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Bernoulli Processes
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Random process
Let (Ω, F , P ) be a probability model. A random process defined on
Ω, say X, has the following property.

X contains random variables, each defined on Ω
A random variable of X has an index
Xt is the random variable with index t

X is discrete-time if the set of index is discrete
X is continuous-time if the set of index is continuous
An ω in Ω is mapped to an instance of X called sample se-
quence or sample function
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Arrival process
Let (Ω, F , P ) be a probability model. An arrival process defined on
Ω, say X, has the following property.

Every Xt is a Bernoulli random variable
Xt = 1 for an arrival at t and Xt = 0 for no arrival at t

We can use arrival processes for 2-state phenomenon.
speech activity
anomalous sound detection
virus screening
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Definition (Bernoulli process)
Let (Ω, F , P ) be a probability model. A Bernoulli process, say X,
has the following property.

X is a discrete-time arrival process
Xt indicates whether there is an arrival at epoch t

Xt’s are iid Bernoulli random variables
Since every Xt is Ber(p) for some p, we can denote X by

Bernoulli(p)
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Example (6.1 Bernoulli process)
Let X be a Bernoulli process.

Let U be the arrival count of X from time 1 to 5 and V be
the arrival count of X from time 6 to 10. We have U ⊥⊥ V .
Let W be the first odd time index with an arrival of X and
Y be the first even time index with an arrival of X. We have
W ⊥⊥ Y .
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Binomial arrivals and geometric arrival time
Let X be Bernoulli(p).

Let Sn be the arrival count of X from time 1 to time n.

Sn ∼ Bin(n, p)

Let T be the first arrival time of X.

T ∼ Geo(p)

We have Sn = X1 + · · · + Xn where Xi’s are iid Ber(p). So

Sn ∼ Bin(n, p)

The PDF of T is

P (T = n) = P ((X1 = 0) ∩ · · · ∩ (Xn=1 = 0))P (Xn = 1)
= (1 − p)n−1p
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Fresh-start and memoryless property
Let X be Bernoulli(p).

Let n be a non-negative integer. Let X ′ be the part of X
discarding X1, . . . , Xn, i.e.

X ′
t = Xn+t, t = 1, 2, · · ·

Then X ′ is Bernoulli(p).
Let N be a non-negative integer random variable that is inde-
pendent of XN+1, XN+2, . . . . Let X ′′ be part of X discarding
X1, . . . , XN , i.e.

X ′′
t = XN+t, t = 1, 2, · · ·

Then X ′′ is Bernoulli(p).
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Example (6.2)
A time-slotted computer executes a priority job with probability p in
each slot, independent of other slots. A slot is busy if the computer
executes a priority job, idle otherwise. A string of idle slots, flanked
by busy slots, is an idle period. A string of busy slots, flanked
by idle slots, is a busy period. Let’s look at the random variables
T, B, I, Z as shown in the following figure.
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Random variables
T is the time of the first idle slot. Since a slot is idle with
probability (1 − p), T is Geo(1 − p).
B is the length of the first busy period. Let X be Bernoulli(p),
treating busy slots as arrivals. Let N be the time of the first
busy slot. The first busy period ends as soon as an idle slot ar-
rives after N . Let X ′ be the part of X discarding X1, . . . , XN .
Then X ′ is Bernoulli(p). Since B equals the time of the first
idle slot of X ′, it is Geo(1 − p).
I is the length of the first idle period. This period ends when
a busy slot arrives after the first idle slot. So I is Geo(p).
Z is the time of the first idle slot after the first busy slot. Since
Z = B − 1 + 1 = B, we have Z ∼ Geo(1 − p).
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Example (6.3)
Let X be Bernoulli(p). Let N be the first time that an arrival
of X immediately follows the previous arrival of X. What is the
probability of no arrivals in the next two time slots, i.e.

P (XN+1 = 0 ∩ XN+2 = 0)

N is independent of XN+1, XN+2, . . . . Let X ′ be the part of X
discarding X1, . . . , XN , i.e.

X ′
t = XN+t, t = 1, 2, · · ·

Then X ′ is Bernoulli(p). Thus

P (XN+1 = 0 ∩ XN+2 = 0) = P (X ′
1 = 0 ∩ X ′

2 = 0)
= P (X ′

1 = 0) P (X ′
2 = 0)

= (1 − p)2
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Definition (Arrival time, inter-arrival time)
Let X be an arrival process.

The time of an arrival of X is an arrival time
The time between an arrival and the previous arrival of X is
an interarrival time
Let Yk be the time of the kth arrival of X, and Tk be the time
between the (k − 1)th arrival and the kth arrival of X. Then

Yk = T1 + · · · + Tk
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Inter-arrival times
Let X be Bernoulli(p) and Tk be the kth interarrival times of X.
Then T1, T2, · · · are iid Geo(p) random variables.

From T1 = Y1 and Y1 ∼ Geo(p), we have

T1 ∼ Geo(p)

Let X ′ be X re-started at T1 and Y ′
1 be the first arrival time of X ′.

By the memoryless property, X ′ is Bernoulli(p) and Y ′
1 is Geo(p).

From T2 = Y ′
1 , we have

T2 ∼ Geo(p)

By same argument, Tk+1 is the first arrival time of a restarted pro-
cess of X restarted at N = Yk, so Tk+1 is Geo(p).
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Example (6.4)
It has been observed that after a rainy day, the number of days
until it rains again is a geometric random variable with parameter p,
independent of the past. Find the probability that it rains on both
the 5th and the 8th day of the month.

Let X be an arrival process, treating rainy days as arrivals. The iid
inter-arrival times Geo(p) implies X is Bernoulli(p). Thus

P (X5 = 1 ∩ X8 = 1) = P (X5 = 1) P (X8 = 1)
= p2
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Arrival times
Let X be Bernoulli(p) and Yk be the kth arrival time of X.

The PMF of Yk can be derived
It is the Pascal PMF of order k with parameter p

Event (Yk = n) occurs if and only if that there are (k − 1) arrivals
from time 1 to time (n − 1) and an arrival at time n. Thus

pYk
(n) =

(k − 1) arrivals from time 1 to time (n − 1)︷ ︸︸ ︷(
n − 1
k − 1

)
pk−1(1 − p)n−1−(k−1) ×

an arrival at time n︷︸︸︷
p

=


(

n − 1
k − 1

)
pk(1 − p)n−k, n = k, k + 1, . . .

0, otherwise
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Example (6.5)
In every minute Lin plays, he commits a foul with probability p. In a
game, he plays until he’s fouled out or he plays 30 minutes at most.
What is the PMF of his playing time Z in a game?

Let X be Bernoulli(p), treating fouls as arrivals. Let Yk be the kth
arrival time of X. Then we have Z = min(Y6, 30) and

(Z = n) =
{

(Y6 = n), 6 ≤ n ≤ 29
(Y6 ≥ 30), n = 30

Hence

pZ(n) =


pY6(n), 6 ≤ n ≤ 29

1 −
29∑

n′=6
pY6(n′), n = 30

0, otherwise
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Definition (Split process)
Let X be Bernoulli(p) and W , Z be defined as follows: an arrival
of X is an arrival of W with probability q, otherwise it is an arrival
of Z.

We have P (Wt = 1) = P (Xt = 1) · q = pq, so

Wt ∼ Ber(pq) ⇒ W ∼ Bernoulli(pq)

Similarly
Z ∼ Bernoulli(p(1 − q))
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Definition (Merged process)
Let X be Bernoulli(p), Z be Bernoulli(q) and X ⊥⊥ Z. Let an
arrival of X or an arrival of Z be an arrival of W .

We have

P (Wt = 1) = P ((Xt = 1) ∪ (Zt = 1))
= P (Xt = 1) + P (Zt = 1) − P ((Xt = 1) ∩ (Zt = 1))
= p + q − pq

So Wt’s are iid Ber(p + q − pq), and W is Bernoulli(p + q − pq).
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Poisson Processes
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Definition (Poisson process)
Let (Ω, F , P ) be a probability model. A Poisson process X defined
on Ω has the following property.

X is a continuous-time arrival process
In any period, the number of arrivals is Poisson RV
Arrivals in non-overlapping periods are independent
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Definition (Rate)
A Poisson process has an arrival rate. Specifically, a Poisson process
X with rate λ has

N(t) ∼ Poi(λt)

where N(t) is the number of arrivals in a period of length t.

This is denoted by
X ∼ Poisson(λ)
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Small-interval arrivals
Let X ∼ Poisson(λ) and N(δ) be the arrivals of X in a small
period of length 0 < δ ≪ 1. Since N(δ) ∼ Poi(λδ), we have

P (N(δ) = k) = e−λδ (λδ)k

k!

=


1 − λδ + o(δ), k = 0
λδ + o(δ), k = 1
o(δ), k > 1

That is
N(δ) ∼̇ Ber(λδ)
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Arrival rate
Let X ∼ Poisson(λ).

The expected number of arrivals in a period of length τ is

E[N(τ)] = λτ

The rate of arrival is

E[N(τ)]
τ

= λ
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Small interval and finite interval
Let X ∼ Poisson(λ). Let N(τ) be the number of arrivals in a
period of length τ . Partition the period into small periods of length
δ = τ

n with n ≫ 1. Let Ni be the arrival count in the ith small
period. We have Ni ∼̇ Ber(λδ) and N(τ) = N1 + · · · + Nn. Hence

N(τ) ∼̇ Bin(n, λδ) n→∞−−−−−→ Poi (nλδ) = Poi (λτ)
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Example (6.8)
Bill gets e-mails according to Poisson(λ) with λ = 0.2 messages
per hour. He checks email every hour. What is the probability of no
new message? 1 new message?

Since N(τ) ∼ Poi (λτ), we have

N(1) ∼ Poi(0.2 × 1)
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Example (6.9)
Arrivals of customers at a supermarket are modeled by Poisson(λ)
with λ = 10 customers per minute. Let M (resp. N) be the number
of the customers arriving between 9:00 and 9:10 (resp. between 9:30
and 9:35). What is the PMF of M + N?

We have M ∼ Poi(λτ1) = Poi(10·10), N ∼ Poi(λτ2) = Poi(10·5),
and M ⊥⊥ N . The sum of 2 independent Poisson random variables
is a Poisson random variable. Thus

(M + N) ∼ Poi(100 + 50)
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First arrival time
Let X ∼ Poisson(λ). The time of the first arrival of X is Exp(λ).

Let Y1 be the first arrival time of X and N(t) be the number of the
arrivals in (0, t]. Note the time-count duality (Y1 > t) if and only if
(N(t) = 0). So P (Y1 > t) = P (N(t) = 0) and

P (Y1 ≤ t) = 1 − P (Y1 > t) = 1 − P (N(t) = 0)

Since N(t) ∼ Poi(λt), we have

P (N(t) = k) = (λt)k

k! e−λt, k = 0, 1, 2, . . .

So the CDF of Y1 is

FY1(t) = 1 − P (N(t) = 0) = 1 − e−λt

which is the CDF of Exp(λ). Therefore, Y1 ∼ Exp(λ).
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Fresh-start/memoryless property
Consider X ∼ Poisson(λ).

Let u > 0 and X ′ be the part of X discarding X≤u, i.e.

X ′
t = Xu+t, t > 0

Thus X ′ ∼ Poisson(λ).
Let U be a non-negative random variable and be independent
of X>U . Let X ′′ be the part of X discarding X≤U , i.e.

X ′′
t = XU+t, t > 0

Thus X ′′ ∼ Poisson(λ).
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Example (6.10)
You and a partner go to the gym to play badminton. You wait until
the on-court players to finish. Assume that their playing time is
Exp(λ). Then your waiting time is Exp(λ), regardless of how long
they have been playing.

Imagine X ∼ Poisson(λ) that starts at the same time as the players
on court. Their playing time is Exp(λ), so it is the first arrival time
of X. Let X ′ be the process obtained from restarting X at the
same time as you begin to wait. Then your waiting time is the first
arrival time of X ′. Since X ′ ∼ Poisson(λ), your waiting time is
Exp(λ).
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Example (6.11)
When you enter a bank, all 3 tellers are busy serving customers,
and there are no other customers in queue. No more customers
enter the bank after you. Assume that the service times for the
bank customers are iid exponential random variables. What is the
probability that you will be the last customer to leave the bank?

1
4? 1

3?
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Inter-arrival time
Let X ∼ Poisson(λ) and Tk be the kth interarrival time of X.
Then T1, T2, · · · are iid Exp(λ) random variables.

This follows from the memoryless property.
That is, by restarting X at an arrival time, the next arrival time
is Exp(λ) and is an interarrival time of X.
An instance of X can be generated as follows: for k = 1, 2, . . .
sample interarrival time

Tk ∼ Exp(λ)

and set Xt to 1 at arrival time

Yk = T1 + · · · + Tk
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Arrival times
Let X ∼ Poisson(λ) and Yk be the kth arrival time of X.

The PDF Yk can be derived
It is the Erlang PDF of order k with parameter λ

We have

P (Yk ∈ (t, t + δ)) =
(k − 1) arrivals in (0, t)︷ ︸︸ ︷
P (N(t) = k − 1) ×

1 arrival in (t, t + δ)︷ ︸︸ ︷
P (N(δ) = 1)

= (λt)k−1

(k − 1)!e
−λt × (λδ + o(δ))

= FYk
(t + δ) − FYk

(t)

So the PDF of Yk is

fYk
(t) = lim

δ→0+

FYk
(t + δ) − FYk

(t)
δ

= λktk−1

(k − 1)!e
−λt
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Example (6.12)
You call IRS hotline and are the 56th person waiting to be served.
Suppose the callers’ departure is Poisson(λ) with λ = 2 per minute.
How long do you expect to wait until your service starts, and what
is the probability that the waiting time is more than 30 minutes?

Let W be the waiting time, X ∼ Poisson(λ) be callers’ departures,
and Tk ∼ Exp(λ) be the kth interarrival time of X. Then

W = T1 + · · · + T56 = Y56

We have

E[W ] = E[T1 + · · · + T56] = E[Ti] · 56 = 1
λ

· 56 = 28

and
P (W > 30) = P (Y56 > 30) =

∫ ∞

30

256t55

(55)! e−2tdt
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Definition (Split process)
Consider X ∼ Poisson(λ). Let the arrivals of X be split as follows.
An arrival of X is an arrival of W with probability q, otherwise it
is an arrival of Z.

Let N(δ) be the number of arrivals of W in a period of length δ.
P (N(δ) = 1) = [λδ + o(δ)]q = (λq)δ + o(δ)
P (N(δ) = 0) = [1 − λδ + o(δ)] · 1 + [λδ + o(δ)] · (1 − q)

= 1 − (λq)δ + o(δ)
P (N(δ) = k) = o(δ), k ≥ 2

So
W ∼ Poisson(λq)

Similarly
Z ∼ Poisson(λ(1 − q))
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Definition (Merged process)
Let X ∼ Poisson(λ1) and Z ∼ Poisson(λ2). Let W be the process
obtained by merging the arrivals of X and Z.

Let N(δ) be the number of arrivals of W in a period of length δ.

P (N(δ) = 0) = (1 − λ1δ + o(δ))(1 − λ2δ + o(δ))
= 1 − (λ1 + λ2)δ + o(δ)

P (N(δ) = 1) = λ1δ(1 − λ2δ) + (1 − λ1δ)(λ2δ) + o(δ)
= (λ1 + λ2)δ + o(δ)

P (N(δ) = k) = o(δ), k ≥ 2

So
W ∼ Poisson(λ1 + λ2)
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Example (6.13)
The arrivals of packets at a network node is modeled as Poisson(λ).
An arrived packet is either a local packet with probability q or a tran-
sit packet with probability 1 − q, independent of other arrivals and
independent of the arrival times. Then the arrivals of local packets
is Poisson(λq). The arrivals of transit packets is Poisson(λ(1−q)).
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Example (6.14)
Customers arrive at a post office according to Poisson(λ1) to mail
letters, or according to Poisson(λ2) to mail packages.

Regardless of letter or package, the arrive process of the cus-
tomers is

Poisson(λ1 + λ2)

A customer wants to mail a letter with probability

λ1
λ1 + λ2
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Example (6.15)
Let the lifetimes of two light bulbs Ta ∼ Exp(λa) and Tb ∼ Exp(λb)
be independent. Let T be the first time that a bulb burns out. What
is the PDF of T?

T = min(Ta, Tb) ⇒ (T > t) = (Ta > t ∩ Tb > t)
⇒ P (T > t) = P (Ta > t ∩ Tb > t)
⇒ 1 − P (T < t) = e−λat e−λbt

⇒ P (T < t) = 1 − e−(λa+λb)t

⇒ FT (t) = 1 − e−(λa+λb)t

So
T ∼ Exp(λa + λb)

Note T is the first arrival time of Poisson(λa + λb) and

E [T ] = (λa + λb)−1
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Example (6.16)
Let the lifetimes of three light bulbs be iid Exp(λ). What is the
expected value of the time until all bulbs burn out?

Let Tk be the time between the (k − 1)th burn-out and the kth
burn-out. There are 3 − (k − 1) = 4 − k light bulbs during that
period. From Example 6.15, we are merging (4 − k) Poisson(λ)’s,
and the first arrival time of the merged process is

Tk ∼ Exp((4 − k)λ)

The time until all bulbs burn out is T1 + T2 + T3, with expectation

E [T1 + T2 + T3] = E [T1] + E [T2] + E [T3]
= (3λ)−1 + (2λ)−1 + (λ)−1

Chia-Ping Chen Basic Arrival Processes



41/49

Random Sum and Arrival Processes
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Random sum
Let X1, X2, · · · be random variables and N is a non-negative integer
random variable. We consider the random sum defined by

S = X1 + · · · + XN
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Random sum and split Bernoulli process
Let Z be a Bernoulli process and Z ′ be the Bernoulli process ob-
tained from splitting the arrivals of Z.

The first arrival time of Z ′ can be seen as a random sum
The arrival count of Z ′ can be seen as a random sum

Random sum and split Poisson process
Let W be a Poisson process and W ′ be obtained from splitting the
arrivals of W .

The first arrival time of W ′ can be seen as a random sum
The arrival count of W ′ can be seen as a random sum
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Geometric geometric sum
Let T1, T2, . . . be iid Geo(p) and N be Geo(q). We have

(T1 + · · · + TN ) ∼ Geo(pq)

Let Z ∼ Bernoulli(p) and Z ′ be obtained from splitting the arrivals
of Z with probability q. Then Z ′ ∼ Bernoulli(pq). Let Y ′

1 be the
first arrival time of Z ′. From the perspective of Z ′, we have

Y ′
1 ∼ Geo(pq)

From the perspective of Z, we have

Y ′
1 = T1 + · · · + TN

where N ∼ Geo(q) is the arrival count of Z until the first arrival of
Z ′ occurs and Ti is the ith interarrival time of Z. Hence

(T1 + · · · + TN ) ∼ Geo(pq)
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Binomial Bernoulli sum
Let X1, X2, . . . be iid Ber(q) and N be Bin(m, p). We have

(X1 + · · · + XN ) ∼ Bin(m, pq)

Let Z ∼ Bernoulli(p) and Z ′ be obtained from splitting the arrivals
of Z with probability q. Then Z ′ ∼ Bernoulli(pq). Let N ′ be the
arrival count of Z ′ in [1, m]. From the perspective of Z ′, we have

N ′ ∼ Bin(m, pq)

From the perspective of Z, we have

N ′ = X1 + · · · + XN

where N ∼ Bin(m, p) is the arrival count of Z in [1, m] and Xi

indicates whether the ith arrival of Z is an arrival of Z ′. Hence

(X1 + · · · + XN ) ∼ Bin(m, pq)
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Geometric exponential sum
Let T1, T2, . . . be iid Exp(λ) and N be Geo(q). We have

(T1 + · · · + TN ) ∼ Exp(λq)

Let W ∼ Poisson(λ) and W ′ be obtained from splitting the arrivals
of W with probability q. Then W ′ ∼ Poisson(λq). Let Y ′

1 be the
first arrival time of W ′. From the perspective of W ′, we have

Y ′
1 ∼ Exp(λq)

From the perspective of W , we have

Y ′
1 = T1 + · · · + TN

where N ∼ Geo(q) is the arrival count of W until the first arrival
of W ′ occurs and Ti is the ith interarrival time of W . Hence

(T1 + · · · + TN ) ∼ Exp(λq)
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Poisson Bernoulli sum
Let X1, X2, . . . be iid Ber(q) and N be Poi(λ). We have

(X1 + · · · + XN ) ∼ Poi(λq)

Let N ′ be the number of the arrivals of W ′ in (0, 1). From the
perspective of W ′, we have

N ′ ∼ Poi(λq)

From the perspective of W , we have

N ′ = X1 + · · · + XN

where N ∼ Poi(λ) is the arrival count of W within (0, 1), and Xi

indicates whether the ith arrival of W is an arrival of W ′. Hence

(X1 + · · · + XN ) ∼ Poi(λq)
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Summary 1

Bernoulli process with arrival probability p

X ∼ Bernoulli(p), Xn ∼ Ber(p)

# of arrivals
Sn ∼ Bin(n, p)

Interarrival time
Tn ∼ Geo(p)

Splitting/merging arrivals

Y ∼ Bernoulli(pq), W ∼ Bernoulli(p + q − pq)
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Summary 2

Poisson process with arrival rate λ

X ∼ Poisson(λ), N(δ) ≈ Ber(λδ)

# of arrivals
N(τ) ∼ Poi(λτ)

Interarrival time
Tn ∼ Exp(λ)

Splitting/merging arrivals

Y ∼ Poisson(λp), W ∼ Poisson(λ1 + λ2)

Chia-Ping Chen Basic Arrival Processes


