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Regression

Definition. In regression we have input variables x and
target variable t, where t is continuous and x may be dis-
crete or continuous. The goal of regression is to predict t
given x via a regression function or prediction function
y(x)

x −→ y(x) ≈ t

polynomial curve fitting
predict the deal value of a real estate
predict future price of a stock
in a game of Go, predict the probability of black winning
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Squared Loss

Definition. The squared loss of y(x) and t is

L(x, t) = (y(x)− t)2

Given x, the expected squared loss is

E[L(x, t)|x] = E[(y(x)− t)2|x]

=
∫
p(t|x)(y(x)− t)2 dt

It follows that the regression function that minimizes the expected
squared loss is the conditional mean of t

y∗(x) =
∫
t p(t|x) dt = E[t|x]
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Approaches to Regression

There are 2 approaches to learning regression function with data.
Let D = {(xn, tn)}Nn=1 be a data set of a regression problem.

Deterministic regression. Assume a regression function y(x)
that maps x to t, and then learn y(x) with D.
Probabilistic regression. Assume a conditional probability
model of p(t|x) of t given x, and then learn p(t|x) with D. Fi-
nally, derive a regression function y(x) from the learned p(t|x).

Here we emphasize the probabilistic approaches.
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Probabilistic Regression

We can learn a regression function from a data set with a
probability model.

1 Assume a parametric conditional model

p(t|x,w)

Here w denotes the set of learnable parameters.
2 Learn w (MLE or Bayesian learning) with D.
3 Derive a regression function by substitution of point estimate of
w (MLE, MAP) or integration over distribution ofw (Bayesian).

Chen P Linear Models for Regression



7/56

Gaussian Noise Model

Definition. In Gaussian noise model, we assume that t is
the sum of a function of x and a Gaussian noise with zero
mean.

That is
t = u(x) + ε, ε ∼ N (ε|0, β−1)

It follows that
p(t|x) = N (t|u(x), β−1)
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Linear Regression Model

Definition. In linear regression model, we assume a Gaus-
sian noise model

t = u(x) + ε

and u(x) is approximated by a linear combination of fixed
basis functions

u(x) =
M∑
i=1

wiφi(x) = wTφ(x)

φ(x) = [φ1(x), . . . , φM (x)]T is the feature vector of x.

It follows that

p(t|x) ≈ N (t|y(x,w), β−1) = N (t|wTφ(x), β−1)
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Basis Functions
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Examples of polynomial, Gaussian, and Sigmoidal basis functions.
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Learning Parameters

In a linear regression model, we have a Gaussian conditional model

p(t|x) ≈ N (t|wTφ(x), β−1)

The basis functions φ(x) are given. The parameters w and β are
to be learned from data.
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Data Likelihood

Let D = {(xn, tn)}Nn=1 be a data set. The likelihood of a data point
(xn, tn) is

p(tn|xn) = N (tn|wTφn, β
−1), φn = φ(xn)

The data likelihood of D is

p(D|w, β) =
N∏
n=1
N (tn|wTφn, β

−1)
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Maximum Likelihood Estimate

The log likelihood of D is

log p(D|w, β) =
N∑
n=1

logN (tn|wTφn, β
−1)

= N

2 log β − N

2 log(2π)− β

2

N∑
n=1

[tn −wTφn]2

At wML

∇w p(D|w, β) = β
N∑
n=1

{
tn −wT

MLφn

}
φn = 0

⇒
N∑
n=1

wT
MLφnφn =

N∑
n=1

tnφn
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Design Matrix

Definition. The design matrix of D is

Φ =

φ1(x1) . . . φM (x1)
... . . . ...

φ1(xN ) . . . φM (xN )


The row vectors and column vectors are

Φ =


φT1

...
φTN

 =

ϕ1 . . . ϕM


The transpose is

ΦT =

φ1 . . . φN


Chen P Linear Models for Regression
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Matrix Equation of wML

A maximum likelihood estimate of w satisfies(
ΦTΦ

)
wML = ΦT t

Since
N∑
n=1

wT
MLφnφn =

N∑
n=1

φnφ
T
nwML =

(
N∑
n=1

φnφ
T
n

)
wML

= ΦTΦwML

and
N∑
n=1

tnφn = ΦT t, where t =

 t1...
tN


The equation to be satisfied by wML can be re-written as(

ΦTΦ
)
wML = ΦT t
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Geometry of Least Squares
From linear algebra (

ΦTΦ
)
wML = ΦT t

is the normal equation of the system of linear equations

Φw = t

and wML is a least-squares solution. Furthermore, ΦwML = y is
the projection of t to the space spanned by ϕ1, . . . ,ϕM where ϕi
is the ith column of Φ.

S
t

yϕ1

ϕ2
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Sequential Gradient Descent

Computing gradient using the entire set may be expensive.

Sequential learning. One can estimate the gradient of the loss
function with a random example, and then update parameters by

w(τ+1) = w(τ) − η∇wEn(w(τ))

With squared loss En = 1
2(tn −wTφn)2, we have

w(τ+1) = w(τ) + η

(
tn −w(τ)Tφn

)
φn
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Norm Penalty

q = 0.5 q = 1 q = 2 q = 4

Contours of Lq-norm in 2-D weight space.
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w2

w?

w1
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w?

Regularization with norm-penalty using L2-norm and L1-norm.
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Bias-Variance Decomposition
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Optimal Regression Function

Let t and x be the target variable and the input variables.
Given x, the optimal regression function that minimizes the
expected squared loss between the prediction and the target
is the conditional mean

h(x) = E[t|x]
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Random Learning Outcome

Let the regression function learned by data set D be denoted by
y(x;D). Learning from different data sets

D1,D2, . . .

leads to different regression functions

y(x;D1), y(x;D2), . . .
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Expected Squared Loss

Conditioning on data set D, the expected squared loss of the
learned regression function is

E[L|D] =
∫∫
{y(x;D)− t}2p(x, t)dtdx

=
∫
{y(x;D)− h(x)}2p(x)dx+

∫∫
{h(x)− t}2p(x, t)dxdt

=
∫
{y(x;D)− h(x)}2p(x)dx+ noise

where
noise =

∫∫
{h(x)− t}2p(x, t)dxdt

Note that the noise term is invariant with respect to D.
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Total Expected Squared Loss

The total expected squared loss is

E[L] = E[E[L|D]]

= ED
[∫
{y(x;D)− h(x)}2p(x)dx

]
+ noise

= ED
[∫
{y(x;D)− ED[y(x;D)] + ED[y(x;D)]− h(x)}2 p(x)dx

]
+ noise

= ED
[∫
{y(x;D)− ED[y(x;D)]}2 p(x)dx

]
+
∫
{ED[y(x;D)]− h(x)}2 p(x)dx+ noise

= variance + (bias)2 + noise
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Bias and Variance

Bias. The degree that y(x;D) is different from the optimum
regression function h(x) = E[t|x] on average

(bias)2 = ED
[∫
{y(x;D)− h(x)}2 p(x)dx

]
Variance. The degree that one instance of y(x;D) is different
from its mean on average

variance = ED
[∫
{y(x;D)− ED[y(x;D)]}2 p(x)dx

]

Chen P Linear Models for Regression
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Trade-off

Simple model: large squared bias and small variance
Complex model: small squared bias and large variance
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Sinusoidal Data, N = 25, L = 100
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Bayesian Linear Regression
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Conjugate Prior

For a linear regression model (with Gaussian noise), a conju-
gate prior of the parameters is Gaussian.

Let D = {(xn, tn)}Nn=1 be a data set of a regression problem. The
conditional likelihood of D is

p(D|w, β) =
N∏
n=1
N (tn|wTφn, β

−1)

⇒ log p(D|w, β) = N

2 log β − N

2 log(2π)− β

2

N∑
n=1

[tn −wTφn]2

Since p(D|w, β) is log quadratic in w, a conjugate prior of w is
Gaussian.
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Posterior Distribution

Let the prior of the parameters w be Gaussian

p(w) = N (w|m0,S0)

Then the posterior distribution of w is also Gaussian

p(w|D) = N (w|mN ,SN )

It can be shown, by the Bayes’ rule and completing squares in the
posterior, that

S−1
N = S−1

0 + βΦTΦ
mN = SN (S−1

0 m0 + βΦT t)

Chen P Linear Models for Regression
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Special Case

In the following discussion, we assume a zero-mean isotropic Gaus-
sian prior distribution of w

p(w|α) = N (w|0, α−1I)

In this case, the Gaussian posterior has the following mean vector
and covariance matrix

S−1
N = αI + βΦTΦ
mN = βSNΦT t

Chen P Linear Models for Regression
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Sequential Posterior Distribution
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Predictive Distribution

In Bayesian learning, the predictive distribution is obtained
by marginalization over the distribution of the parameters.

In this case, the predictive distribution of t is

p(t|x,D, α, β) =
∫
p(t,w|x,D, α, β)dw

=
∫
p(t|x,w, β)︸ ︷︷ ︸
N (t|wTφ,β−1)

p(w|D, α, β)︸ ︷︷ ︸
N (w|mN ,SN )

dw

= N (t|mT
Nφ(x),φ(x)TSNφ(x) + β−1)

It follows that the optimal prediction is

y(x) = E[t|x] = mT
Nφ(x)
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Predictive Distribution: Sequential Updates
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Sample Output Functions
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Equivalent Kernel

In linear regression model with Gaussian prior and Gaussian
noise, the optimal prediction function can be re-written by a
kernel function.

That is
y(x) = mT

Nφ(x)
= φ(x)TmN

= βφ(x)TSNΦT t

=
N∑
n=1

βφ(x)TSNφ(xn)tn

=
N∑
n=1

k(x,xn)tn

where k(x,x′) = βφ(x)TSNφ(x′) is a kernel function.

Chen P Linear Models for Regression
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Basis Function and Kernel Function

k(x,x′) depends the basis functions φ(x) and the design matrix Φ.

k(x,x′) = βφ(x)TSNφ(x′)

= βφ(x)T
(
αI + βΦTΦ

)−1
φ(x′)

A kernel function based on Gaussian basis functions.
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Properties of Kernel Functions

k(x,x′) is symmetric
k(x,x′) is localized
The covariance of the prediction values at two points x and
x′ is related to k(x,x′)

cov[y(x), y(x′)] = cov[φ(x)Tw,wTφ(x′)]
= φ(x)T cov[w,wT ]φ(x′)
= φ(x)TSNφ(x′)
= β−1k(x,x′)

k(x,x′) can be expressed as an inner product

k(x, z) = ψ(x)Tψ(z)

Chen P Linear Models for Regression
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Bayesian Model Comparison
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Model Comparison

Definition. In model comparison, we compare a set of
candidate models

M1, . . . ,ML

based on a data set D.

For example, we may want to compare the models of different
orders in the polynomial curve-fitting problem.
We did this with a data set different from the training set.

Chen P Linear Models for Regression
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Model Prior and Model Evidence

Definition. Our preference, if any, can be quantified through
model prior p(Mi). The preference by data is quantified
through model evidence p(D|Mi).

By Bayes’ rule, the model posterior is related to the model prior
and the model evidence by

p(Mi|D) ∝ p(Mi)p(D|Mi)

To make prediction, one can use model averaging or the single most
probable model.

Chen P Linear Models for Regression
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Marginal Likelihood

Definition. In Bayesian framework, where the parameters are
treated as random variables, the model evidence p(D|Mi) is
obtained through marginalization over wi

p(D|Mi) =
∫
p(D,wi|Mi) dwi

=
∫
p(D|wi,Mi)p(wi|Mi) dwi

In Bayesian learning framework, the model evidence p(D|Mi) is also
called the marginal likelihood.

Chen P Linear Models for Regression
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Analysis of Marginal Likelihood
Consider a model with a parameter w. The marginal likelihood is

p(D) =
∫
p(D|w)p(w)dw

Assuming flat prior and posterior, we have

p(D) ≈ p(D|wMAP)
(

1
∆wprior

)
∆wposterior

⇒ log p(D) ≈ log p(D|wMAP) + log
(

∆wposterior
∆wprior

)
∆wposterior

∆wprior

wMAP w
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Trade-Off

For a model with M parameters, the log model evidence is

log p(D) ≈ log p(D|wMAP) +M log
(

∆wposterior
∆wprior

)

An optimal model achieves the best trade-off of two terms.

The first term favors data likelihood.
The second term penalizes fine-tuning the parameters to the
model.
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Comparison of Model Evidence

Marginal likelihood favors models of intermediate complexity.

p(D)

DD0

M1

M2

M3

The model complexity M1 <M2 <M3.
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Evidence Approximation
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Fully Bayesian Linear Regression

Idea. The hyperparameters, like the parameters, are un-
known or uncertain to us. Thus, we can introduce hyper-
priors for the hyperparameters.

The predictive distribution is obtained by marginalization over the
distribution of the hyperparameters and the parameters. That is

p(t|x,D) =
∫∫∫

p(t,w, α, β|x,D) dw dα dβ

=
∫∫∫

p(t|x,w, β)p(w|D, α, β)p(α, β|D) dw dα dβ

Chen P Linear Models for Regression
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Marginal Likelihood

An alternative is to use a point estimate of the hyperpa-
rameters. One point estimate comes from maximizing the
marginal likelihood (a.k.a. model evidence) as a function
of the hyperparameters.

Recall that marginal likelihood is obtained by marginalization over
the model parameters

p(D|α, β) =
∫
p(D,w|α, β) dw

=
∫
p(D|w, β)p(w|α) dw

Chen P Linear Models for Regression
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Evidence of a Linear Regression Model
For linear regression with Gaussian noise and Gaussian prior, we have

p(D|α, β) =
(
β

2π

)N/2 ( α

2π

)M/2 ∫
exp {−E(w)} dw

where E(w) = β
2 ‖t−Φw‖2+ α

2w
Tw is a regularized error function.

It can be written as

E(w) = E(mN ) + 1
2(w −mN )TA(w −mN )

where A = αI + βΦTΦ and mN = βA−1ΦT t. It follows that∫
exp {−E(w)} dw = exp {−E(mN )} (2π)M/2|A|−1/2

Thus

log p(D|α, β) = M

2 logα+N

2 log β−E(mN )−1
2 log |A|−N2 log(2π)
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Dependence of Model Evidence on M

M
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Plot of the log model evidence log p(D|α, β) given α and β.
D is the sinusoidal data and M is the polynomial order.
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Maximization of Evidence

The log evidence log p(D|α, β) of a linear model is

M

2 logα+ N

2 log β − E(mN )− 1
2 log |A| − N

2 log(2π)

We want to find α and β that maximizes it.

The determinant |A| can be expressed by the eigenvalues of A.
Recall A = αI + βΦTΦ. Let λ1, . . . , λM be the eigenvalues of
βΦTΦ. Then λ1 + α, . . . , λM + α are the eigenvalues of A and

|A| =
M∏
i=1

(λi + α)

So

log |A| =
M∑
i=1

log(λi + α)
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Stationary Points of α

Noting that λi is independent of α, we have

d

dα
log |A| = d

dα

(
M∑
i=1

log(λi + α)
)

=
M∑
i=1

1
λi + α

For the stationary points of α, we have

0 = M

2α −
1
2m

T
NmN −

1
2

M∑
i=1

1
λi + α

Thus

αmT
NmN = M − α

M∑
i=1

1
λi + α

=
M∑
i=1

λi
λi + α

= γ

or

α = γ

mT
NmN

, where γ =
M∑
i=1

λi
λi + α
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Effective Number of Parameters

γ can be interpreted as the effective number of parameters

γ =
M∑
i=1

λi
λi + α

=
M∑
i=1

ni, where 0 ≤ ni ≤ 1

ni is a measure of the degree that parameter i is influenced by data.

u1

u2

w1

w2

wMAP

wML

As λ1 < α < λ2, w1 is less influenced by data then w2.
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Stationary Points of β

Noting that λi is proportional to β, we have

d

dβ
log |A| = d

dβ

(
M∑
i=1

log(λi + α)
)

=
M∑
i=1

λi
β

λi + α

= 1
β

M∑
i=1

λi
λi + α

= γ

β

So the stationary points of β satisfy

0 = N

2β −
1
2

N∑
n=1
{tn −mT

Nφn}2 −
γ

2β

Thus
1
β

= 1
N − γ

N∑
n=1
{tn −mT

Nφn}2
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Example: Sinusoidal Synthetic Data

There are 9 Gaussian basis functions, so M = 10. β = 11.1.

lnα

−5 0 5

lnα

−5 0 5

Left: plot of γ (red) and 2αEW (mN ) (blue)
Right: plot of log p(D|α, β) (red) and test set error (blue)
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Plot of the learned values of 10 parameters (mN ).
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N �M

When the number of data points is much larger than the number of
parameters, all the parameters are effectively determined by data,
so γ = M . It follows that the optimal hyperparameters satisfy

α = M

2EW (mN ) and β = N

2ED(mN )

where

EW (w) = 1
2w

Tw and ED(w) = 1
2‖t−Φw‖2

They are iterative equations.
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Limitation of Fixed Basis Functions

With fixed basis functions, the number of basis functions grows
rapidly with the dimension of the input space.

The intrinsic dimensionality of data is often small.
The target values may have significant dependence only on a
small number of directions within the data space.

Neural networks can adapt the parameters of the basis functions
according to data.
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