Homework 7

- Due by 2025.05.21 9:11AM
- Answers without due explanation/reasoning will not be graded.
- 1. (random sum) Define

$$S = X_1 + \dots + X_N$$

where N is a non-negative integer random variable and X_1, X_2, \ldots are i.i.d. random variables. Determine the distribution of S using MGF for the following cases.

- $X_1 \sim \mathbf{Ber}(q)$ and $N \sim \mathbf{Bin}(n, p)$
- $X_1 \sim \mathbf{Geo}(q)$ and $N \sim \mathbf{Geo}(p)$
- 2. (joint distribution) Let $\Lambda \sim \mathbf{Uni}(0, 1)$ and $X|\Lambda = \lambda \sim \mathbf{Ber}(\lambda)$. Find
 - the joint distribution $f_{X\Lambda}$ of X and Λ
 - the marginal PMF $p_X(0)$ and $p_X(1)$
 - the conditional PDF of $f_{\Lambda|X}(\lambda|1)$ and $f_{\Lambda|X}(\lambda|0)$
- 3. (central limit theorem) Let X_1, X_2, \ldots be i.i.d. random variables with finite mean μ and variance σ^2 . According to the central limit theorem, the distribution of

$$Z_n = \frac{S_n - n\mu}{\sqrt{n\sigma^2}}$$
 where $S_n = X_1 + \dots + X_n$

approaches the standard normal distribution as n increases. Estimate probability for the following events.

- (cargo) Assume $X_1 \sim \mathbf{Uni}(0, 6)$ and the event is $S_{100} > 330$.
- (poll) Assume $X_1 \sim \text{Ber}(p)$ and the event is $\left|\frac{S_{1000}}{1000} p\right| > 0.03$.
- 4. (random walk) Consider a ring of 7 points indexed by 0,...,6 in clockwise order. A random walk starts with Point 0 and ends with the first revisit of Point 0. During a walk, the walker moves 1 step clockwise with probability 0.5 or 1 step counterclockwise with probability 0.5.
 - Let T be the number of steps for a walk to end. Find $\mathbf{E}(T)$.
 - Let K_i be the number of visits to Point *i* during a walk. Find $E(K_i)$, i = 1, 2, 3.