}

where D is the dimension of x. It is governed by parameter
vector µ and parameter matrix Σ.

A random vector with a multi-variate Gaussian distribution is a Gaus-
sian random vector. Let x be a Gaussian random vector with distri-
bution p(x) = N (x|µ,Σ). Then it can be shown that∫

p(x)dx = 1, E[x] = µ, E
[
xxT

]
= µµT + Σ, var(x) = Σ
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Mahalanobis Distance

Definition. Let x be a Gaussian random vector of dimension
D with p(x) = N (x|µ,Σ). The dependence of the PDF on
x is through quadratic form

∆2 = (x− µ)TΣ−1(x− µ)

∆ is the Mahalanobis distance from µ to x.

Let u1, . . . ,uD be orthonormal eigenvectors of Σ with eigenvalues

λ1 ≤ · · · ≤ λD. Then Σ =
D∑
i=1

λiuiu
T
i , Σ−1 =

D∑
i=1

λ−1
i uiu

T
i , and

∆2 = (x− µ)TΣ−1(x− µ) =
D∑
i=1

y2
i

λi

where yi = uTi (x− µ) and (x− µ) =
∑D
i=1 yiui.

Chen P Probability Distributions



30/92

Contour of a Gaussian PDF

x1

x2

λ
1/2
1

λ
1/2
2

y1

y2

u1

u2

µ

The contour of a 2-D Gaussian PDF, on which ∆2 = 1
so the density is e−1/2 of the value at x = µ.
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Examples

x1

x2

(a)

x1

x2

(b)

x1

x2

(c)

Examples 2-D Gaussian PDF with general, diagonal,
and isotropic covariance matrix, respectively.
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Expectation

Let x be a Gaussian random vector with p(x) = N (x|µ,Σ).
Then the expectation of x is µ.

E[x] = 1
(2π)

D
2

1
|Σ|

1
2

∫
exp

{
−1

2(x− µ)TΣ−1(x− µ)
}
xdx

= 1
(2π)

D
2

1
|Σ|

1
2

∫
exp

{
−1

2z
TΣ−1z

}
(z + µ)dz

= µ

where z = x− µ.

Chen P Probability Distributions



33/92

Second Moment

Let x be a Gaussian random vector with p(x) = N (x|µ,Σ).
Then the expectation of xxT is µµT + Σ.

E
[
xxT

]
= 1

(2π)
D
2 |Σ|

1
2

∫
exp

{
−1

2(x− µ)TΣ−1(x− µ)
}
xxTdx

= 1
(2π)

D
2

1
|Σ|

1
2

∫
exp

{
−1

2z
TΣ−1z

}
(z + µ)(z + µ)Tdz

= 1
(2π)

D
2

1
|Σ|

1
2

∫
exp

{
−1

2z
TΣ−1z

}
(zzT + µµT )dz

= 1
(2π)

D
2

1
|Σ|

1
2

∫
exp

{
−1

2z
TΣ−1z

}
zzTdz + µµT

=
D∑
i=1
uiu

T
i λi + µµT = Σ + µµT
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Details∗

Recall that z = x− µ =
∑
yiui.

1
(2π)

D
2

1
|Σ|

1
2

∫
exp

{
−1

2z
TΣ−1z

}
zzTdz

=
D∑
i=1

D∑
j=1

∫ 1
(2π)

D
2

1
|Σ|

1
2

exp
{
−1

2

D∑
k=1

y2
k

λk

}
yiyjuiu

T
j dy

=
D∑
i=1

D∑
j=1
uiu

T
j

∫ 1
(2π)

D
2

1
|Σ|

1
2

exp
{
−1

2

D∑
k=1

y2
k

λk

}
yiyjdy

=
D∑
i=1

λiuiu
T
i = Σ

where∫ 1
(2π)

D
2

1
|Σ|

1
2

exp
{
−1

2

D∑
k=1

y2
k

λk

}
yiyjdy =

{
0, j 6= i

λi, j = i
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Covariance Matrix

Let x be a Gaussian random vector with p(x) = N (x|µ,Σ).
Then the covariance matrix of x is Σ.

cov[x] = E
[
(x− E[x])(x− E[x])T

]
= E

[
xxT

]
− E [x]E

[
xT
]

= Σ

Chen P Probability Distributions
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From Joint Gaussian to Conditional Gaussian

Let random vectors xa and xb be joint Gaussian. Then xa is
conditional Gaussian given xb.

Let the PDF of x = (xa,xb)T be p(x) = N (x|µ,Σ). Partition
x,µ,Σ and the precision matrix Λ = Σ−1 as follows

x =
(

xa
xb

)
, µ =

(
µa
µb

)
, Σ =

(
Σaa Σab

Σba Σbb

)
, Λ =

(
Λaa Λab

Λba Λbb

)

It can be shown that the conditional distribution of xa given xb is
p(xa|xb) = N (xa|µa|b,Σa|b) where

µa|b = µa −Λ−1
aa Λab(xb − µb) = µa + ΣabΣ−1

bb (xb − µb)
Σa|b = Λ−1

aa = Σaa −ΣabΣ−1
bb Σba

Note Λa|b = Σ−1
a|b = Λaa.
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Marginal Gaussian

Let random vectors xa and xb be joint Gaussian. Then xa
(and xb) is Gaussian.

Let the PDF of x = (xa,xb)T be p(x) = N (x|µ,Σ). Partition
x,µ,Σ and the precision matrix Λ = Σ−1 as follows

x =
(

xa
xb

)
, µ =

(
µa
µb

)
, Σ =

(
Σaa Σab

Σba Σbb

)
, Λ =

(
Λaa Λab

Λba Λbb

)

It can be shown that the distribution of xa is p(xa) = N (xa|µa|∅,Σa)
where

µa|∅ = µa

Σa = Σaa = (Λaa −ΛabΛ−1
bb Λba)−1
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Conditional Gaussian

xa

xb = 0.7

xb

p(xa, xb)
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p(xa)

p(xa|xb = 0.7)

0 0.5 1
0

5

10

Left: Contours of joint Gaussian PDF.
Right: A marginal and a conditional Gaussian PDF.
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From Conditional Gaussian to Joint Gaussian

Let y be Gaussian and z be conditional Gaussian given y.
Then y and z are joint Gaussian.

Let the PDF of y be p(y) = N (y|µ,Λ−1) and the conditional PDF
of z given y be p(z|y) = N (z|Ay + b,L−1). Then the joint PDF
of x = (y, z)T is

p(x) = p(y)p(z|y)

= N

(y
z

) ∣∣∣∣∣∣
(

µ
Aµ+ b

)
,

(
Λ +ATLA −ATL
−LA L

)−1
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From Joint Gaussian Back to Conditional

Let y be Gaussian and z be conditional Gaussian given y.
Since y and z are joint Gaussian, we have

z is Gaussian with PDF
y is conditional Gaussian given z

The PDF of z is

p(z) = N (z|Aµ+ b,L−1 +AΛ−1AT )

The conditional PDF of y given z is

p(y|z) = N (y|Σ{ATL(z − b) + Λµ},Σ)

where Σ = (Λ +ATLA)−1.
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Density Estimation for Gaussians

Let x be Gaussian with PDF p(x) = N (x|µ,Σ). In the
density estimation of x, we use a data set to estimate p(x).

Maximum likelihood estimate
Bayesian learning
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Data Likelihood

Let D = {x1, . . . ,xN} be a data set of a Gaussian random vector
x. For data likelihood, we have

p(xn|µ,Σ) = 1
(2π)

D
2 |Σ|

1
2

exp
{
−1

2(xn − µ)TΣ−1(xn − µ)
}

⇒ log p(xn|µ,Σ) = −D2 log 2π − 1
2 log |Σ| − 1

2(xn − µ)TΣ−1(xn − µ)

⇒ log p(D|µ,Σ) =
N∑
n=1

log p(xi|µ,Σ)

= −ND2 log 2π − N

2 log |Σ|

− 1
2

N∑
n=1

(xn − µ)TΣ−1(xn − µ)
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Maximum Likelihood Estimate

Maximum likelihood estimate maximizes data likelihood.

For µ

∇µ log p(D|µ,Σ) = 0 ⇒
N∑
n=1

Σ−1(xn − µ) = 0

⇒ µML = 1
N

N∑
n=1

xn

For Σ, it can be shown that

ΣML = 1
N

N∑
n=1

(xn − µML)(xn − µML)T

Chen P Probability Distributions
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Bayesian Learning

Let x be a Gaussian random variable with PDF p(x) = N (x|µ, σ2),
and D = {x1, . . . , xN} be a data set. We consider the following
scenarios of Bayesian learning of Gaussian distribution.

Given σ2 and a conjugate prior of µ
Given µ and a conjugate prior of precision λ = 1/σ2

Given a conjugate prior of µ and λ

Chen P Probability Distributions
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Conjugate Prior of Mean

The likelihood of D as a function of µ is

p(D|µ) =
N∏
n=1

p(xn|µ)

= 1
(2πσ2)N/2 exp

{
− 1

2σ2

N∑
n=1

(xn − µ)2
}

It is a log quadratic function of µ, so a conjugate prior of µ is log
quadratic, i.e. Gaussian

p(µ) = N (µ|µ0, σ
2
0)
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Bayesian Learning of Mean

According to the Bayes’ rule

p(µ|D) ∝ p(µ)p(D|µ)

we have
p(µ|D) = N (µ|µN , σ2

N )

where
µN = σ2

Nσ2
0 + σ2µ0 + Nσ2

0
Nσ2

0 + σ2µML

1
σ2
N

= 1
σ2

0
+ N

σ2
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N = 0

N = 1

N = 2

N = 10

−1 0 1
0

5

Plots of p(µ|D) assuming Gaussian p(µ) and p(x|µ) = N (x|µ, σ2).
The true p(x) is Gaussian with mean 0.8 and variance 0.1.
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Conjugate Prior of Precision

The likelihood of D as a function of λ is

p(D|λ) =
N∏
n=1

p(xn|λ)

∝ λN/2 exp
{
−λ2

N∑
n=1

(xn − µ)2
}

So a conjugate prior of λ is gamma distribution

p(λ) = Gam(λ|a, b) = 1
Γ(a)b

aλa−1e−bλ, λ ≥ 0
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Bayesian Learning of Precision

According to the Bayes’ rule

p(λ|D) ∝ p(λ)p(D|λ)

we have
p(λ|D) = Gam (λ|aN , bN )

where
aN = a+ N

2 , bN = b+ N

2 σ
2
ML

λ

a = 0.1

b = 0.1

0 1 2
0

1

2

λ

a = 1

b = 1

0 1 2
0

1

2

λ

a = 4

b = 6

0 1 2
0

1

2
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Student’s t-Distribution

The marginal distribution of x is

p(x|µ, a, b) =
∫ ∞

0
N (x|µ, λ−1)Gam(λ|a, b)dλ

= ba

Γ(a)

( 1
2π

)1/2
[
b+ (x− µ)2

2

]−a−1/2

Γ(a+ 1/2)

This is a Student’s t-distribution

St(x|µ, λ, ν) = Γ(ν/2 + 1/2)
Γ(ν/2)

(
λ

πν

)1/2 [
1 + λ(x− µ)2

ν

]−ν/2−1/2

with parameters ν = 2a and λ = a/b.
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Long Tail of Student’s t-Distribution

ν → ∞
ν = 1.0

ν = 0.1

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

Plots of Student’s t-distribution St(x|µ, λ, ν)
with 3 ν’s, µ = 0, and λ = 1.
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Robustness to Outliers

(a)
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(b)
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0.3
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Conjugate Prior of Mean and Precision

The likelihood of D as a function of µ and λ is

p(D|µ, λ) =
N∏
n=1

p(xn|µ, λ)

=
N∏
n=1

(
λ

2π

)1/2
exp

{
−λ2 (xn − µ)2

}

∝
[
λ1/2 exp

(
−λµ

2

2

)]N
exp

{
λµ

N∑
n=1

xn −
λ

2

N∑
n=1

x2
n

}

So a conjugate prior of µ and λ is

p(µ, λ) ∝
[
λ1/2 exp

(
−λµ

2

2

)]β0

exp {cλµ− dλ}
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Normal-Gamma Distribution
The conjugate prior can be further reduced

p(µ, λ) ∝
[
λ1/2 exp

(
−λµ

2

2

)]β0

exp {cλµ− dλ}

= exp
{
cλµ− β

2λµ
2
}
λβ0/2 exp {−dλ}

= exp
{
−β0λ

2 (µ− c/β0)2
}
λβ0/2 exp

{
−
(
d− c2

2β0

)
λ

}
= N (µ|α0, (β0λ)−1)Gam(λ|a0, b0)

with
α0 = c

β0
, a0 = 1 + β0

2 , b0 = d− c2

2β0

This is a normal-gamma distribution defined by

Nor-Gam(µ, λ|α, β, a, b) = N (µ|α, (βλ)−1)Gam(λ|a, b)
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Example

µ

λ

−2 0 2
0

1

2

Plot of Nor-Gam(µ, λ|α, β, a, b) with
α = 0, β = 2, a = 5, b = 6.
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Bayesian Learning of Mean and Precision

According to the Bayes’ rule

p(µ, λ|D) ∝ p(µ, λ)p(D|µ, λ)

The posterior distribution of µ and λ is

p(µ, λ|D) = Nor-Gam(µ, λ|αN , βN , aN , bN )

with parameters

βN = β0 +N, αN = cN
βN

, aN = 1 + βN
2 , bN = dN −

c2
N

2βN

where

cN = c+
N∑
n=1

xn, dN = d+ 1
2

N∑
n=1

x2
n
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An Issue with Gaussian PDF

A Gaussian distribution is not good for data with multiple clusters.

1 2 3 4 5 6
40

60

80

100

1 2 3 4 5 6
40

60

80

100

Fitting the old faithful data set with a Gaussian (left) and a
mixture of Gaussians (right).
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Superposition of Gaussians

With sufficient components, a linear combination of Gaussian PDFs
can approximate any distribution.

x

p(x)
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Mixture of Gaussians

Definition. A mixture of Gaussians is a superposition of
Gaussians

p(x) =
K∑
k=1

πkN (x|µk,Σk)

where N (x|µk,Σk) is a component of the mixture, with a
mixing coefficient πk. The mixing coefficients of a mixture
of Gaussians must satisfy

πk ≥ 0,
∑
k

πk = 1

The parameters of a mixture of Gaussians are

πk,µk,Σk for k = 1, . . . ,K
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2-D Example

A mixture of bi-variate Gaussians.

0.5 0.3

0.2

(a)

0 0.5 1

0

0.5

1 (b)

0 0.5 1

0

0.5

1

Left: Contours of the PDFs of 3 Gaussian components
Middle: Contours of the PDF of the mixture
Right: 3-D plot of the PDF of the mixture
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Exponential Family∗
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Exponential Family

Definition. Let x be a random vector with a parametric
distribution p(x|η). The distribution p(x|η) is in the expo-
nential family if it has the following form

p(x|η) = h(x)g(η) exp
{
ηTu(x)

}

η are the natural parameters.
g(η) ensures normalization of p(x|η), i.e.

g(η)
∫
h(x) exp

{
ηTu(x)

}
dx = 1
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Bernoulli Distribution

A Bernoulli distribution is in the exponential family.

Bern(x|µ) = µx(1− µ)1−x

= exp{x logµ+ (1− x) log(1− µ)}

= (1− µ) exp
{
x log

(
µ

1− µ

)}
= h(x)g(η) exp{ηTu(x)}

with
η = log

(
µ

1− µ

)
u(x) = x

g(η) = 1− µ = 1
1 + exp(η)

h(x) = 1

Chen P Probability Distributions



64/92

K-ary Distribution

A K-ary distribution is in the exponential family.

p(x|µ) =
K∏
k=1

µxk
k = exp

{
K∑
k=1

xk logµk

}

= exp
{
K−1∑
k=1

xk logµk +
(

1−
K−1∑
k=1

xk

)
logµK

}

= µK exp
{
K−1∑
k=1

xk log
(
µk
µK

)}
= h(x)g(η) exp{ηTu(x)}

with

ηk = log
(
µk
µK

)
, g(η) = µK = 1−

K−1∑
k=1

µk, h(x) = 1, u(x) = x
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Gaussian PDF

A Gaussian PDF is in the exponential family.

N (x|µ, σ2) = 1
(2πσ2)

1
2

exp
{
− 1

2σ2 (x− µ)2
}

= 1
(2πσ2)

1
2

exp
{
− 1

2σ2x
2 + µ

σ2x−
1

2σ2µ
2
}

= h(x)g(η) exp{ηTu(x)}

with
η =

(
µ
σ2

− 1
2σ2

)
, u(x) =

(
x
x2

)

h(x) = (2π)−
1
2 , g(η) = (−2η2)

1
2 exp

(
η2

1
4η2

)
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Density Estimation and Likelihood
Let x be a random vector with

p(x|η) = h(x)g(η) exp
{
ηTu(x)

}
Consider the density estimation of x with D = {x1, . . . ,xN}.

p(D|η) =
N∏
n=1

p(xn|η)

=
N∏
n=1

(
h(xn)g(η) exp

{
ηTu(xn)

})

⇒ log p(D|η) =
N∑
n=1

log h(xn) +N log g(η) + ηT
N∑
n=1

u(xn)

⇒ ∇ log p(D|η) = N∇ log g(η) +
N∑
n=1

u(xn)
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Maximum Likelihood Estimate

Maximum likelihood estimate is a stationary point of log p(D|η)

∇ log p(D|η)
∣∣∣∣
η=ηML

= 0

With p(x|η) in the exponential family, we have

−∇ log g(ηML) = 1
N

N∑
n=1

u(xn)

Note ηML depends on the data set only through
∑N
n=1 u(xn). This

is an example of sufficient statistics.
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Conjugate Prior

Let x be a random vector with p(x|η) in the exponential
family

p(x|η) = h(x)g(η) exp
{
ηTu(x)

}
For a conjugate prior of η, we match the dependency of the
data likelihood function on η, i.e. a power of g(η) and an
exponent linear in η

p(η|χ, ν) = f(χ, ν)g(η)ν exp
{
νηTχ

}
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Posterior Distribution

According to the Bayes’ rule

p(η|D,χ, ν) ∝ p(η|χ, ν)p(D|η)

= g(η)ν+N exp
{
ηT
(

N∑
n=1

u(xn) + νχ

)}
= g(η)ν′ exp

{
ν ′ηTχ′

}
∝ p(η|χ′, ν ′)

where

ν ′ = ν +N, χ′ = 1
ν ′

(
νχ+

N∑
n=1

u(xn)
)
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Nonparametric Methods
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Histogram Density Estimation

∆ = 0.04

0 0.5 1
0

5

∆ = 0.08

0 0.5 1
0

5

∆ = 0.25

0 0.5 1
0

5

3 cases of histogram density estimation with 50 data points gener-
ated from the distribution shown by the green curve.
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Kernel Density Estimation

h = 0.005

0 0.5 1
0

5

h = 0.07

0 0.5 1
0

5

h = 0.2

0 0.5 1
0

5

3 cases of kernel density estimation with the same data set

p(x) = 1
N

∑
n

k(x, xn), where k(x, x′) = 1
(2πh2)1/2 exp

{
−(x− x′)2

2h2

}
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K-Nearest-Neighbor Density Estimation

K = 1

0 0.5 1
0

5

K = 5

0 0.5 1
0

5

K = 30

0 0.5 1
0

5

3 cases of KNN density estimation with the same data set. Here
p̂(x) = K

NV (x) where V (x) is the volume of a sphere centered on x
and containing K data points.
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K-Nearest-Neighbor Classifiers

x1

x2

(a)
x1

x2

(b)

x6

x7

K = 1

0 1 2
0

1

2

x6

x7

K = 3

0 1 2
0

1

2

x6

x7

K = 31

0 1 2
0

1

2
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∗ Joint, Marginal, and Conditional Gaussians
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Log of Gaussian Distribution

For a Gaussian random vector x, the log distribution
is quadratic in x
the second-order term depends on precision/covariance
the first-order term depends on precision and mean

log N (x|µ,Λ−1) = −1
2(x− µ)TΛ(x− µ) + const

= −1
2x

TΛx+ xTΛµ+ const
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Partition by Two Sub-vectors

Let x ∼ N (x|µ,Λ−1) be a Gaussian random vector. Partition x
and µ into sub-vectors

x =
(

xa
xb

)
, µ =

(
µa
µb

)

Partition the covariance and precision into sub-matrices

Σ =
(

Σaa Σab

Σba Σbb

)
, Λ =

(
Λaa Λab

Λba Λbb

)
= Σ−1

Chen P Probability Distributions



78/92

Conditional Gaussian Property

The conditional distribution of xa given xb is Gaussian.

The conditional distribution of xa given xb = xb is Gaussian

N (xa|µa|b,Λ−1
a|b)

where the conditional mean is

µa|b = µa −Λ−1
aa Λab(xb − µb)

and the conditional precision is

Λa|b = Λaa
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Proof: Gaussian

The conditional distribution of xa given xb = xb is

p(xa|xb) = p(xa,xb)
p(xb)

∝ p(xa,xb)

The logarithm of p(xa|xb), apart from a constant,

−1
2(x− µ)TΛ(x− µ)

= −1
2 [(xa − µa)TΛaa(xa − µa) + (xa − µa)TΛab(xb − µb)

+ (xb − µb)TΛba(xa − µa) + (xb − µb)TΛbb(xb − µb)]

is quadratic in xa. Hence xa given xb = xb is Gaussian.
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Proof: Conditional Precision

The second-order term in log p(xa|xb) is

−1
2x

T
aΛaaxa

Since xa given xb = xb is Gaussian, this term must be

−1
2x

T
aΛa|bxa

Hence
Λa|b = Λaa

Note this conditional precision is independent of xb.
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Proof: Conditional Mean

The first-order term in log p(xa|xb) is

xTa {Λaaµa −Λab(xb − µb)}

Since xa given xb = xb is Gaussian, this term must be

xTaΛa|bµa|b

So Λaaµa −Λab(xb − µb) = Λa|bµa|b. Hence

µa|b = Λ−1
a|b {Λaaµa −Λab(xb − µb)}

= Λ−1
aa {Λaaµa −Λab(xb − µb)}

= µa −Λ−1
aa Λab(xb − µb)

Note this conditional mean is linear in xb.
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Inverse of a Partitioned Matrix

Consider
(
A B
C D

)
where A and D are invertible. Then

(
A B
C D

)−1

=
(

M −MBD−1

−D−1CM D−1 +D−1CMBD−1

)

where M =
(
A−BD−1C

)−1
.

Note that M−1 = A−BD−1C is also known as the Schur com-
plement of D.
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Inverse Covariance Matrix
For a covariance matrix(

Λaa Λab

Λba Λbb

)
=
(

Σaa Σab

Σba Σbb

)−1

=

(Σaa −ΣabΣ−1
bb Σba

)−1
−
(
Σaa −ΣabΣ−1

bb Σba

)−1
ΣabΣ−1

bb

∗ ∗


Hence

Λaa =
(
Σaa −ΣabΣ−1

bb Σba

)−1

Λab = −
(
Σaa −ΣabΣ−1

bb Σba

)−1
ΣabΣ−1

bb

Similarly

Σaa =
(
Λaa −ΛabΛ−1

bb Λba

)−1

Σab = −
(
Λaa −ΛabΛ−1

bb Λba

)−1
ΛabΛ−1

bb
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Alternative Parameterization

We can use covariance instead of precision.

The conditional mean and covariance of xa given xb = xb can be
expressed by covariance as

µa|b = µa + ΣabΣ−1
bb (xb − µb)

Σa|b = Σaa −ΣabΣ−1
bb Σba

This follow from

Λ−1
aa Λab =

(
Σaa −ΣabΣ−1

bb Σba

)(
−
(
Σaa −ΣabΣ−1

bb Σba

)−1
ΣabΣ−1

bb

)
= −ΣabΣ−1

bb

Σa|b = Λ−1
a|b = Λ−1

aa = Σaa −ΣabΣ−1
bb Σba
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Marginal Distribution

xa is Gaussian with mean µa and covariance Σaa.

Proof. By marginalization

p(xa) =
∫
p(xa,xb)dxb

The integration function p(xa,xb) is exponential with exponent

−1
2(x− µ)TΛ(x− µ) = −1

2x
TΛx+ xTΛµ+ const

= −1
2x

T
aΛaaxa −

1
2x

T
b Λbbxb − xTb Λbaxa

+ xTa (Λaaµa + Λabµb) + xTb (Λbaµa + Λbbµb)
+ const
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The terms involved in the integration over xb is

− 1
2x

T
b Λbbxb − xTb Λbaxa + xTb (Λbaµa + Λbbµb)

= −1
2x

T
b Λbbxb + xTbm

= −1
2(xb −Λ−1

bb m)TΛbb(xb −Λ−1
bb m) + 1

2m
TΛ−1

bb m

where m = Λbbµb + Λbaµa − Λbaxa = Λbbµb − Λba(xa − µa).
After the integration over xb, the remaining exponent is

− 1
2x

T
aΛaaxa + xTa (Λaaµa + Λabµb) + 1

2m
TΛ−1

bb m

= −1
2x

T
a (Λaa −ΛabΛ−1

bb Λba)xa + xTa (Λaa −ΛabΛ−1
bb Λba)µa + const

Thus, the covariance of xa is

Σa|∅ = (Λaa −ΛabΛ−1
bb Λba)−1 = Σaa

The mean of xa is
µa|∅ = µa
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Summary
Suppose x ∼ N (x|µ,Σ) and

x =
(

xa
xb

)
, µ =

(
µa
µb

)
, Σ =

(
Σaa Σab

Σba Σbb

)
, Λ =

(
Λaa Λab

Λba Λbb

)

The conditional distribution of xa given xb = xb is Gaussian

p(xa|xb) = N (xa|µa|b,Σa|b)
µa|b = µa −Λ−1

aa Λab(xb − µb)
Σa|b = Λ−1

aa

The marginal distribution of xa is Gaussian

p(xa) = N (xa|µa|∅,Σa|∅)
µa|∅ = µa

Σa|∅ = Σaa

Chen P Probability Distributions



88/92

Linear Gaussian Model

A linear Gaussian model for y and z assumes
y is Gaussian
z is conditional Gaussian given y = y

The conditional mean of z given y = y is linear in y
The conditional covariance of z given y = y does not
depend on y

That is
p(y) = N (y|µ,Λ−1)

and
p(z|y) = N (z|Ay + b,L−1)
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Joint Distribution of Linear Gaussian Model

The joint distribution of a linear Gaussian model is Gaussian.

By product rule
p(y, z) = p(y)p(z|y)

So

log p(y, z) = log p(y) + log p(z|y)

= −1
2(y − µ)TΛ(y − µ)

− 1
2(z −Ay − b)TL(z −Ay − b) + const

which is quadratic in
(
y
z

)
= x =

(
xa
xb

)
.
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Precision and Covariance
The second-order term in log p(x) is

− 1
2y

T (Λ +ATLA)y − 1
2z

TLz + 1
2z

TLAy + 1
2y

TATLz

= −1
2

(
y
z

)T (
Λ +ATLA −ATL
−LA L

)(
y
z

)
= −1

2x
TΛxx

Hence the precision and covariance of x are

Λx =
(

Λ +ATLA −ATL
−LA L

)

Σx = Λ−1
x =

(
Λ +ATLA −ATL
−LA L

)−1

=
(

Λ−1 Λ−1AT

AΛ−1 L−1 +AΛ−1AT

)
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Mean

The first-order term in log p(x) is

xTΣ−1
x µx = yTΛµ− yTATLb+ zTLb

=
(
y
z

)T (
Λµ−ATLb

Lb

)

Hence the mean of x is

µx = Σx

(
Λµ−ATLb

Lb

)

=
(

µ
Aµ+ b

)

=
(
µa
µb

)
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Marginal and Conditional

Consider a linear Gaussian model for y and z where y is
Gaussian and z is conditional Gaussian given y = y. Then

z is Gaussian.
y is conditional Gaussian given z = z.
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