Final exam

e Released on 2025.05.28

Do not use electronic devices in exam

Answers without due explanation/reasoning will not be graded
The problems are roughly arranged in the chronological order
Each problem is 10 points unless stated otherwise
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10.

. Consider 6-door version of Monty-Hall problem. Suppose Guest chooses Door 1 and

Host opens Door 5. Decide the (conditional) probability that car is behind Door 3.

Team A and Team B are asked to design a new product within a month. Suppose
Team A is successful with probability 1/3, Team B is successful with probability 1/2,
and both teams are successful with probability 1/4. What is the probability that Team
B fails given Team A succeeds?

. Find the expected number of flips with a fair coin for 3 consecutive Heads to occur.

Random number of students N ~ Poi(50) are present in a probability class. Among
the students in the class, each falls asleep with probability 0.7, independent of other
students. Compute the variance of (X — Y') where X is be the number of students
that fall asleep and Y is the number of students that stay awake.

. Let S be a continuous random variable with CDF
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Describe how one can obtain samples of S based on samples of U ~ Uni(0, 1).
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Let X;, X5,... be ii.d. random variables with finite mean p and variance 0. Ac-
cording to the central limit theorem, as n goes to infinity the distribution of

. Find the integral
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approaches that of standard normal Z ~ N(0,1) with CDF ®(z) & P(Z < z).
Assume X; ~ Uni(—1, 1). Estimate the probability P(Sip9 > 10) in terms of ®(-).
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Consider X ~ PoiPro(\) starting at ¢ = 0 with kth arrival time Y}. Find

P(0<Y; <land1 <Y< 2|exactly 2 arrivals in (0, 2))

(20 points) A CD player plays music CD in random mode. The process begins with
the playing of Track 1 and ends when Track 1 is about to be played for the second
time (but not played). In between, the next track to play is selected uniformly random
from the entire track list. Suppose a CD with 10 tracks is inserted to the CD player.

(a) Find the probability that Track 5 is played. (hint: one-step analysis)
(b) Find the expected number of tracks not played. (hint: linearity of expectation)

Find the moment generating function (MGF) of the second arrival time Y5 of a Pois-
son process with rate \ starting at ¢ = (. (hint: memoryless property)



