
Limit Theorems

Chia-Ping Chen

Professor
Department of Computer Science and Engineering

National Sun Yat-sen University

Probability

1/47



2/47

Outline

Probability inequalities
Weak law of large numbers
Convergence of sequence of random variables
Central limit theorem
Strong law of large numbers

Chia-Ping Chen Limit Theorems



3/47

Probability Inequalities (Bounds)
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Markov inequality
Let X be a non-negative random variable. For any a > 0

P (X ≥ a) ≤ E[X]
a

Define

Ya =
{

0, X < a

a, X ≥ a

Note Ya ≤ X so E[Ya] ≤ E[X]. Thus

E[Ya] = aP (Ya = a) = aP (X ≥ a) ≤ E[X]

⇒ P (X ≥ a) ≤ E[X]
a
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Chebyshev inequality
Let X be a random variable. For any c > 0

P (|X − E[X]| ≥ c) ≤ var(X)
c2

Define Z = (X − E[X])2. Then Z ≥ 0 and

P (|X − E[X]| ≥ c) = P ((X − E[X])2 ≥ c2) = P (Z ≥ c2)

By Markov inequality

P (Z ≥ c2) ≤ E[Z]
c2

That is
P (|X − E[Z]| ≥ c) ≤ var(X)

c2
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Inverse square bound
Let X be a random variable with E[X] = µ and var(X) = σ2.

P (|X − µ| ≥ kσ) ≤ 1
k2

By Chebyshev inequality

P (|X − µ| ≥ c) ≤ σ2

c2

Let c = kσ

P (|X − µ| ≥ kσ) ≤ σ2

(kσ)2 = 1
k2
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Example (Markov and Chebyshev)
Consider X ∼ Uni(0, 4). We have E[X] = 2 and var(X) = 4

3 .
By Markov inequality

P (X ≥ 2) ≤ E[X]
2 = 1

P (X ≥ 3) ≤ E[X]
3 = 2

3

By Chebyshev inequality

P (|X − E[X]| ≥ 1) ≤ var(X)
12 ⇒ P (|X − 2| ≥ 1) ≤ 4

3

They are very loose bounds.
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Example (5.3)
Let X be a random variable with range X .

If X is bounded, var(X) is bounded
For X ⊆ [a, b]

var(X) ≤ (b − a)2

4
The probability upper bound in Chebyshev inequality can be
further relaxed

P (|X − E[X]| ≥ c|) ≤ var(X)
c2 ≤ (b − a)2

4c2
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Tail vs. Body
Chebyshev (and Markov) inequality bounds ”tail” probability. We
can equivalently bound ”body” probability. Let X be a random
variable. For any c > 0

P (|X − E[X]| < c) ≥ 1 − var(X)
c2

This follows from the Chebyshev inequality

P (|X − E[X]| ≥ c) ≤ var(X)
c2

⇒ 1 − P (|X − E[X]| ≥ c) ≥ 1 − var(X)
c2

⇒ P (|X − E[X]| < c) ≥ 1 − var(X)
c2
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Weak Law of Large Numbers
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Definition (sample mean)
Let X be a random variable with finite mean and variance. Let
X1, X2, · · · denote independent and repeated measurements (sam-
ples) of X. The Xi’s are iid (independent and identically dis-
tributed) random variables with the same probability function as
X. Define sample mean

Mn = X1 + · · · + Xn

n

The mean and variance of Mn are

E[Mn] = E[X1 + · · · + Xn]
n

= nE[X]
n

= E[X]

var(Mn) = 1
n2 var(X1 + · · · + Xn) = nvar(X)

n2 = var(X)
n
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Weak law of large numbers
Sample mean converges to expectation. Specifically

lim
n→∞

P (|Mn − E[X]| < ϵ) = 1, ∀ ϵ > 0

Apply the Chebyshev corollary to Mn to get

P (|Mn − E[Mn]| < ϵ) ≥ 1 − var(Mn)
ϵ2

Substitute E[Mn] = E[X] and var(Mn) = var(X)
n

1 ≥ P (|Mn − E[X]| < ϵ) ≥ 1 − var(X)
nϵ2

Thus
lim

n→∞
P (|Mn − E[X]| < ϵ) = 1
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Example (5.4)
Let (Ω, F , P ) be a probability model based on random experiment R
and A ∈ F be an event. The relative frequency of A in a sequence
of independent trials of R converges to P (A).

Define

IA =
{

1, if event A occurs in a trial
0, otherwise

Let IA
i indicate the occurrence of A in trial i, then IA

1 , IA
2 , · · · are

iid random variables with mean E[IA] = P (A). By WLLN, we have
lim

n→∞
P (|Mn − E[IA]| < ϵ) = 1 or

lim
n→∞

P

(∣∣∣∣∣IA
1 + · · · + IA

n

n
− P (A)

∣∣∣∣∣ < ϵ

)
= 1

That is, the relative frequency of A converges to P (A).
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Example (5.5)
Let p be the fraction of the population supporting a particular candi-
date. We poll n persons and record the fraction in the poll support-
ing the candidate as an estimate of p. How good is this estimation?

Let X indicate ”supporting the candidate” of a pollee. Then X1, X2, . . .
are approximately iid and Mn is the fraction supporting the candi-
date, with

E[Mn] = E[X] = P (X = 1) = p, var(Mn) = p(1 − p)
n

By Chebyshev

P (|Mn − p| < ϵ) ≥ 1 − p(1 − p)
nϵ2 ≥ 1 − 1

4nϵ2

The quality of the estimation of p by Mn depends on n. Take
n = 100 for example. We have

P (|Mn − p| < 0.1) ≥ 1 − 1
4(100)(0.01) = 1 − 0.25 = 0.75
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Definition (margin and confidence)
The quality of estimation is often quantified by margin and confi-
dence.

Margin bounds estimation error
Confidence bounds the probability that error is within margin

Let p̂ be an estimator of p.
We aim to establish inequality

P (|p̂ − p| < ϵ) ≥ q0

ϵ is margin and q0 is confidence
The probability that |p̂ − p| is smaller than ϵ is at least q0

Chia-Ping Chen Limit Theorems



16/47

Example (Margin, confidence, size)
In Example 5.5 we establish

P (|Mn − p| < ϵ) ≥ 1 − 1
4nϵ2 ≥ q0

The margin ϵ, confidence q0 and sample size n are related by

1
4nϵ2 ≤ 1 − q0

For margin ϵ and confidence q0, the required sample size n is

n ≥ 1
4(1 − q0)ϵ2

For example, for ϵ = 0.01 and q0 = 0.95

n ≥ 1
4(0.05)(0.01)2 = 50000
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Convergence of Sequence of Random Variables
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Convergence
convergence in probability
convergence in distribution
almost-sure convergence
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Definition (convergence in probability)
Let (Ω, F , P ) be a probability model and Y1, Y2, · · · be random vari-
ables defined on Ω. The sequence Y1, Y2, · · · converges in probability
to Y if

lim
n→∞

P (|Yn − Y | < ϵ) = 1, ∀ ϵ > 0

Making ϵ arbitrarily small, we can see there is nothing between
Yn and Y with probability 1
Convergence in probability is denoted by

Yn
P−−→ Y
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Example (5.6)
Let Xi be Uni(0, 1) and Yn = min(X1, · · · , Xn). Show that

Yn
P−−→ 0

For any ϵ > 0, we have

P (|Yn − 0| < ϵ) = 1 − P (|Yn − 0| ≥ ϵ) = 1 − (1 − ϵ)n

So
lim

n→∞
P (|Yn − 0| < ϵ) = lim

n→∞
1 − (1 − ϵ)n = 1

That is
Yn

P−−→ 0
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Example (5.7)
Let Y be Exp(1) and Yn = Y

n . Show that

Yn
P−−→ 0

For any ϵ > 0, we have

P (|Yn − 0| < ϵ) = 1 − P (|Yn − 0| ≥ ϵ) = 1 − P

(
Y

n
≥ ϵ

)
= 1 − P (Y ≥ nϵ)
= 1 − e−nϵ

So

lim
n→∞

P (|Yn − 0| < ϵ) = lim
n→∞

(1 − e−nϵ) = lim
n→∞

1 − (e−ϵ)n = 1

That is
Yn

P−−→ 0
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Definition (convergence in distribution)
Let (Ω, F , P ) be a probability model and Y1, Y2, · · · be random
variables defined on Ω. The sequence Y1, Y2, · · · converges in dis-
tribution to Y if the sequence of CDF converges

lim
n→∞

FYn(t) = FY (t), ∀t

Convergence in distribution is denoted by

Yn
D−−→ Y
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Definition (sample sequence)
Let (Ω, F , P ) be a probability model and Y1, Y2, · · · be random
variables defined on Ω. For ω ∈ Ω

Y1(ω), Y2(ω), · · ·

is a sample sequence of sequence Y1, Y2, · · · .
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Definition (sure convergence)
Let (Ω, F , P ) be a probability model and Y1, Y2, · · · be random
variables defined on Ω.

The sequence Y1, Y2, · · · converges surely if{
ω ∈ Ω

∣∣∣ lim
n→∞

Yn(ω) exists
}

= Ω

Sure convergence means every sample sequence converges
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Definition (almost-sure convergence)
Let (Ω, F , P ) be a probability model and Y1, Y2, · · · be random
variables defined on Ω.

The sequence Y1, Y2, · · · converges almost surely if

P
(
S =

{
ω ∈ Ω

∣∣∣ lim
n→∞

Yn(ω) exists
})

= 1

Almost-sure convergence means Y1, Y2. · · · converges with
probability 1
The event Sc that Y1(ω), Y2(ω) · · · does not converge has prob-
ability 0
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Almost-sure convergence to a random variable
Let (Ω, F , P ) be a probability model and Y1, Y2, · · · be random
variables defined on Ω. The sequence Y1, Y2, · · · converges almost
surely to Y if

P
(
S =

{
ω ∈ Ω

∣∣∣ lim
n→∞

Yn(ω) = Y (ω)
})

= 1

An element in S satisfies 2 conditions: Yn(ω) converges, and
it converges to Y (ω)
Almost-sure convergence is denoted by

P
(

lim
n→∞

Yn = Y
)

= 1 or Yn
a.s.−−−→ Y

Suppose Y1, Y2, · · · converges almost surely. Then Yn
a.s.−−−→ Y

where Y (ω) = lim
n→∞

Yn(ω) for ω ∈ S.
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Example (5.14)
Let X1, X2, · · · be iid Uni(0, 1) and Yn = min(X1, · · · , Xn). Show
that the sequence Y1, Y2, · · · converges to 0 almost surely.

Any sample sequence Y1(ω), Y2(ω), · · · converges because it is non-
increasing and bounded below by 0. Thus the sequence Y1, Y2, · · ·
converges surely. For any ϵ > 0, we have

P
(

lim
n→∞

Yn ≥ ϵ
)

= P

( ∞⋂
i=1

(Xi ≥ ϵ)
)

= lim
n→∞

(1 − ϵ)n = 0

So
P
(

lim
n→∞

Yn = 0
)

= 1 − P
(

lim
n→∞

Yn > 0
)

= 1

Thus, the sequence Y1, Y2, · · · converges to 0 almost surely.
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Strength of convergence∗

Almost-sure convergence implies convergence in probability.

Let S =
(

lim
n→∞

Yn = Y
)

and Sn(ϵ) = (|Yn − Y | < ϵ).

ω ∈ S ⇒ lim
n→∞

Yn(ω) = Y (ω)

⇒ lim
n→∞

|Yn(ω) − Y (ω)| = 0

⇒ ∃n0 s.t. |Yn(ω) − Y (ω)| < ϵ for all n > n0

⇒ ∃n0 s.t. ω ∈ Sn(ϵ) for all n > n0

So S ⊂ Sn(ϵ) for all n > n0. Suppose Yn
a.s.−−−→ Y . We have

P (S) = 1 ⇒ P (Sn>n0(ϵ)) = 1 ⇒ lim
n→∞

P (Sn(ϵ)) = 1 ⇒ Yn
P−−→ Y
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Example (5.15)
In an arrival process, the time slots are partitioned into consecutive
intervals

{2k, · · · , 2k+1 − 1}, k = 0, 1, · · ·

In each interval, there is exactly one arrival, and all slots within the
interval are equally likely. Define Yn = 1 for an arrival at slot n, and
Yn = 0 otherwise. Show that Yn

P−−→ 0, but not Yn
a.s.−−−→ 0.

lim
n→∞

P (|Yn − 0| < ϵ) = 1 − lim
n→∞

P (|Yn − 0| ≥ ϵ)

= 1 − lim
n→∞

P (Yn = 1) = 1 − lim
n→∞

1
2⌊log2 n⌋

= 1

Since any sample sequence of Y1 Y2 · · · is non-convergent, we have

P
(

lim
n→∞

Yn = 0
)

= 0 ̸= 1
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Central Limit Theorem
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Definition (sample sum and standardized sample mean)
Let X be a random variable with E[X] = µ and var(X) = σ2. Let
X1, X2, · · · denote independent samples of X. Define sample sum

Sn = X1 + · · · + Xn

and standardized sample mean

Zn = Sn/n − µ

σ/
√

n
= Sn − nµ

σ
√

n

E[Sn] = E[X1 + · · · + Xn] = n E[Xi] = nµ

var(Sn) = var(X1 + · · · + Xn) = n var(Xi) = nσ2

E[Zn] = E
[

Sn − nµ

σ
√

n

]
= 0, var(Zn) = var(Sn)

nσ2 = 1

Chia-Ping Chen Limit Theorems
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Central limit theorem
Let X1, X2, · · · be iid samples of a random variable with finite mean
and variance. Then the sequence of standardized sample means
Z1, Z2, · · · converges in distribution to the standard normal.

That is
Zn

D−−→ Y ∼ N (0, 1)

In other words
FZn(t) n→∞−−−→ Φ(t), ∀t
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Normal approximation
Let X1, X2, · · · be iid samples of random variable X with mean µ
and variance σ2. For a large n

standardized sample mean is approximately normal

Zn ∼̇ N (0, 1)

sample sum is approximately normal

Sn ∼̇ N
(
nµ, nσ2

)
sample mean is approximately normal

Mn ∼̇ N
(

µ,
σ2

n

)
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Example (5.9)
The weight of package is X ∼ Uni(5, 50). We load 100 such pack-
ages on a plane. What is the probability that the total weight ex-
ceeds 3000 pounds?

Let Sn = X1 + · · · + Xn where n = 100. With µ = E[X] = 27.5
and σ2 = var(X) = 168.75, we have

Sn ∼̇ N (nµ, nσ2) i.e. S100 ∼̇ N (2750, 16875)

Thus

P (S100 > 3000) = 1 − P (S100 ≤ 3000)

= 1 − P

(
S100 − 2750√

16875
≤ 3000 − 2750√

16875

)
≈ 1 − P (Y ≤ 1.92)
= 1 − Φ(1.92)
= 0.0274
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Example (5.10)
The processing time of a part is T ∼ Uni(1, 5). Estimate the prob-
ability that the number of parts processed within 320 time units,
denoted by N320, is at least 100.

Let S100 be the time to process 100 parts. Note (N320 ≥ 100) =
(S100 ≤ 320). With µ = E[T ] = 3 and σ2 = var(T ) = 4

3 , we have

S100 ∼̇ N
(
100 µ, 100 σ2

)
= N

(
300,

400
3

)
Thus

P (S100 ≤ 320) = P

S100 − 300√
400
3

≤ 320 − 300√
400
3


≈ P (Y ≤ 1.73) = Φ(1.73)
= 0.9582
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Bernoulli sample mean
Let X1, X2, . . . be samples of X ∼ Ber(p). Then

Mn ∼̇ N
(

p,
p(1 − p)

n

)
The mean and variance of X are

µ = E[X] = p

σ2 = var(X) = p(1 − p)

It follows that

Mn ∼̇ N
(

µ,
σ2

n

)
= N

(
p,

p(1 − p)
n

)
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Example (5.11)
Consider Example 5.5 that estimates p by Mn of a sample of size
n. Using the normal approximation of Mn, we have

P (|Mn − p| ≥ ϵ) ≈ 2 P (Mn − p ≥ ϵ)

= 2 P

 Mn − p√
p(1−p)

n

≥ ϵ√
p(1−p)

n


≈ 2

[
1 − Φ

(√
1

p(1 − p)
√

nϵ

)]
≤ 2

[
1 − Φ(2

√
nϵ)
]

For example, with n = 100 and ϵ = 0.1, we have

P (|M100 − p| ≥ 0.1) ≤ 2
[
1 − Φ(2 ·

√
100 · 0.1)

]
= 2 [1 − Φ(2)]
= 0.0456
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Sample size
Consider the estimation of p by Mn with margin ϵ and confidence
q0. We want a sample size n to guarantee

P (|Mn − p| < ϵ) ≥ q0

By Bernoulli Normal approximation of Mn

P (|Mn − p| < ϵ) ≥ 1 − 2
[
1 − Φ(2

√
nϵ)
]

≥ q0

Φ(2
√

nϵ) ≥ 1 − 1 − q0
2

By Chebyshev inequality

P (|Mn − p| < ϵ) ≥ 1 − 1
4nϵ2 ≥ q0

n ≥ 1
4(1 − q0)ϵ2
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Example (Sample size)
Consider the case of ϵ = 0.01 and q0 = 0.95.

By Normal approximation of Mn

Φ(2
√

nϵ) ≥ 0.975

2 ·
√

n · 0.01 ≥ Φ−1(0.975) = 1.96

n ≥ 9604

By Chebyshev inequality

n ≥ 1
4(1 − q0)ϵ2 = 50000
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Binomial Normal approximation
Let S be Bin(n, p).

S is the sample sum of iid samples of Ber(p)
For large n

S ∼̇ N (np, np(1 − p))

Let l be an integer.

P (S ≤ l) = P

(
S − np√
np(1 − p)

≤ l − np√
np(1 − p)

)
≈ Φ

(
l − np√
np(1 − p)

)

Since S only takes integer values, a better approximation is

P (S ≤ l) ≈ Φ
(

l + 1
2 − np√

np(1 − p)

)
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De Moivre-Laplace approximation
Let S be Bin(n, p) and k ≤ l be integers.

P (k ≤ S ≤ l) ≈ Φ
(

l + 1
2 − np√

np(1 − p)

)
− Φ

(
k − 1

2 − np√
np(1 − p)

)

P (k ≤ S ≤ l) = P (S ≤ l) − P (S < k)
= P (S ≤ l) − P (S ≤ k − 1)

≈ Φ
(

l + 1
2 − np√

np(1 − p)

)
− Φ

(
k − 1

2 − np√
np(1 − p)

)
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Example (5.12)
Let S be Bin(36, 0.5).

Applying the De Moivre-Laplace approximation, we get

P (S ≤ 21) ≈ Φ
(21.5 − 18

3

)
= 0.879

P (S = 19) = P (S ≤ 19) − P (S ≤ 18)

≈ Φ
(19.5 − 18

3

)
− Φ

(18.5 − 18
3

)
= 0.124

The real probabilities are

P (S ≤ 21) =
21∑

k=0

(
36
k

)
(0.5)36 = 0.8785

P (S = 19) =
(

36
19

)
(0.5)36 = 0.1251
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Strong Law of Large Numbers
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Strong law of large numbers
Let X be a random variable with E[X] = µ and var(X) = σ2. Let
X1, X2, · · · denote independent samples of X. Then the sequence
of sample means converges almost surely to µ

Mn
a.s.−−−→ µ

That is
P
(

lim
n→∞

Mn = µ
)

= 1

Chia-Ping Chen Limit Theorems
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Summary 1

Markov inequality

P (X ≥ r) ≤ E[X]
r

Chebyshev inequality

P (|X − E[X]| ≥ c) ≤ var(X)
c2
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Summary 2

Convergence in probability
(
Yn

P−−→ Y
)

lim
n→∞

P (|Yn − Y | < ϵ) = 1, ∀ ϵ > 0

Convergence in distribution
(
Yn

D−−→ Y
)

lim
n→∞

FYn(t) = FY (t) for t where FY (t) is continuous

Almost sure convergence
(
Yn

a.s.−−−→ Y
)

P
(

lim
n→∞

Yn = Y
)

= 1
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Summary 3

The weak law of large numbers(
Mn

P−−→ µ
)

The strong law of large numbers(
Mn

a.s.−−−→ µ
)

The central limit theorem

lim
n→∞

FZn(t) = Φ(t)
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