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ToPriCS

We introduce the distributions of a few random variables.
Then we learn how to estimate such distributions from data.

Binary Variables
m K-ary Variables

m Gaussian Variables

Exponential Family
m Non-parametric Methods for Density Estimation
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BERNOULLI RANDOM VARIABLES

Definition. Let X be a random variable. X is a binary ran-
dom variable if it has exactly 2 possible values. In particular,
X is a Bernoulli random variable if the possible values are
0 and 1. The distribution of a Bernoulli random variable is a
binary distribution function given by

p() = Bern(z|u) = (1 — p)' =%, 2 =0,1

It is clear that
p(1) =p, p(0) =1—p

and
E(X) =u

var[X] = p(l — p)
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MAXIMUM LIKELIHOOD ESTIMATION

Let X be a Bernoulli random variable with p(z) = Bern(z|u).
What is the maximum-likelihood estimate of y based on

D= {$1,...,$N}?

The likelihood of D as a function of y is

=2

N
p(Dlp) = T Bern(aalu) = [ p (1 — p)t==

n=1 n=1

= logp(D|p) = Z zplog i+ (1 — zp) log(1 — p)]

Setting the derivative with respect to p to 0, we get

1 N
HML = anz:lmn
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BAYESIAN LEARNING

In Bayesian learning, we treat p as a random variable.
We assume a prior distribution p(u) of p.
We update the distribution to p(u|D) with data D.
We obtain approximate p(x) via p(u|D) (point estimates
or integration).

J

Benefit: Consider the density estimation of a Bernoulli random vari-
able X based on D = {z1,...,2ny}. When N is not large enough,
the maximum likelihood estimation of y is prone to over-fitting. The
issue can be alleviated by Bayesian learning.
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CONJUGATE PRIOR

Definition. Consider Bayesian learning of a Bernoulli random
variable X with p(x) = Bern(z|u) based on D. A conjugate
prior p(u) of u makes the posterior p(u|D) have the same
functional form as p(u).

According to the Bayes' rule
p(u[D) o< p(p)p(D|p)

Hence, the problem we face here is to make p(u) and p(u|D) belong
to the same family, given data likelihood p(D|u).
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DECIDING PRIOR FROM LIKELIHOOD FUNCTION

We can re-write the likelihood function as

p(Dlp) = H L 1 Tn
_ M(ZN mn)(l _ M) (25:1(1_1’"))
= p" (=)

where m = >N, z,, is the number of 1s in D.

As a function of p, the likelihood p(D|u) is proportional to
powers of p and (1 — u). Thus, if we let the prior p(u) be
proportional to powers of p and (1 — ), then the posterior

p(p|D) o p(p)p(D|w) will also be proportional to powers of
wand (1 — p).
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BETA DISTRIBUTION

Definition. A beta distribution is
F(a + b) 1 bh—1

The parameters in the distribution of a parameter, here a and
b of p(u), are hyperparameters.
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BETA PRIOR AND POSTERIOR

Let X be a Bernoulli random variable with distribution p(x) =
Bern(z|u). Then a beta distribution p(u) = Beta(u|a,b) is
a conjugate prior for p.

Let m be the number of 1s and [ = N — m be the number of Os in
the data set D = {z1,...,xn}. Then

p(u|D) o< p(p)p(D|w)
= Beta(ula, b)p(D|p)

oc M1 = )™ (1 = )’

x Maerfl(l o M)bJrlfl

_ F(a+m+b+l) a+m—1 b+i—1
= puD) = L(a+m)T'(b+1) (1=p)

= Beta(pula +m,b+1)
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prior likelihood function posterior
1 1 1
0 0 0
0 0.5 1 0 05 1 0 0.5
Iz Iz

One step of sequential Bayesian inference. 1 ~ Beta(u|a,b) from
a=2,b=2toa=3,b=2 with a single observation of z = 1.

o &

Dac

12/92



INTERPRETATION OF HYPERPARAMETERS

Let X be a Bernoulli random variable with p(x) = Bern(x|u). We

see
p(u) = Beta(ula,b)

!

\l, Bayesian learning

1
p(p|D) = Beta(p|a + m,b+1)

The hyperparameters a and b in the prior distribution p(u)
can be interpreted as the effective numbers of observations
for x =1 and x = 0 prior to any observation.
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PREDICTIVE DISTRIBUTION

Let X be a Bernoulli random variable with p(z) = Bern(x|u).
When i is treated as a random variable, the distribution of
X is the integration over the distribution of x (the sum rule).

1
P(X = 1D) = / P(X = 1, 4|D)du
- / — 1[)p(ulD)du

/ p(u[D)dp

= E[u|D]
a+m
a+m-+b+1
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REDUCTION OF UNCERTAINTY

On average, data observation reduces parameter uncertainty.

By the total variance theorem of probability theory
varg(0) = Ep[varg(6|D)] + varp(Ee[6|D])
It follows from varp(Eg[0|D]) > 0 that

varg(@) > Ep|varg(0|D)]
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1-0F-K REPRESENTATION

Definition. Let X be a discrete random variable. X is a
K-ary random variable if it has exactly K possible values.

A value (a.k.a. state) of X can be represented by a vector of size K,
ie. = (z1,...,7x)7, called 1-of-K (a.k.a. 1-hot) representation:
one component is 1 for state identity, and the other components are
0. The set of possible values are {z1, ... x5} with
k
1:; ) = 5kj
For example
z® =(0,0,1,0,0,0)"

We also denote a K-ary random variable by x since the values are
represented by vectors.
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K-ARY DISTRIBUTION

Definition. Let x be a K-ary random variable. The distri-
bution of x is a K-ary distribution

P(x:az(j)) :p(w(j)m) =, g=1 0

where pt = (1, ..., i)’ is a vector of parameters.

The parameters g must satisfy

K
pr =0, Zukzl
k=1

The expectation of x is
(k) — T _
Elx|p] = Zm (m |“>—(M17--->NK) =p
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DATA LIKELIHOOD

Let x be a K-ary random variable with K-ary distribution p (a:(j) |u)

and D = {x1,...,xn} be observations of x. Using 1-of-K repre-
sentation, the likelihood of a data point @, can be written as

p(xnlp) = H i

So the likelihood of D is

K N

o (Z o)
p(D|p) = prnlu H H = [Tm="
n=1 k=1

k=1

where my, is the number of points in D with x,, = z®) or Tnk = 1.
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MAXIMUM LIKELIHOOD ESTIMATION

The log data likelihood is

K
logp(D|p) = > mylog juk
k=1
Here the parameters p1, ..., i are not independent, so we need to

maximize the Lagrangian
K K
L(p,\) = kalog,uk + A (Z“k — 1)
k=1 k=1
Setting the derivative of L(p, \) with respect to p to 0, we get

ML _ Mk

/“[’k; _N
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BAYESIAN LEARNING

In Bayesian learning, we start with a distribution over the
parameters and update the distribution with data. Again,
we use conjugate prior so the posterior is an update of the
hyperparameters with data.

This dependency of the data likelihood function on p decides the
conjugate prior of . In the case of a K-ary random variable, the
data likelihood function depends on powers of

p(D|p) = Hu
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DIRICHLET DISTRIBUTION

Definition. A Dirichlet distribution is

I'(ap)

Dir(u|a) = a1
(Ble) = vy Ten) Ig“'f
where
K
0< e <1, Y =1
k=1
Here a = (a,. .. ,aK)T are hyperparameters, and

K
g = Z (677
k=1

Note Dir(p|cr) depends on powers of .
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DIRICHLET:

H2

SUPPORT AND DENSITY

H

H3

[m]

=

Dirichlet distributions for o = 0.1, 1, 10, respectively
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PRIOR AND POSTERIOR

Let x be a K-ary random variable with p (a:(j)]u). Then a
Dirichlet distribution Dir(u|cx) is a conjugate prior for p.

Based on D, the posterior distribution of g is

p(|D) o p(p)p(D|p) = Dir(p|a)p(D|p) o H okt
Pt

By normalization

K

D) = || wtme=l _ p
p(p|D) (e +m1).. P(OéK-i-mK ir(pla’)

where o), = ay, + my,.
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Gaussian Variables
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(GAUSSIAN DISTRIBUTION

Definition. A Gaussian distribution or Gaussian PDF is

Nial o) = — e~ — 2}

(27702)%

It is governed by parameters i and o?.

A random variable with a Gaussian distribution is a Gaussian random
variable. Let X be a Gaussian random variable with distribution
p(z) = N(z|u,0?). Then it can be shown that

p=E[X], o%=var(X)
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CENTRAL LIMIT THEOREM

The mean (or the sum) of a set of i.i.d. random variables
has a distribution that becomes increasingly Gaussian as the
number of terms in the sum increases.

Histogram plots of the mean of N uniform random variables in
[0,1] for N = 1,2, 10 respectively.
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GAUSSIAN RANDOM VECTOR

Definition. A multi-variate Gaussian distribution is
1 1 _
Nl ) = —5—rep {3 (@ —p5 (@ - p)
(2m) 3|3

where D is the dimension of . It is governed by parameter
vector p and parameter matrix 3.

A random vector with a multi-variate Gaussian distribution is a Gaus-
sian random vector. Let x be a Gaussian random vector with distri-
bution p(x) = N (x|p, X). Then it can be shown that

/p(:c)dm =1, Ex]=pu, E [XXT} =ppl + 3 var(x) =%
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MAHALANOBIS DISTANCE

Definition. Let x be a Gaussian random vector of dimension
D with p(x) = N (x|, ). The dependence of the PDF on
x is through quadratic form

A’=(z—p)'=Sz—p)

A is the Mahalanobis distance from p to x.

up be orthonormal eigenvectors of 2 with eigenvalues

Letul,...,
D
M << Ap. Then B =3 Augu?, 7! = ZA ujuf, and
=1 i=
2 T 73
A SO CENDED i
SRR o

where y; = ul (z — p) and (z — p) = Y2y,
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CONTOUR OF A GAUSSIAN PDF

Z2

u2
\/ u;

Y2
n

A2

1/2
AL

X1

The contour of a 2-D Gaussian PDF, on which A? =1
so the density is e~ /2 of the value at © = p.
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EXAMPLES

Xo Z2 T2

X1 X1 T

Examples 2-D Gaussian PDF with general, diagonal,
and isotropic covariance matrix, respectively.
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EXPECTATION

Let x be a Gaussian random vector with p(z) = N (x|, ).
Then the expectation of x is p.

e

where z =« — p.
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SECOND MOMENT

Let x be a Gaussian random vector with p(z) = N (x|, ).
Then the expectation of xxT is pu’ + X.
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(x—p) 'S e - u)} xx! da

D
=> wau X+ pp’ =T+ pp”
=1
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DETAILS*

Recall that z = — u = > y;u,.

(2

where

/

1 1
Dl/exp{zTZ_lz}zszz
™)z (22 2

1y}
S o) om p{—Zzy’“}yz-W?dy

i= 1] 17 (2m)2 |2‘ k=1 "k
= y2
i p{—2z/\’“}yzygdy
i= 13 1 k=1 "k

i=1

11 Y 0, j#i
o .1 eXP {_Z Z}yzy]dy_{A . .

(2m)2 %2 s i J=i

CHEN P PROBABILITY DISTRIBUTIONS



COVARIANCE MATRIX

Let x be a Gaussian random vector with p(z) = N (x|p, X).
Then the covariance matrix of x is X.

cov[x] =

E |(x - Ex])(x — E[x])”]
E [xx”| - E[x]E [x"]
>
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FrROM JOINT GAUSSIAN TO CONDITIONAL (GAUSSIAN

Let random vectors x, and x3 be joint Gaussian. Then x, is
conditional Gaussian given xp.

Let the PDF of x = (x4,%;)T be p(x) = N(z|u,X). Partition
x, i, 2 and the precision matrix A = X! as follows

Xa M, Yaa 2]ab Aaa Aab
x (Xb> B <ub> ’ <2ba 2bb> ’ (Aba Ay

It can be shown that the conditional distribution of x, given x; is
p($a|£ﬂb) = N(ma“*l’a\b? 2]a|b) where

Hajp = Hg — A(:(zlAllb(mb - p‘b) = Mg + 2(11721)_1)1 (:Bb - p’b)
Sap = Aga = Baa — B Zp e

Note A, = 2;“1) = Aua.
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MARGINAL (GAUSSIAN

Let random vectors x, and x; be joint Gaussian. Then x,
(and x3) is Gaussian.

Let the PDF of x = (x,,%;)T be p(x) = N(z|u,X). Partition
x, i, 2 and the precision matrix A = X! as follows

Xa |2 Yoo Bab Aowe Ay
= s = s 2 = ; A. -
x (Xb> H <Hb> <2ba 2bb> (Aba Ay

It can be shown that the distribution of x4 is p(x4) = N (Zaltq)p, Xa)

where
Kalp = Hq

ZJa = Eaa = (Aaa - AabA&,lAba)_l
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CONDITIONAL GAUSSIAN

1 10

2
2= 0.7 plwalzy = 0.7)
05 5
P(2a,zs)
pa)
0 0
) 05 o 1 ) 05 v 1

Left: Contours of joint Gaussian PDF.
Right: A marginal and a conditional Gaussian PDF.
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FrROM CONDITIONAL GAUSSIAN TO JOINT (GAUSSIAN

Let y be Gaussian and z be conditional Gaussian given y.
Then y and z are joint Gaussian.

Let the PDF of y be p(y) = N (y|u, A~1) and the conditional PDF
of z given y be p(z|y) = N'(z|Ay + b, L™'). Then the joint PDF
of x = (y,z)" is

" A+ATLA —ATL\
Ap+b)’ —LA L
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FroM JOINT GAUSSIAN BACK TO CONDITIONAL

Let y be Gaussian and z be conditional Gaussian given y.
Since y and z are joint Gaussian, we have

m z is Gaussian with PDF

m y is conditional Gaussian given z

The PDF of z is
p(z) =N(z|Ap +b, L7 + AN AT)
The conditional PDF of y given z is
p(ylz) = N(y|S{ATL(z - b) + Ap}, 3)

where ¥ = (A + ATLA)™ "
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DENSITY ESTIMATION FOR (GAUSSIANS

Let x be Gaussian with PDF p(z) = N (x|p,X). In the
density estimation of x, we use a data set to estimate p(x).

m Maximum likelihood estimate

m Bayesian learning
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DATA LIKELIHOOD

Let D = {x1,...,xn} be a data set of a Gaussian random vector
x. For data likelihood, we have

1 1 _
p(IEn’l,L, 2) = D = T €Xp {_2(wn - N)TE 1(wn - N)}
2

(2m)2|X[2
D 1 1 S
= logp(@a|p, B) = — < log2m — S log |8 — 5 (zn — )" 7 (@0 — p)
N
= logp(D|p, %) = > log p(a;|p, %)
n=1
ND N
1 —1
3 Z (@ — p)
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MAXIMUM LIKELIHOOD ESTIMATE

Maximum likelihood estimate maximizes data likelihood.

m For
N
Vulogp(Dlp,B) =0 = > 2 N, —p)=0
n=1

1 X
= NML:Nan
n=1

m For X, it can be shown that
1 X

YmL = N > (@0 — ) (@0 — )"
n=1
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BAYESIAN LEARNING

Let = be a Gaussian random variable with PDF p(x) = N (z|u, 0?),
and D = {z1,...,zy} be a data set. We consider the following
scenarios of Bayesian learning of Gaussian distribution.

m Given o2 and a conjugate prior of i

m Given u and a conjugate prior of precision A = 1/02

m Given a conjugate prior of 1 and A
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CONJUGATE PRIOR OF MEAN

The likelihood of D as a function of y is

p(Dlp) = H p(anlp)

1 1 X )

It is a log quadratic function of i, so a conjugate prior of u is log
quadratic, i.e. Gaussian

p(p) = N(plpo, o5)
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BAYESIAN LEARNING OF MEAN

According to the Bayes' rule

p(u|D) o< p(p)p(D]p)

we have
p(u|D) = N (plpn, o%)
where
B o? . Not
HN = No? +02M0 No} + g2 HML
1 1 N
2T 2T 3

O'N o) (o
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Plots of p(u|D) assuming Gaussian p(p) and p(z|p) = N (z|u, o?).
The true p(x) is Gaussian with mean 0.8 and variance 0.1.
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CONJUGATE PRIOR OF PRECISION

The likelihood of D as a function of )\ is

p(DIN) = Hp Zn|A)

oc MV/2 ex —AN —1u)?
p{—5 2 (0 —n)

n=1

So a conjugate prior of A is gamma distribution

1 aya—1_—bA
g = —_— >
p(A) = Gam(Ala, b) F(a)b ATeT >0

CHEN P PROBABILITY DISTRIBUTIONS



BAYESIAN LEARNING OF PRECISION

According to the Bayes' rule

P(AID) < p(A\)p(D|X)

we have
p(A|D) = Gam (Man, by)
where N N
any =a+ —, bNIb—l-*O'E/”_
2 2
2 2 2
a=0.1 a=1 a=4
b=0.1 b=1 b=6
1 1\ 1
0 0 0
0 Al 2 0 Al 2 0
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STUDENT’S t-DISTRIBUTION

The marginal distribution of z is
plalpsa.b) = [~ Nalu, A~)Gam(Aa, b)dA
0
a 1/2 2
(L) o
I'(a) \ 27 2

This is a Student’s t-distribution

, 1/2
St(z|p, \,v) = W (:v)

—a—1/2
T(a+1/2)

_a7-v/2-1/2
R ]

14

with parameters v = 2a and A = a/b.
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LoNG TAIL OF STUDENT’S t-DISTRIBUTION

0.5

V — OC

-5 0 5

Plots of Student's ¢-distribution St(z|u, A, v)
with 3 v's, u =0, and A = 1.
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ROBUSTNESS TO OUTLIERS

0.5 0.5
0.4 0.4
0.3 0.3
0.2 0.2
0.1 0.1
i Il
-5 0 5 1c -5 0 5 1c
() (b)

[m] = =
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CONJUGATE PRIOR OF MEAN AND PRECISION

The likelihood of D as a function of p and X is

p(Dlp, A) p(zn|, N)

it
L) )
x [)\I/Zexp (—f)]Nexp{)\uéxn — ;\éxi}

So a conjugate prior of 1z and A is

2

Bo
pp, A) o [)\1/2 exp (—%)] exp {cAu — dA}
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NORMAL-GAMMA DISTRIBUTION

The conjugate prior can be further reduced

2\ 780
pp, A) l)\lﬂ exp <—)\5>] exp {cAp — dA}

= exp {c)\,u — ﬂ)\uz} MN0/2 exp {—dA}

:exp{ fo ——(u—¢/Bo) }Aﬁoﬂexp{ (d—;;()))\}

= N (p]ag, (BoN) 1) Gam(Aag, bo)

with 8 )
C 0 C
— L ar=1+2 bpp=d— —
G 2 260

This is a normal-gamma distribution defined by

ap =

Nor-Gam(yz, Alov, 8, a,b) = A (ula, (8) ") Gam(Aa, b)
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0
-2 0

I

Plot of Nor-Gam(u, A|«, 3, a,b) with
a=0,=2 a=05,b=6.
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BAYESIAN LEARNING OF MEAN AND PRECISION

According to the Bayes' rule
P, AID) o< p(p, A)p(Dlps, A)
The posterior distribution of 1 and A is
p(p, A|D) = Nor-Gam(p, A|an, B, an, b))
with parameters

2
¢ c
By = Bo+ N, aN:B%’ GN=1+B7N, szdN—QﬁiNN

where

N 1 N
= dy =d+ = 2
cN c+;xn, N +2ngl:cn
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AN IssUE wiTH GAuUssiaAN PDF

A Gaussian distribution is not good for data with multiple clusters.

100 100

80

60

Fitting the old faithful data set with a Gaussian (left) and a
mixture of Gaussians (right).
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SUPERPOSITION OF (GAUSSIANS

With sufficient components, a linear combination of Gaussian PDFs
can approximate any distribution.

p(w)y

3‘3"
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MIXTURE OF (GAUSSIANS

Definition. A mixture of Gaussians is a superposition of
Gaussians
K
p(x) = > mpN (x|, Bk
k=1
where N (xz|u;, Xx) is a component of the mixture, with a

mixing coefficient 7. The mixing coefficients of a mixture
of Gaussians must satisfy

7 > 0, Zﬂ'k21
k

The parameters of a mixture of Gaussians are

Thy Uy, 2 for k=1,... | K
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2-D EXAMPLE

A mixture of bi-variate Gaussians.

0.5

0.5

0.5
Left: Contours of the PDFs of 3 Gaussian components

Middle: Contours of the PDF of the mixture
Right: 3-D plot of the PDF of the mixture
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Exponential Family*
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EXPONENTIAL FAMILY

Definition. Let x be a random vector with a parametric
distribution p(x|n). The distribution p(x|n) is in the expo-
nential family if it has the following form

p(x|n) = h(@)g(n) exp {n"u(z)}

m 7) are the natural parameters.

m g(n) ensures normalization of p(x|n), i.e.

g(n) / h(x) exp {nTu(az)} dr =1
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BERNOULLI DISTRIBUTION

[ A Bernoulli distribution is in the exponential family.

1—x

Bern(z|u) = p*(1 — 1)
= exp{zlogp + (1 — z)log(1 — )}

= (1—p)exp {wlog (1l—L/L>}

= h(z)g(n) exp{n’ u(z)}
with "
—to ()
u(z) =x
1
gn) =1-—p= 1 +eXp<77)
h(z)=1
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K-ARY DISTRIBUTION

A K-ary distribution is in the exponential family.

K
p(xlp) = Huﬁ’“ ZeXP{ZJCkloguk}

k=1

K-1 K-1
= exp{z Ty log puy + (1 — Z xk> log,uK}

K-1
|3
= ex xz lo ()
1K p{z plog (- }

k=1
= h(z)g(n) exp{n’ u(z)}

with

e = log (ﬁ;) g = =1— Y g h(@) =1, u(z) =
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GAUSSIAN PDF

[ A Gaussian PDF is in the exponential family.

SN SN SN Y
N(z|p,o?) = o7 exp{ 553 (@ = 1) }
SNy (R S .
- (27702)% exp{ 2527 * 2" " 202! }
= h(z)g(n) exp{n"u(x)}

with

h(z) = (27)7%, g(n) = (~2m)7 e

o [
4no
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DENSITY ESTIMATION AND LIKELIHOOD

Let x be a random vector with
p(aln) = h(z)g(n) exp {n" u(z)}

Consider the density estimation of x with D = {x1,...,xn}.

p(Dln) = H p(xn|n)
n=1

N
= I (h@a)g(m) exp {n"u(=,)})

n=1
N N

= logp(Dln) =Y log h(x,) + N log g(n Z u(x,)
n=1 n=1

N
= Vlogp(D|n) = NVlogg(n) + Z u(x

n=1
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MAXIMUM LIKELIHOOD ESTIMATE

Maximum likelihood estimate is a stationary point of log p(D|n)

=0
nN=nuL

Vlog p(D|n)

With p(x|n) in the exponential family, we have

| N
—Vlog g(nmi) NZ

Note 7, depends on the data set only through S u(x,). This
is an example of sufficient statistics.
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CONJUGATE PRIOR

Let x be a random vector with p(x|n) in the exponential
family
_ T
p(xln) = h(z)g(n) exp {n"u(z)}
For a conjugate prior of 17, we match the dependency of the

data likelihood function on 7, i.e. a power of g(n) and an
exponent linear in 1

p(nlxv) = £ v)g(n)” exp {vn"x }
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POSTERIOR DISTRIBUTION

According to the Bayes' rule

p(nD, x,v) < p(nlx,v)p(Dln)

_ v+N T al
=g(n) exp { (Z u(xy,) + Vx> }

n=1
= g(m)” exp {v'n"x'}
p(nlx’,v)

where
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HISTOGRAM DENSITY ESTIMATION

5 A =0.04
0

0 0.5 1

5 A =0.08
0

0 0.5 1

5 A =025
0

0 0.5 1

3 cases of histogram density estimation with 50 data points gener-
ated from the distribution shown by the green curve.
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KERNEL DENSITY ESTIMATION

h =0.005
0 0.5 1
h =0.07
0 0.5 1
h =02
0
0 0.5 1

3 cases of kernel density estimation with the same data set

1

_ 1 n_ 7
p(@) = ; k(x,an), where k(z,z') = (27h2)1/2 eXp{
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K-NEAREST-NEIGHBOR DENSITY ESTIMATION

K=

0 J n
50 05 1
K/E)\/\—s//
0 1
50 05 1
K =30 \

0 0.5 1

3 cases of KNN density estimation with the same data set. Here

p(x) = #(x) where V() is the volume of a sphere centered on x
and containing K data points.

CHEN P PROBABILITY DISTRIBUTIONS



DA 74/92




x Joint, Marginal, and Conditional Gaussians
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LoG OF GAUSSIAN DISTRIBUTION

For a Gaussian random vector x, the log distribution
m is quadratic in
m the second-order term depends on precision/covariance

m the first-order term depends on precision and mean

1
log N (x|p, A™Y) = —5(3; — )T A(x — p) + const

1
= —§wTAa: + x Ay + const
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PARTITION BY TWO SUB-VECTORS

Let x ~ N (x|u, A™') be a Gaussian random vector. Partition x
and p into sub-vectors

() )

Partition the covariance and precision into sub-matrices

Eaa 2a,b Aaa Aab —1
5= . A= >
(21)(1 2bb> (Aba Abb)
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CONDITIONAL GAUSSIAN PROPERTY

The conditional distribution of x, given x; is Gaussian.

The conditional distribution of x, given x; = x} is Gaussian
-1
N(wa‘p’a\by Aa|b)
where the conditional mean is
-1
Hajp = Hg — Aaa Aab(mb - Hb)
and the conditional precision is

Aa\b = A
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PROOF: GAUSSIAN

The conditional distribution of x, given x, = xy, is

P(®a, Tp)

p(xb) X p(maamb)

p(@alwy) =
The logarithm of p(x,|x;), apart from a constant,
—g(@—p) Al — p)
= —5l(@a — o) " Aaa(@a — Ba) + (Ta — p1a)" Aap (@ — p1y)
D) a a aa\La a a a a b

+ (@ — )T Ava(®a — prg) + (@ — )T Ay (1 — 1))

is quadratic in x,. Hence x, given x;, = x; is Gaussian.
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PRrROOF: CONDITIONAL PRECISION

The second-order term in log p(x,|xp) is

1
—ingaawa

Since x, given x;, = x is Gaussian, this term must be

1
7§m3Aa\bwa

Hence
Aa\b = Aua

Note this conditional precision is independent of xy.
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PRrROOF: CONDITIONAL MEAN

The first-order term in log p(x,|xp) is
zy {Agatty — Map(p — 1)}
Since x, given x;, = x is Gaussian, this term must be
%TAawHa\b

So Aaa”a - Aab(mb - Hb) = Aa|b/~La\b' Hence

Hap = Ay {Aaatta — Aav(@y — )}
= A;al {Aaaﬂa - Aab(wb - llfb)}
= o — A Ay (0 — pay)

Note this conditional mean is linear in xy.

CHEN P PROBABILITY DISTRIBUTIONS



INVERSE OF A PARTITIONED MATRIX

Consider <é g) where A and D are invertible. Then

A B\ ([ M _MBD!
C D ~\-D'cmMm D'+D'CcMBD!

where M = (A — BDflc)_l.

Note that M~ = A — BD~!'C is also known as the Schur com-
plement of D.
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INVERSE COVARIANCE MATRIX

For a covariance matrix

—1
Aaa Aab — Eaa 2ab
Ay Apy Yo b
—1 -1
_ ((zm—zabzbblzba) — (Bua — DTy T zabzb;)

* *
Hence
_ —152 \7F
Aaa - (Zaa - 2]abz:bb Z:ba)

1 -1 1
Awp = = (Baa = BTy Bha) - Ty,
Similarly

Yo = (Aaa - AabAli,lAba>_1
o = — (Ruo — Ay Ae) Ay
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ALTERNATIVE PARAMETERIZATION

We can use covariance instead of precision.

The conditional mean and covariance of x, given x; = @; can be
expressed by covariance as

Halp = Mg T+ S (T — )
Za|b = Eaa - Zabzb_blzba
This follow from
-1
Aot Ao = (Bon ~ Zar %! Bn) (- (Bon ~ %y B)  BuZy)
= _Eabz&)l

Sap = A

alb — A;al = Eaa - 23abilbiblz]ba
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MARGINAL DISTRIBUTION

[ X, is Gaussian with mean p, and covariance X,,. ]

Proof. By marginalization

p(xq) = /p(wa, xp)daxy,

The integration function p(x,, ) is exponential with exponent

1 1
—5(33 — Az —p) = —§:cTA:1: + 2T Ap + const
1 1
= —§:B£Aaail}a — §$5TAbbiBb — :chAbaa:a
+ @) (Aaatta + Aavtty) + Ty (Apatty + Apppsy)
-+ const
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The terms involved in the integration over xy is
1

- §ngbbxb — & Apao + x (Apatty + Appity)

1
= _§$gAbbxb + :Iszm
1 B _ 1 _
= —5(11317 — Abblm)TAbb((L‘b — Abblm) + imTAbblm
where m = Ay + Apatty — ApaTa = Appty — Apa(Ta — ).
After the integration over x;, the remaining exponent is

1 1 _
- §$3Aaama + “’3 (Aaatty + Aapity) + §mTAbb1m

1
= —5%q (Aaa = Aap Ay Apa)Ta + 24 (Aaa — Aap Ay Ava) s, + const
Thus, the covariance of x, is
Za\@ = (Aaa - AabAZ;,lAba)il = Y

The mean of x, is
Kalp = Hq
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SUMMARY

Suppose x ~ N (z|p, X) and

Xa 124 Eaa 2oLb Aaa Aab
= 3 pr— a 3 2 pr— 5 A_ =
* (Xb> H <ub> <2ba 2bb> (Aba App

The conditional distribution of x, given x;, = @« is Gaussian

p(xalzp) = N (Ta|app Zapp)
Bapy = Pa — Moo Aap (@ — 1)
Sap = Aga
The marginal distribution of x, is Gaussian
p(xa) = N(@al e, Zajo)
Hajp = Hq
ap = Yaa
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LINEAR (GAUSSIAN MODEL

A linear Gaussian model for y and z assumes
m y is Gaussian
m z is conditional Gaussian given y = y
m The conditional mean of z given y = y is linear in y

m The conditional covariance of z given y = y does not
depend on y

That is
p(y) = N(y|p, A7)

and
p(zly) = N(z|Ay + b, L")
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JOINT DISTRIBUTION OF LINEAR (GAUSSIAN MODEL

[ The joint distribution of a linear Gaussian model is Gaussian. ]

By product rule
p(y, z) = p(y)p(z|y)
So

logp(y, z) = log p(y) + log p(z|y)
= —%(y — ) Ay — p)

- %(z — Ay —b)TL(z — Ay — b) + const

which is quadratic in (y) =x = (ma>
z Iy
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PRECISION AND COVARIANCE

The second-order term in log p(x) is

1 1 1 1
— in(A +ATLA)y — §zTLz + §zTLAy + §yTATLz

_ 1(y)\ (A+ATLA AL\ (y) _ 1 .,
2\ ~LA L J\z) 7 2" ®

Hence the precision and covariance of x are

A — A+ATLA —-ATL
- ~LA L

x —LA L

AL ALAT
- (AAl L+ AAlAT>
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MEAN

The first-order term in log p(x) is

:BTE;I;LX —y"Ap—yTATLb+ 2TLb

(2 ()

Hence the mean of x is

B <Ap ATLb>

S
()
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MARGINAL AND CONDITIONAL

Consider a linear Gaussian model for y and z where y is
Gaussian and z is conditional Gaussian given y = y. Then

m z is Gaussian.

m y is conditional Gaussian given z = z.
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