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REGRESSION

Definition. In regression we have input variables x and
target variable ¢, where ¢ is continuous and x may be dis-
crete or continuous. The goal of regression is to predict ¢
given x via a regression function or prediction function
y(x)

x — ylx) =~ t

polynomial curve fitting

predict the deal value of a real estate

predict future price of a stock

m in a game of Go, predict the probability of black winning
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SQUARED LoOSS

Definition. The squared loss of y(x) and t is

L(x,t) = (y(x) - )?

Given x, the expected squared loss is
E[L(x,t)[x] = E[(y(x) — t)° \X]

_/t|x 2t

It follows that the regression function that minimizes the expected
squared loss is the conditional mean of ¢

v () = [ tpltx)dt = Eltlx
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APPROACHES TO REGRESSION

There are 2 approaches to learning regression function with data.
Let D = {(@,,t,)}"_, be a data set of a regression problem.

m Deterministic regression. Assume a regression function y(x)
that maps x to ¢, and then learn y(x) with D.

m Probabilistic regression. Assume a conditional probability
model of p(t|x) of ¢ given x, and then learn p(t|x) with D. Fi-
nally, derive a regression function y(x) from the learned p(t|x).

Here we emphasize the probabilistic approaches.
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PROBABILISTIC REGRESSION

We can learn a regression function from a data set with a
probability model.

Assume a parametric conditional model

p(tlz, w)

Here w denotes the set of learnable parameters.
Learn w (MLE or Bayesian learning) with D.

Derive a regression function by substitution of point estimate of
w (MLE, MAP) or integration over distribution of w (Bayesian).
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GAUSSIAN NOISE MODEL

Definition. In Gaussian noise model, we assume that ¢ is
the sum of a function of x and a Gaussian noise with zero
mean.

That is
t=u(x)+e e~N(0,87)

It follows that
p(tlz) = N(tlu(z), B~1)
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LINEAR REGRESSION MODEL

Definition. In linear regression model, we assume a Gaus-
sian noise model
t=u(x)+e

and u(x) is approximated by a linear combination of fixed
basis functions

M
u(x) = Z wi¢i(x) = wl p(x)
=1

D (x) = [¢p1(x),..., o (x)]T is the feature vector of x.

It follows that

ptlz) =~ N(tly(®,w), 1) = N(tlw" ¢(z), 57"
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BAsis FUNCTIONS
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Examples of polynomial, Gaussian, and Sigmoidal basis functions.
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LEARNING PARAMETERS

In a linear regression model, we have a Gaussian conditional model
p(t|z) = N(tlw' ¢(z), 57

The basis functions ¢(x) are given. The parameters w and /3 are
to be learned from data.
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DATA LIKELIHOOD

Let D = {(z,, tn)}fL1 be a data set. The likelihood of a data point
(@, tn) is

p(tn|mn) = N(tn’wT¢mﬁ_1)7 d)n = ¢($n)

The data likelihood of D is

2

p(Dlw, B) = [[ Ntalw" ¢, 87

n=1
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MAXIMUM LIKELIHOOD ESTIMATE

The log likelihood of D is

N
log p(Dlw, B) = Y _ log N (tn|w" ¢, 57")

n=1

BT w7
—1 ——1 (2 e
og 3 og(2m) 5 E: w’g,?

At wmL

V. p(Dlw, 8 ﬁ: {tn —wisd} 6, =0

=2

N
S widnd, =D tadh,
n=1
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DESIGN MATRIX

~

Definition. The design matrix of D is

¢r(x1) ... ou(x)
o=
d(zn) .. ou(en)

The row vectors and column vectors are

o1
® = : =¥ Pum
PN
The transpose is
o7 = ¢ ... oy
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MATRIX EQUATION OF wyg,

A maximum likelihood estimate of w satisfies

(<I>T<I>) wy = Tt

Since

N N N
Z w{/IL(bn(ﬁn = Z d)n(ﬁgwML = (Z ¢n¢£> WML
n=1 n=1 n=1

= ‘I’Tq)wML

and
ty

N

Z tno, = ®Tt, where t =

n=1 t

N

The equation to be satisfied by wpL can be re-written as
(27®) ww = &"t
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GEOMETRY OF LEAST SQUARES

From linear algebra
(27®) ww = 3"t
is the normal equation of the system of linear equations
Pw =t

and wy is a least-squares solution. Furthermore, ®wy. =y is
the projection of t to the space spanned by ¢q,..., @, where ¢,
is the ith column of ®.
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SEQUENTIAL GRADIENT DESCENT

Computing gradient using the entire set may be expensive.

Sequential learning. One can estimate the gradient of the loss
function with a random example, and then update parameters by

W™D = ™) — gV En(w™)

With squared loss E,, = 3(t, — w’ ¢,,)?, we have

W —w g (1, - w9, ) 8,
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NoOrRM PENALTY

NYAhYER

Contours of Li-norm in 2-D weight space.

©

wa w2

p
N

Regularization with norm-penalty using L?-norm and L!'-norm.

D)
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Bias-Variance Decomposition

[m] = -

DAt 18/56



OPTIMAL REGRESSION FUNCTION

Let ¢t and x be the target variable and the input variables.
Given x, the optimal regression function that minimizes the
expected squared loss between the prediction and the target
is the conditional mean

h(x) = E[t|x]
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RANDOM LEARNING OUTCOME

Let the regression function learned by data set D be denoted by
y(a; D). Learning from different data sets

D1, Do, ...
leads to different regression functions

y(x; D1),y(x; Da), . ...
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EXPECTED SQUARED LOSS

Conditioning on data set D, the expected squared loss of the
learned regression function is

E[LID] = / {y(x; D) — t}*p(w, t)dtde
_ /{y x; D) x)}p(x)da + //{h(a:) ) 2p(, t)dadt
= /{y x; D) — h(x)}*p(x)dx + noise

where
noise = //{h(m) — t12p(x, t)dxdt

Note that the noise term is invariant with respect to D.
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TOTAL EXPECTED SQUARED LOSS

The total expected squared loss is
E[L] = E[E[L|D]]
=Ep /{y (x;D) (w)dm} + noise

= Ep | [ {y(@:D) ~ Enly(w; D)) + Eply(es D)) - hie)} pla)de

~+ noise
—Ep [ twtai) - Ep[y@;@)]}?p(m)dw}

+ / {Eply(x; D)] — h(x)}? p(x)dx + noise

— variance + (bias)? + noise
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BIAS AND VARIANCE

m Bias. The degree that y(a; D) is different from the optimum
regression function h(x) = E[t|x] on average

(bias)* = Ep | [ {y(: D) ~ h(a)}* pa)da

m Variance. The degree that one instance of y(x; D) is different
from its mean on average

variance = Ep {/ {y(x; D) — Ep[y(a; D)]}Qp(sc)dw]
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m Simple model: large squared bias and small variance

m Complex model: small squared bias and large variance

«O>» «Fr» «E» « > QA 2/1/56



SINUSOIDAL DATA, N =25,L =100

In)=-0.31

InA=26
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In A
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Bayesian Linear Regression

[m] = =

DA 26/56



CONJUGATE PRIOR

For a linear regression model (with Gaussian noise), a conju-
gate prior of the parameters is Gaussian.

Let D = {(xn,t,)}_; be a data set of a regression problem. The
conditional likelihood of D is

N
p(Dlw, B) = [ N(talw" ¢y, 571

n=1

B i
log p(D 1 ——1 (2 £
= logp(D|w, ) = = log 8 og(2m) 5 §: w'¢,]?

Since p(D|w, ) is log quadratic in w, a conjugate prior of w is
Gaussian.
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POSTERIOR DISTRIBUTION

Let the prior of the parameters w be Gaussian
p(w) = N(w|my, So)
Then the posterior distribution of w is also Gaussian

p(w|D) = N(w|my, Sy)

It can be shown, by the Bayes' rule and completing squares in the
posterior, that

Sy' =58y + 59" ®
my = SN(Salm(] + B(I)Tt)
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SPECIAL CASE

In the following discussion, we assume a zero-mean isotropic Gaus-
sian prior distribution of w

p(wla) = N(w|0,a™ 1)

In this case, the Gaussian posterior has the following mean vector
and covariance matrix

Sy =al +387®

my = ﬂSNq)Tt
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SEQUENTIAL POSTERIOR DISTRIBUTION

likelihood prior/posterior data space
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PREDICTIVE DISTRIBUTION

In Bayesian learning, the predictive distribution is obtained
by marginalization over the distribution of the parameters.

In this case, the predictive distribution of ¢ is

p(tie. D) = [ p(t,wle,D.a,B)dw

- / p(t|z, w, B) p(w|D, a, B) dw
N(twT¢,f-1) N(w|my,Sn)
= N(tlmE é(z), p(x)" Snp(z) + 571

It follows that the optimal prediction is

y(x) = E[t|z] = mio ()
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PREDICTIVE DISTRIBUTION: SEQUENTIAL UPDATES
1 1
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SAMPLE OUTPUT FUNCTIONS
1 1
t t
0 0
-1 -1
A
0 s 1 0 . 1
1
t
0
-1
0 s 1

[m]

//
Q /
s«t\‘
0



EQUIVALENT KERNEL

In linear regression model with Gaussian prior and Gaussian
noise, the optimal prediction function can be re-written by a

kernel function.

That is

= Bp(x) Sno(wn)tn

where k(z, z') = B¢p(x)T Syo(x') is a kernel function.
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BAsis FuNCcTION AND KERNEL FUNCTION

k(x, ') depends the basis functions ¢(x) and the design matrix ®
k(z,2') = fp(x)" Sn (')

— b(@)” (oI +p27®) " $(a)

[m]

=



PROPERTIES OF KERNEL FUNCTIONS

k(x,x') is symmetric

k(x, ') is localized

m The covariance of the prediction values at two points « and
a' is related to k(x,x’)

covly(@), y(z')] = cov[g (@) w, w' P(a")]
= ¢(x)" covlw, w']p(z’)
= ¢(z)" Sno(z')
= 7 k(x, x)

m k(x,x’) can be expressed as an inner product

k(@ z) = ¢(x) ¥(2)
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Bayesian Model Comparison

o &
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MobDEL COMPARISON

Definition. In model comparison, we compare a set of
candidate models

Mlv"'aML

based on a data set D.

m For example, we may want to compare the models of different
orders in the polynomial curve-fitting problem.

m We did this with a data set different from the training set.
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MODEL PRIOR AND MODEL EVIDENCE

Definition. Our preference, if any, can be quantified through
model prior p(M;). The preference by data is quantified
through model evidence p(D|M;).

By Bayes' rule, the model posterior is related to the model prior
and the model evidence by

p(Mi|D) o< p(Mi)p(D|M;)

To make prediction, one can use model averaging or the single most
probable model.
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MARGINAL LIKELIHOOD

Definition. In Bayesian framework, where the parameters are
treated as random variables, the model evidence p(D|M;) is
obtained through marginalization over w;

P(DIM:) = [ p(D,wilMy) duw,

= / p(Dw;, M;)p(w;| M) dw;

In Bayesian learning framework, the model evidence p(D|M,) is also
called the marginal likelihood.
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ANALYSIS OF MARGINAL LIKELIHOOD

Consider a model with a parameter w. The marginal likelihood is

p(D) = [ p(Dlw)p(w)du
Assuming flat prior and posterior, we have

1
Awprior

p(D) ~ p(D|wMAP) ( ) Awposterior

AwWposterior
= logp(D) ~ log p(D|wwmap) + log (Ap s )
Wprior

A’Ufposmnor
-—

WNAP w

—p
Awprior
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TRADE-OFF

For a model with M parameters, the log model evidence is

A rior
log p(D) ~ log p(D|wmar) + M log (Zpt)
Wprior

An optimal model achieves the best trade-off of two terms.

m The first term favors data likelihood.

m The second term penalizes fine-tuning the parameters to the
model.
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COMPARISON OF MODEL EVIDENCE

Marginal likelihood favors models of intermediate complexity.

A

p(D) M,

Mo

Ms

L\

D

\

Do
The model complexity M1 < My < Ms.

CHEN P LINEAR MODELS FOR REGRESSION



Evidence Approximation

[m] = -

DA™

14/56



FuLLy BAYESIAN LINEAR REGRESSION

Idea. The hyperparameters, like the parameters, are un-
known or uncertain to us. Thus, we can introduce hyper-
priors for the hyperparameters.

The predictive distribution is obtained by marginalization over the
distribution of the hyperparameters and the parameters. That is

p(t|z,D) = ///p(t,w,aﬂ\az,l)) dw da df
= ///P(t\w,w,ﬁ)p(w!D,a,ﬁ)p(a,ﬁ\D) dw do dfs
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MARGINAL LIKELIHOOD

An alternative is to use a point estimate of the hyperpa-
rameters. One point estimate comes from maximizing the
marginal likelihood (a.k.a. model evidence) as a function
of the hyperparameters.

Recall that marginal likelihood is obtained by marginalization over
the model parameters

p(Dla. ) = [ p(D.wla, 8)dw
~ [ p(Dlw, Bp(w]a) dw
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EVIDENCE OF A LINEAR REGRESSION MODEL

For linear regression with Gaussian noise and Gaussian prior, we have

p(Dla, B) = (;)Nﬂ (;)M/z/exp{—E(w)}dw

where E(w) = gHt—(I)sz—i—%wTw is a regularized error function.
It can be written as

B(w) = Blmx) + 3 (w — mx)" Alw —mx)
where A = oI + B®T® and my = SA" '@ 't. It follows that
/exp (—E(w)} dw = exp {—E(my)} (2m)M/?| A 1/2
Thus
log p(Dla, ) = % log a—l—g log 6—E(mN)—% log \A\—g log(2m)
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DEPENDENCE OF MODEL EVIDENCE ON M

_18.

_20 -

_22 L

_24.

-26

Plot of the log model evidence log p(D|a, 3) given « and 5.
D is the sinusoidal data and M is the polynomial order.

CHEN P LINEAR MODELS FOR REGRESSION



MAXIMIZATION OF EVIDENCE

The log evidence log p(D|a, [3) of a linear model is

M N 1 N
- log o + 5 log 5 — E(my) — 3 log |A| — 510g(27r)

We want to find o and S that maximizes it.

J

.

The determinant |A| can be expressed by the eigenvalues of A.
Recall A = aI 4+ B®T®. Let Ai,...,\y be the eigenvalues of
BPT®. Then A\ + o, ..., Ay + « are the eigenvalues of A and

M

Al = [TV +a)

i=1
So
M
log |A| = log(\i + )

i=1
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STATIONARY POINTS OF «

Noting that ); is independent of o, we have

d d M 1
—log |A| = — E 1 i+ = E
do og |4 da ( og(A oz)) — N+«

=1

For the stationary points of «, we have

M 1 1Y
= — —mympy — -
2a 2 NN 2;)\i+a
Thus
Mo Mo\
amymy =M —« = CH
NTN ;)\i—l-oz ;)\14-06 7
or
vy Moo
a=—=——, where y =
m%mN 7 i;)‘i+a
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EFFECTIVE NUMBER OF PARAMETERS

~ can be interpreted as the effective number of parameters

M
Ai
_E _E here 0 <n; <1
vy 2 )\+a i:nl,were n; <

n; is a measure of the degree that parameter ¢ is influenced by data.

uz

L uy
o
WMAP

w1

As A1 < a < A9, wy is less influenced by data then ws.
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STATIONARY POINTS OF [

Noting that J\; is proportional to 3, we have

Ad

M
dBlOg’A| B<Zlog)\ +a>=2>\iia

=1
_1§ N
S BENi+a B

So the stationary points of [ satisfy

1 N
- 5 Z{tn - m%¢n}2 52

n=1
Thus
Lo L S e,
= n N%n
6 N_fynzl
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EXAMPLE: SINUSOIDAL SYNTHETIC DATA

There are 9 Gaussian basis functions, so M = 10. g = 11.1.

-5 0 5 -5 0
Ino Ina

Left: plot of v (red) and 2aEw (my) (blue)
Right: plot of log p(D]a, 5) (red) and test set error (blue)
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Plot of the learned values of 10 parameters (my).

[m] = = =



N>»>M

When the number of data points is much larger than the number of
parameters, all the parameters are effectively determined by data,
so v = M. It follows that the optimal hyperparameters satisfy

N

o oy
2Ep(my)

= 72EW(mN) and 3 =

where
L 1 2
Ew(w) = Jww and Ep(w) = §Ht — dw||

They are iterative equations.
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LIMITATION OF FIXED BASIS FUNCTIONS

With fixed basis functions, the number of basis functions grows
rapidly with the dimension of the input space.

m The intrinsic dimensionality of data is often small.

m The target values may have significant dependence only on a
small number of directions within the data space.

Neural networks can adapt the parameters of the basis functions
according to data.

CHEN P LINEAR MODELS FOR REGRESSION



