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Probability Inequalities (Bounds)

[m]

=

A



MARKOV INEQUALITY

Let X be a non-negative random variable. For any a > 0

E[X
P(X >a) < X
a
Define
0, X
Ya == ’ < “ fx(z)
a, X >a (ﬁ) .
Note Y, < X so E[Y,] < E[X]. Thus / /
E[Y,] =aP(Y,=a)=aP(X >a) <E[X] " e

E[X
a

—

= P(X >a)<
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CHEBYSHEV INEQUALITY

Let X be a random variable. For any ¢ > 0

var(X)

P(X —E[X]| 2 ¢) < =

Define Z = (X — E[X])%. Then Z > 0 and
P(X ~ E[X]| 2 ¢) = P((X — BIX])? > &%) = P(Z = &)

By Markov inequality

That is
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INVERSE SQUARE BOUND
Let X be a random variable with E[X] = z and var(X) = o2.

1
P(IX —pl 2 ko) < 5
By Chebyshev inequality
o2
PIX -z 0<%
Let c = ko
o2
P(X —pu|l > ko) < ==
(’ 'u| = U) — (k’d)2 k2
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EXAMPLE (MARKOV AND CHEBYSHEV)

Consider X ~ Uni(0,4). We have E[X] = 2 and var(X) =
m By Markov inequality

P(X - E[x]| > 1) < 20

They are very loose bounds.

ol
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Let X be a random variable with range X.
m If X is bounded, var(X) is bounded
m For X C [a,}]

var(X) < ® _4(1)2

m The probability upper bound in Chebyshev inequality can be
further relaxed

var(X)

P(X - BIX] 2 o) < 2020 < B
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TAIL vS. BoDYy

Chebyshev (and Markov) inequality bounds "tail” probability. We
can equivalently bound "body” probability. Let X be a random
variable. For any ¢ > 0
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Weak Law of Large Numbers

[m]

=



DEFINITION (SAMPLE MEAN)

Let X be a random variable with finite mean and variance. Let
X1, Xy, -+ denote independent and repeated measurements (sam-
ples) of X. The X;'s are iid (independent and identically dis-
tributed) random variables with the same probability function as
X. Define sample mean

Mn: 1+ + Xn

The mean and variance of M, are

B, = B ] B gy

1 X X
var(M,) = ﬁvar(Xl +o+ X)) = nva,,;g ) _ VarT(L )
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WEAK LAW OF LARGE NUMBERS

Sample mean converges to expectation. Specifically

lim P(|M, -~ E[X]| <€) =1, ¥e>0

Apply the Chebyshev corollary to M, to get

P (M, — E[M,]| < ¢) > 1_"3'22‘411)

Substitute E[M,,] = E[X] and var(M,,) = var(X)

n

var(X)

1>P(|M, ~E[X][<e) 21—

ne
Thus
lim P(|M,, —E[X]| <¢)=1

n—o0
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Let (2, F, P) be a probability model based on random experiment R
and A € F be an event. The relative frequency of A in a sequence
of independent trials of R converges to P(A).

Define
A _ 1, if event A occurs in a trial
0, otherwise
Let I indicate the occurrence of A in trial i, then I{*, I3, - - - are

iid random variables with mean E[I4] = P(A). By WLLN, we have

lim P(|M,, — E[I%| <e)=1or
lim P < < 6) =
n—oo

That is, the relative frequency of A converges to P(A).

e+

. P(4)
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Let p be the fraction of the population supporting a particular candi-
date. We poll n persons and record the fraction in the poll support-
ing the candidate as an estimate of p. How good is this estimation?

Let X indicate "supporting the candidate” of a pollee. Then X7, Xo,...

are approximately iid and M, is the fraction supporting the candi-
date, with

E 1—
[M,] = E[X] = P(X =1) =p, var(M,) = p(np)
By Chebyshev
p p(1—p) 1
M, — >1— >1_
( <oz nez = 4Ane?

The quality of the estimation of p by M, depends on n. Take
n = 100 for example. We have

1
P(M,—p/<01)>1————— =1-025=0.75
G )2 1= Ta00)000)
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DEFINITION (MARGIN AND CONFIDENCE)

The quality of estimation is often quantified by margin and confi-
dence.

m Margin bounds estimation error
m Confidence bounds the probability that error is within margin

Let p be an estimator of p.
m We aim to establish inequality

P(lp—pl<e€)=qo

m € is margin and qq is confidence
m The probability that [p — p| is smaller than € is at least g
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EXAMPLE (MARGIN, CONFIDENCE, SIZE)

In Example 5.5 we establish

1
P(M—pl <9 21- 15 > a0
m The margin ¢, confidence gy and sample size n are related by

<1 =
4ne2 — i
m For margin e and confidence qg, the required sample size n is

1
> -
S 41— qo)e

m For example, for e = 0.01 and gp = 0.95

1
> = 50000
"= 4(0.05)(0.01)2

= = = = =
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Convergence of Sequence of Random Variables

[m]

=



m convergence in probability

m convergence in distribution

m almost-sure convergence
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DEFINITION (CONVERGENCE IN PROBABILITY)

Let (2, F, P) be a probability model and Y1, Y3, - - - be random vari-
ables defined on €. The sequence Y7, Y5, - - - converges in probability
to Y if

Tim P(|Y, - Y] <e)=1, ¥e>0

m Making e arbitrarily small, we can see there is nothing between
Y, and Y with probability 1
m Convergence in probability is denoted by

v, L5 v
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Let X; be Uni(0,1) and Y,, = min(Xy,---, X,). Show that

vy, 250

For any € > 0, we have
P(lY,-0|<e)=1—-P(]Y, -0/ >¢)=1—(1—¢)"

So
lim P(|Y, — 0| <e¢) znli_g)lol—(l—e)":l

n—o0

That is
Y, — 0
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Let Y be Exp(1) and Y;, = X Show that

v, 5 0

For any € > 0, we have

Y
P(\Yn—0|<e)—1—P(]Yn—0\Ze)—l—P(nZe>

=1—-P(Y > ne)

=1—-e"

So

lim P(]Y, — 0| <e¢) = nh—>nolo(1 —e ™) =1lim 1—(e )" =1

n—oo n—oo

That is
v, 250
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DEFINITION (CONVERGENCE IN DISTRIBUTION)

Let (2, F,P) be a probability model and Y7,Y5,--- be random
variables defined on €. The sequence Y7, Y5, - converges in dis-
tribution to Y if the sequence of CDF converges

lim Fy, (t) = Fy(t), Vt

n—oo

Convergence in distribution is denoted by

Y, — Y
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DEFINITION (SAMPLE SEQUENCE)

Let (2, F,P) be a probability model and Y3,Y5,---

variables defined on . For w €
Yi(w), Ya(w), -

is a sample sequence of sequence Y7,Ys, - -.

be random
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DEFINITION (SURE CONVERGENCE)

Let (2, F,P) be a probability model and Yj,Ys,--- be random
variables defined on 2.

m The sequence Y7, Ys,--- converges surely if

{w € Q| lim Y,(w) exists} — ()

n—o0

m Sure convergence means every sample sequence converges
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DEFINITION (ALMOST—SURE CONVERGENCE)

Let (2, F,P) be a probability model and Y3,Y5,--- be random
variables defined on 2.

m The sequence Y7, Y5, -+ converges almost surely if
P (S = {w =) ’ lim Y, (w) exists}) =
n—oo
m Almost-sure convergence means Y7,Ys.--- converges with

probability 1

m The event S¢ that Y7 (w), Y2(w) - - - does not converge has prob-
ability 0
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ALMOST-SURE CONVERGENCE TO A RANDOM VARIABLE

Let (2, F, P) be a probability model and Y3,Y5,--- be random
variables defined on §2. The sequence Y7, Y5, -- converges almost
surely to Y if

P(Sz{wEQ‘nli_)nolan(w)zY(w)})zl

4

m An element in S satisfies 2 conditions: Y, (w) converges, and
it converges to Y (w)

m Almost-sure convergence is denoted by

P(hm Yn:Y):lorYn 2s Ly

n—oo

m Suppose Y7, Y5, - - - converges almost surely. ThenY;,, == Y
where Y(w) = lim Y, (w) forw € S.
n oo
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Let X1, Xo,--- beiid Uni(0,1) and Y;, = min(Xy, -+, X;,). Show
that the sequence Y7, Ys, -+ converges to 0 almost surely.

Any sample sequence Y;(w), Y2(w), - - - converges because it is non-
increasing and bounded below by 0. Thus the sequence Y7, Y5, --
converges surely. For any € > 0, we have

n—oo n—0o0

P(lim Y, > ) :P(ﬁ(}gz@) = lim (1—€)" =0
i=1

So
Pl 3o =0) =1 P (Jim s >0) =1
Thus, the sequence Y7, Ys, - -+ converges to O almost surely.
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STRENGTH OF CONVERGENCE*

Almost-sure convergence implies convergence in probability.

Let S = (lim ¥, = V) and Sp(e) = (Vo — Y| < ).

weS= n&% Y, (w) =Y (w)
= nangO Y, (w) —Y(w)] =0
= dng s.t. |V, (w) —Y(w)| < e forall n > ng
= dng s.t. w € Sy(e) for all n > ng

So S C S, (€) for all n > ng. Suppose Y;, == Y. We have
P(S) =1 = P(Spsny(€)) = 1= lim P(S,(e) =1=Y, 25V

n—o0
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In an arrival process, the time slots are partitioned into consecutive
intervals

{2’6’...,2“1_1}, k=0,1,---

In each interval, there is exactly one arrival, and all slots within the
interval are equally likely. Define Y,, = 1 for an arrival at slot n, and

Y,, = 0 otherwise. Show that Y,, £, 0, but not Y,, == 0.

lim P(]Y, -0/ <e¢) =1-— JLIEOP(’Y” — 0] >¢)

n—oo
. : 1
= 1= im P(Ya=1)=1- lim oo
=1
Since any sample sequence of Y7 Y5 - -+ is non-convergent, we have

P(hm Yn:O):O;«él

n—o0
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Central Limit Theorem

= =4 = DA 30/47



DEFINITION (SAMPLE SUM AND STANDARDIZED SAMPLE MEAN)

Let X be a random variable with E[X] = x and var(X) = o2. Let
X1, Xo, -+ denote independent samples of X. Define sample sum

Sp=X1+-+Xn
and standardized sample mean

7 _ Sp/n—p  Sp—np
N R

E[S,) =E[Xi+ -+ X, =nE[X;] =nu
var(S,) = var(X| + --- + X,,) = nvar(X;) = no>

} — 0, var(2,) = 2 5n) _

no?

Sp —np
oy/n

E[Z,) - E [
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CENTRAL LIMIT THEOREM

Let X1, X9, -- be iid samples of a random variable with finite mean
and variance. Then the sequence of standardized sample means
Z1, Za, -+ converges in distribution to the standard normal.

That is

Zn 25 Y ~ N(0,1)

In other words
Fy () =2 &), Wt
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NORMAL APPROXIMATION

Let X1, Xo, -+ be iid samples of random variable X with mean p
and variance o2. For a large n

m standardized sample mean is approximately normal
Zn ~ N (0,1)
m sample sum is approximately normal
Spn ~ N (nu,naz)
m sample mean is approximately normal

o2
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The weight of package is X ~ Uni(5,50). We load 100 such pack-
ages on a plane. What is the probability that the total weight ex-
ceeds 3000 pounds?

Let S, = X1 + -+ + X, where n = 100. With p = E[X] = 27.5
and 02 = var(X) = 168.75, we have

S, & N(np,no?) ie. Sio ~ N(2750,16875)
Thus
P(S100 > 3000) = 1 — P(S100 < 3000)

L _»p <Swo — 2750 _ 3000 2750)
V16875  — /16875

~1-P(Y <1.92)

=1—®(1.92)

= 0.0274
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EXAMPLE (5.10)

The processing time of a part is 7'~ Uni(1,5). Estimate the prob-
ability that the number of parts processed within 320 time units,
denoted by Nsg, is at least 100.

Let Sipo be the time to process 100 parts. Note (Nsgg > 100) =

(S100 < 320). With = E[T] = 3 and 02 = var(T) = %, we have

400
S100 ~ N (100 1, 100 02) =N (300, 3)

Thus

P(Shoo < 320) (Sloo — 300 320 300)

/400 /400
3
~ P(Y < 1.73) = 9(1.73)
= 0.9582
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BERNOULLI SAMPLE MEAN

Let X1, Xo,... be samples of X ~ Ber(p). Then
1—
M, ~ N (p, 1%)

The mean and variance of X are

It follows that
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Consider Example 5.5 that estimates p by M, of a sample of size
n. Using the normal approximation of M,,, we have

P(|M, —p| > €)=~ 2P(M, —p>c¢)
—9p M, —p > €
\/p(l—p) \/p(l—p)
21— L _m
~ — ——\V €
p(1—p)
<2 [1-®(2vne)]
For example, with n = 100 and € = 0.1, we have
P(|Migo — p| > 0.1) <2 [1 = ®(2- V100 - 0.1)]

= 2[1- ®(2)]
= 0.0456
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Consider the estimation of p by M, with margin € and confidence
qo. We want a sample size n to guarantee

P(| My, —p| <€) > qo
m By Bernoulli Normal approximation of M,

P(IM, —p| <€) >1-2[1—®(2vne)] > qo

1 —
B(2v/ne) > 1 — 2q°

m By Chebyshev inequality

P(|Mn—p|<6)21—
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EXAMPLE (SAMPLE SIZE)

Consider the case of ¢ = 0.01 and gg = 0.95.

m By Normal approximation of M,
®(2v/ne) > 0.975

2-y/n-0.01 > ®1(0.975) = 1.96
n > 9604
m By Chebyshev inequality

1
> ———— = 50000
"= A1— q)e

CHIA-PING CHEN LiviT THEOREMS



BINOMIAL NORMAL APPROXIMATION
Let S be Bin(n,p).

m S is the sample sum of iid samples of Ber(p)

m For large n
S ~ N(np,np(1 - p))

Let [ be an integer.

p(sgl):p< S—mp _ _l—np )zq)<l_”p

Vnp(l—p) = /np(1 —p)

Since S only takes integer values, a better approximation is

N l+%—np>
P(SSZ)N(I)( np(l —p)

np(1 — p)
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DE MOIVRE-LAPLACE APPROXIMATION

Let S be Bin(n,p) and k <[ be integers.

1+ L1_ L—1_
p(kgsgl)w<ﬂ>_¢<z_ﬂ

np(1 — p) np(1 — p)
Pk<S<l)=P(S<Il)—P(S<k)
—P(S<Il)—P(S<k—1)
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EXAMPLE (5.12)
Let S be Bin(36,0.5).
m Applying the De Moivre-Laplace approximation, we get

= 0.879

P(s <21~ 8 (222)

P(S =19) = P(S < 19) — P(S < 18)

~ & (19.53— 18> % (18.53— 18) _ 0124

m The real probabilities are

21

P(S<21)=>_ (3;) (0.5)%% = 0.8785

k=0

P(S=19) = Gg) (0.5)%% = 0.1251
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Strong Law of Large Numbers

[m]

=

DA 43747



STRONG LAW OF LARGE NUMBERS

Let X be a random variable with E[X] = x and var(X) = o2. Let
X1, Xo,--- denote independent samples of X. Then the sequence
of sample means converges almost surely to p

Mn a.s. 'u,

That is
P (lim My =) =1
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SUMMARY 1

Markov inequality
E|X
P(X>r)< [r ]
Chebyshev inequality
X
P(1X ~ BIX]| > ¢) < 20
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SUMMARY 2

Convergence in probability (Yn L, Y)

lim P(|Y,—Y|<e¢) =1, Ve>0

n—0o0

Convergence in distribution (Yn L, Y)

Jim Fy, (t) = Fy (t) for t where Fy (t) is continuous

Almost sure convergence (Yn S Y)

P sa=v) =1
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SUMMARY 3

The weak law of large numbers

(a1

The strong law of large numbers

(22

The central limit theorem

lim Fy (t) = ®(t)

n—oo
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