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Discrete-time Markov Chains

Chia-Ping Chen Markov Chains



4/76

Definition (Markov process)
A random process X is a Markov process if it satisfies the Markov
property

X<t ⊥⊥X>t | Xt

Future and past are independent given current state
The influence of history on future is summarized by status quo
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Definition (Discrete-time Markov chain)
Let X be a Markov process.

X is a Markov chain if the random variables of X are discrete
X is a discrete-time Markov chain (DTMC) if the time index
set is discrete

Terminology
Let X be a discrete-time Markov chain starting from t = 0.

state variables: random variables denoted by X0, X1, . . .

state visit: Xt taking a value, often represented by Xt = i

state transition: can be denoted by Xt = i ∩Xt+1 = j

state space: value set of Xt, e.g. {0, 1, . . . ,m} or {1, . . . ,m}
Note we assume a finite state space unless stated otherwise.
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Example (Discrete-time Markov chain)
daily stock (buy, sell, hold)
daily weather (rain, cloudy, sunny)
yearly snowfall (inches)
monthly sales (up, down, flat)
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Probabilities
Let X be DTMC starting from t = 0.

The probabilistic distribution of X can be specified by initial
state probabilities

P (X0 = i)

and state transition probabilities

P (Xn+1 = j |Xn = i)

Time homogeneity is assumed for state transition

P (Xn+1 = j |Xn = i) = P (X1 = j |X0 = i), ∀n ≥ 0

Chia-Ping Chen Markov Chains
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State transition graph
A DTMC can be represented by state transition graph.

Let X have m states. In the state transition graph, there are
m nodes for the states of X
n ≤ (m×m) directed edges for the state transitions
n probabilities for the state transitions
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Transition probability matrix
A DTMC can be represented by transition probability matrix (TPM).

Let X have m states with state transition probabilities

pij = P (Xn+1 = j |Xn = i), 1 ≤ i, j ≤ m

The TPM is

P =


p11 p12 · · · p1m
p21 p22 · · · p2m

...
...

...
...

pm1 pm2 · · · pmm



Chia-Ping Chen Markov Chains
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Example (7.1)
Alice takes a probability course.

In each week, she is either up-to-date or behind
If she is up-to-date in a given week, the probability that she will
be up-to-date in the next week is 0.8
If she is behind in a given week, the probability that she will be
up-to-date in the next week is 0.6

This is a DTMC with m = 2 states. The representation by a state
transition graph is as follows.
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Example (7.2)
A fly moves along a straight line in unit increments.

During each time slot, it moves one unit to the left with prob-
ability 0.3, one unit to the right with probability 0.3, and stays
in place with probability 0.4.
Two spiders are lurking at positions 1 and m. If the fly lands
in these positions, it is captured by a spider.

This is a DTMC with m states. For m = 4, the representation by
a state transition graph or a TPM is as follows.
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Example (7.3)
A machine is either working or broken on a given day. If it is
working, it will be broken the next day with probability b, or continue
to be working with probability 1− b. If it is broken on a given day,
it will be repaired and be working on the next day with probability
r, or continue to be broken with probability 1− r.

This is a DTMC with m = 2 states. The representation by a state
transition graph is as follows.
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Example (7.3 continued)
Suppose whenever the machine is broken for l consecutive days, it
is replaced with a new machine.

This is a DTMC with m = l + 1 states. The representation by a
state transition graph is as follows.

Storing the number of consecutive broken days requires l states.

Chia-Ping Chen Markov Chains
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Definition (State sequence)
LetX be DTMC starting from t = 0. A state sequence s = s0 · · · sn
of X is the event

(X0 = s0) ∩ · · · ∩ (Xn = sn)

The probability of a state sequence is

P (s) = P (X0 = s0 ∩ · · · ∩Xn = sn)
= P (X0 = s0)P (X1 = s1|X0 = s0)P (X2 = s2|X1 = s1 ∩X0 = s0) · · ·
= P (X0 = s0)P (X1 = s1|X0 = s0)P (X2 = s2|X1 = s1) · · ·

= P (X0 = s0)
[
n∏
k=1

psk−1sk

]
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Definition (n-step state transition probability)
Let X be DTMC with m states. The n-step state transition proba-
bility of X is the probability of transition from one state to another
state in n steps. That is

rij(n) = P (Xn = j |X0 = i)

Note
rij(1) = P (X1 = j |X0 = i) = pij

Chia-Ping Chen Markov Chains



16/76

Chapman-Kolmogorov equation
Let X be DTMC with m states, pij ’s be the state transition prob-
abilities, and rij(n)’s be the n-step state transition probabilities.

We have
rij(n) =

m∑
k=1

rik(n− 1)pkj

They are Chapman-Kolmogorov equations (abbr. CK Eqs)

Chia-Ping Chen Markov Chains
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Proof.
For n ≥ 2

rij(n) = P (Xn = j|X0 = i)

=
m∑
k=1

P (Xn = j ∩Xn−1 = k|X0 = i)

=
m∑
k=1

P (Xn−1 = k|X0 = i)P (Xn = j|Xn−1 = k ∩X0 = i)

=
m∑
k=1

P (Xn−1 = k|X0 = i)P (Xn = j|Xn−1 = k)

=
m∑
k=1

rik(n− 1)pkj

Chia-Ping Chen Markov Chains
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n-step transition probability matrix
Let X be DTMC with TPM P = {pij}. Define n-step transition
probability matrices Rn = {rij(n)}. Then

Rn = P n

By definition R1 = P . For n ≥ 2, the CK Eqs

rij(n) =
m∑
k=1

rik(n− 1)pkj

can be expressed as a matrix equation

Rn = Rn−1P

Applying the recurrence relation repeatedly, we have

Rn = Rn−1P = Rn−2P
2 = · · · = R1P

n−1 = P n

Chia-Ping Chen Markov Chains



19/76

Example (7.1)
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Example (7.2)
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Classification of States
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Definition (Accessible state)
Let X be DTMC.

State j is accessible from state i if there exists a non-zero n-step
transition probability from i to j, i.e.

∃n, rij(n) = P (Xn = j|X0 = i) > 0

This is denoted by
i → j

i→ j implies existence of a path from node i to node j in the
state transition graph of X with edges pointing along the path

Chia-Ping Chen Markov Chains
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Definition (Recurrent state and transient state)
Let X be DTMC and i be a state of X.

State i is recurrent if i is accessible from any state of X that
is accessible from i

Otherwise, i is transient

Is state i recurrent? transient?
Find the set of states S(i) that are accessible from i
For each state j ∈ S(i), decide if i is accessible from j

i is recurrent if i is accessible from j for every j ∈ S(i)
i is transient if ∃ j ∈ S(i) such that i is not accessible from j

Chia-Ping Chen Markov Chains
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Definition (Recurrent class)
Let X be DTMC. A recurrent class of X is a set of recurrent states
of X that are accessible to/from each other.

A DTMC with a finite
state space has at least
one recurrent class.
A DTMC may have mul-
tiple recurrent classes.
Recurrent states in differ-
ent recurrent classes are
not accessible from one
another.

Chia-Ping Chen Markov Chains
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Periodic/aperiodic classes
Let X be DTMC and C be a recurrent class of X.

C can be partitioned into
subset(s)

C = S1 ∩ · · · ∩ Sd

where a state transition of
C is from Sk to Sk+1 or
from Sd to S1.
C is periodic for d ≥ 2.
C is aperiodic for d = 1.
C is single if it is the only
recurrent class.

Chia-Ping Chen Markov Chains
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Steady-State Behavior
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Definition (Steady-state probability)
Let X be DTMC with a finite state space, initial probability p0 and
TPM P . If P (Xn = j) converges in the long run, then

πj = lim
n→∞

P (Xn = j)

is the steady-state probability of state j.

Steady-state and n-step transition probability
Let X be DTMC with a finite state space and a single aperiodic
recurrent class.

Every state of X has a steady-state probability
The n-step transition probability from state i to state j con-
verges to the steady-state probability of j

lim
n→∞

rij(n) = πj

Chia-Ping Chen Markov Chains
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Balance equations
Let X be DTMC with a finite state space, a single aperiodic recur-
rent class, and TPM P .

The steady-state probabilities satisfy

πj =
m∑
k=1

πkpkj , j = 1, · · · ,m

They are the balance equations

Recall CK Eqs for n-step transition probability

rij(n) =
m∑
k=1

rik(n− 1)pkj

Letting n→∞, we get

lim
n→∞

rij(n) = lim
n→∞

m∑
k=1

rik(n− 1)pkj ⇒ πj =
m∑
k=1

πkpkj

Chia-Ping Chen Markov Chains
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Frequency of state visit
Let X be DTMC with a finite state space and a single aperiodic
recurrent class. The expected relative frequency of visits of state j
converges to the steady-state probability πj .

Let Ij(t) be the indicator of X visiting j at time t. Let Vj(n) be
the count of X visiting j from time 1 to n. We have

Vj(n) =
n∑
t=1

Ij(t)

Since lim
t→∞

P (Ij(t) = 1) = πj , we have

E
[
Vj(n)
n

]
= E


n∑
t=1

Ij(t)

n

 n→∞−−−−−→ πj
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Frequency of state transition
Let X be DTMC with a finite state space and a single aperiodic
recurrent class. The expected relative frequency of state transition
from state j to state k converges to πjpjk.

Let Ij→k(t) be the indicator of X making a transition from j to k
at time t. Then

lim
t→∞

P (Ij→k(t) = 1) = lim
t→∞

P (Xt = j ∩Xt+1 = k)

= lim
t→∞

P (Xt = j)P (Xt+1 = k|Xt = j)

= πjpjk

Let Qjk(n) be the count of X making that transition from time 1
to n. By a similar argument, we have

E
[
Qjk(n)
n

]
= E


n∑
t=1

Ij→k(t)

n

 n→∞−−−−−→ πjpjk
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Balance equations
Consider the equations for steady-state probabilities

πj =
m∑
k=1

πkpkj

Steady-state probabilities must ”balance” incoming and outgo-
ing state transitions.

πj = πj

m∑
k=1

pjk =

outgoing = incoming︷ ︸︸ ︷
m∑
k=1

πjpjk =
m∑
k=1

πkpkj

Define row vector π = {πj} and TPM P = {pij}.

π = πP

Chia-Ping Chen Markov Chains
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Normalization condition
LetX be DTMC with a single aperiodic recurrent class. The steady-
state probabilities of X satisfy the normalization condition∑

j

πj = 1

For any n ∑
j

rij(n) =
∑
j

P (Xn = j|X0 = i) = 1

Letting n→∞, we get

lim
n→∞

∑
j

rij(n)

 = 1 =
∑
j

(
lim
n→∞

rij(n)
)

=
∑
j

πj

Chia-Ping Chen Markov Chains
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Example (7.5)
Consider a DTMC with m = 2 states and state transition probabil-
ities

p11 = 0.8, p12 = 0.2
p21 = 0.6, p22 = 0.4

Find the steady-state probabilities of the states.

By balance equations

π1 = π1p11 + π2p21 = 0.8π1 + 0.6π2

π2 = π1p12 + π2p22 = 0.2π1 + 0.4π2

and normalization condition

π1 + π2 = 1

we can solve π1 and π2.

Chia-Ping Chen Markov Chains
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Example (7.6)
An absent-minded professor has 2 umbrellas that he uses when com-
muting between home to office. Suppose that it rains with probabil-
ity p each time he commutes. What is the probability that he gets
wet during a commute?

We have a DTMC with the following state transition graph. The
steady-state probabilities satisfy balance equations

π0 = π2(1− p)
π1 = π1(1− p) + π2p

π2 = π0 · 1 + π1p

and normalization π0 + π1 + π2 = 1. The wet probability is pπ0.

Chia-Ping Chen Markov Chains
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Example (7.7)
A superstitious professor works in a circular building with m doors,
where m is odd, and never uses the same door twice in a row. In-
stead, he uses the door left with probability p or right with probability
1 − p. What is the probability that a particular door will be used
one day far into the future?

Let state i represent using
door i. By symmetry

πi = 1
m

Chia-Ping Chen Markov Chains
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Probability distribution over states
Let X be DTMC with a finite state space and a single aperiodic
recurrent class. Let P be the TPM of X and row vector pn =
{P (Xn = j)} be the probability distribution of Xn over the states
at time n.

At time n+ 1

P (Xn+1 = j) =
m∑
i=1

P (Xn+1 = j,Xn = i)

=
m∑
i=1

P (Xn = i)P (Xn+1 = j|Xn = i)

That is
pn+1 = pnP

It follows that
pn = p0P

n

Chia-Ping Chen Markov Chains
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Stationarity of steady-state probabilities
Let X be DTMC with a finite state space, a single aperiodic re-
current class, TPM P , and steady-state probability π. Then π is
stationary.

Suppose the probability distribution of Xn over the states is π. At
time n+ 1, the probability distribution of Xn+1 over the states is

pn+1 = pnP = πP = π

Chia-Ping Chen Markov Chains
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Birth-Death Processes
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Definition (Birth-death processes)
Let X be DTMC with a linear state transition graph and allow only
self-transitions or transitions between neighboring states. Then X
is a birth-death process.

Transition to right neighbor is birth. The probability of birth
from state i is

P (Xn+1 = i+ 1 |Xn = i) = bi

Transition to left neighbor is death. The probability of death
from state i is

P (Xn+1 = i− 1 |Xn = i) = di

Chia-Ping Chen Markov Chains
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Birth-death local balance
A birth-death process has local balance equations. Each local bal-
ance equation involves only 2 states.

πi−1bi−1 = πidi

The numbers of transitions from state i to state i− 1 and from
state i− 1 to state i differ by no more than 1.

Qi−1,i(n)− 1 ≤ Qi,i−1(n) ≤ Qi−1,i(n) + 1

So
Qi−1,i(n)

n
− 1
n
≤ Qi,i−1(n)

n
≤ Qi−1,i(n)

n
+ 1
n

Letting n→∞, we get πi−1 pi−1 i = πi pi i−1. That is

πi−1bi−1 = πidi

Chia-Ping Chen Markov Chains
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Birth-death steady-state probability
Let X be a birth-death process with m states, birth probability bi’s,
and death probability di’s.

The balance equations of X are

π1b1 = π2d2, · · · , πm−1bm−1 = πmdm

The steady-state probabilities are related to π1 by

π2 = π1
b1
d2
, · · · , πm = π1

b1 · · · bm−1
d2 · · · dm

We determine π1 by the normalization condition
Then we find π2, · · · , πm

Chia-Ping Chen Markov Chains
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Example (7.8)
Yoko walks along a straight line and, at each time slot, takes a step
to the right with probability b, and a step to the left with probability
1− b. She starts in one of the positions 1, · · · ,m, but if she reaches
the position 0 (or position m + 1), her step is instantly reflected
back to 1 (or m, respectively). Introduce a DTMC whose states are
the positions 1, · · · ,m. What are the steady-state probabilities?

Chia-Ping Chen Markov Chains
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Example (7.9)
Packets arrive at a node of a communication network, where they
are stored in a buffer of size m and then transmitted. If m packets
are already in the buffer, any newly arriving packets are discarded.
We discretize time into very small slots, and assume that in each
slot, exactly one of the following events occurs.

One new packet is stored to the buffer, with probability b > 0
if the buffer is not full
One packet stored in the buffer completes transmission, with
probability d > 0 if the buffer is non-empty
No new packet is stored and no stored packet completes trans-
mission, with probability 1 − b − d if the buffer is non-empty,
and with probability 1− b if the buffer is empty

Introduce a DTMC whose states are the number of packets in the
buffer 0, 1, · · · ,m. What are the steady-state probabilities?

Chia-Ping Chen Markov Chains
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The DTMC is a birth-death process, with

b0 = · · · = bm−1 = b, bm = 0
d0 = 0, d1 = · · · = dm = d

The local balance equations are πi−1b = πid. Thus

πi =
(
b

d

)
πi−1 = · · · =

(
b

d

)i
π0, i = 1, · · · ,m

π0 can be found by normalization

π0 = 1
1 + ρ+ · · ·+ ρm

, ρ = b

d

and πi = ρiπ0.
Chia-Ping Chen Markov Chains
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Absorption
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Absorbing state and absorption probability
Let X be DTMC with a finite state space.

A state of X is an absorbing state if it does not transit to any
other states
Let s be an absorbing state. We have

pss = 1

The absorption probability of s from state i is defined by

ai = P
(

lim
n→∞

Xn = s
∣∣∣ X0 = i

)

Chia-Ping Chen Markov Chains
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Absorption probability equation
Let X be DTMC with a finite state space. Consider the absorption
probabilities of absorbing state s.

If state i is recurrent
ai = δis

If state i is transient

ai = P
(

lim
n→∞

Xn = s|X0 = i
)

=
m∑
j=1

P
(

lim
n→∞

Xn = s ∩X1 = j|X0 = i
)

=
m∑
j=1

P (X1 = j|X0 = i)P
(

lim
n→∞

Xn = s|X1 = j
)

=
m∑
j=1

pijaj

Chia-Ping Chen Markov Chains
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Example (7.10)
DTMC (a) has 2 recurrent classes, namely {1} and {4, 5}. Merging
states 4, 5 as a single absorbing state 6, we have DTMC (b). The
probability that DTMC (a) enters the recurrent class {4, 5} from a
state is an absorption probability of state 6 in DTMC (b).

Chia-Ping Chen Markov Chains
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Example (7.11)
A gambler wins $1 at each round with probability p, and loses $1
with probability 1− p. He gambles until he either accumulates $m
or loses all his money. What is the probability that he wins?

Probability of winning depends on the amount of money he has.
Let state i represent the state that the gambler has i dollars. The
probability that he wins is the absorption probability of m. For the
recurrent states

am = 1, a0 = 0

Chia-Ping Chen Markov Chains
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For the transient states

ai =
m∑
j=0

pijaj = (1− p)ai−1 + pai+1, i = 1, · · · ,m− 1

⇒ (1− p)(ai − ai−1) = p(ai+1 − ai)

⇒ (ai+1 − ai) =
(1− p

p

)
(ai − ai−1)

⇒ δi = ρδi−1, where δi = ai+1 − ai, ρ = 1− p
p

⇒ δi = ρδi−1 = · · · = ρiδ0

From am − a0 = (am − am−1) + · · ·+ (a1 − a0), we have

1− 0 = δm−1 + · · ·+ δ0 = δ0(ρm−1 + · · ·+ 1)

⇒ δ0 = 1
ρm−1 + · · ·+ 1

⇒ ai = a0 + δ0 + · · ·+ δi−1 = ρi−1 + · · ·+ ρ0

ρm−1 + · · ·+ 1

Chia-Ping Chen Markov Chains
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Definition (Time to absorption)
Let X be DTMC with a finite state space.

The time to absorption is the first time to a recurrent state

T = min{n ≥ 0, Xn = j where j is recurrent}

The expected time to absorption from state i is

µi = E[T |X0 = i]

Change of mode. Entering a recurrent state marks the switch of
a DTMC from short-term mode to long-term mode.

Chia-Ping Chen Markov Chains
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Expected time to absorption
Let X be DTMC and µi be expected time to absorption of state i.

µi =


0, if i is recurrent

1 +
m∑
j=1

pijµj , if i is transient

µi = E[T |X0 = i] = E[E[T |X1] |X0 = i]

=
m∑
j=1

P (X1 = j |X0 = i) E[T |X1 = j ∩X0 = i]

=
m∑
j=1

pijE[T |X1 = j] =
m∑
j=1

pij(1 + E[T |X0 = j])

=
m∑
j=1

pij(µj + 1) = 1 +
m∑
j=1

pijµj

Chia-Ping Chen Markov Chains
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Example (Poe divination)
For fair wood pieces, what is the expected number of drops until
back-to-back divines occur?

Define 3 states, where state i means needing i consecutive Ds to
end the drops. State 0 is an absorbing state. We have

µ0 = 0
µ1 = 1 + 0.5µ0 + 0.5µ2

µ2 = 1 + 0.5µ2 + 0.5µ1

The solution is µ1 = 4 and µ2 = 6. Note µ2 = 6 agrees with the
conclusion reached earlier via total expectation.

Chia-Ping Chen Markov Chains
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Example (7.12)
Consider Example 7.2 with m = 4. What is the expected time for
the fly to be captured by a spider?

States 1 and 4 are recurrent states. We have

µ1 = 0
µ2 = 1 + 0.3µ1 + 0.4µ2 + 0.3µ3

µ3 = 1 + 0.3µ2 + 0.4µ3 + 0.3µ4

µ4 = 0

⇒ µ2 = µ3 = 10
3

Chia-Ping Chen Markov Chains
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Continuous-time Markov Chains
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Definition (Continuous-time Markov chain)
A continuous-time Markov chain (abbr. CTMC)

is a continuous-time random process
satisfies Markov property
has a discrete state space

We assume time homogeneity in our discussion of CTMC.

Chia-Ping Chen Markov Chains
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CTMC variables
Let X be a CTMC.

The random variables of X are

X0
T1−−→ X1

T2−−→ X2
T3−−→ · · · Tn−−−→ Xn

Tn+1−−−−→ Xn+1 · · ·

Xn is the state variable after the nth state transition, not the
state variable at time n
Tn is the waiting time (in state Xn−1) of the nth state transition

Chia-Ping Chen Markov Chains
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CTMC probability models
Let X be a CTMC with a finite state space.

The waiting time for state transition is an exponential random
variable

Tn+1 | (Xn = i) ∼ Exp(νi)

The distribution of next state is independent of the waiting time

P (Xn+1 = j |Xn = i, Tn) = P (Xn+1 = j |Xn = i) = pij

P (Xn+1 = i |Xn = i) = pii = 0

Chia-Ping Chen Markov Chains



59/76

CTMC embedding
Let X be a CTMC with a finite state space. Consider the sequence
of state variables

X ′ : X0X1 · · ·

X ′ is an embedded DTMC of X
The TPM of X ′ is

P = {pij}

Chia-Ping Chen Markov Chains
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Exiting rate and transition rate
Let X be a CTMC.

The expected time to transition from state i is

E[Tn+1 |Xn = i] =
∫ ∞

0
tνie

−νitdt = 1
νi

It takes ν−1
i to exit state i on average, so there are νi exits per

unit time
The state exiting rate from state i is νi
A proportion pij of the state transitions out of state i go to
state j
The state transition rate from state i to state j is

qij = νipij

Chia-Ping Chen Markov Chains
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Example (7.14)
A machine, once in production mode, operates continuously until
an alarm signal is generated. The time up to the alarm signal is
an exponential random variable with parameter 1. Subsequent to
the alarm signal, the machine is in test mode for an exponentially
distributed amount of time with parameter 5. The test results are
positive, with probability 1/2, in which case the machine returns
to production mode, or negative, with probability 1/2, in which
case the machine is taken for repair. The duration of the repair is
exponentially distributed with parameter 3. Construct a CTMC for
this machine.
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The states are production, test, and repair. The state transition
probabilities are

P =

0 1 0
1
2 0 1

2
1 0 0


The state exiting rates are ν1 = 1, ν2 = 5, ν3 = 3. So the state
transition rates are

Q = {νipij} =

0 1 0
5
2 0 5

2
3 0 0


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CTMC characterization
Let X be a CTMC. State exiting rates and state transition proba-
bilities of X can be derived from the state transition rates of X.

Suppose the state transition rates of X are

qij , i 6= j

The state exiting rates of X are

νi = νi
∑
j

pij =
∑
j

νipij =
∑
j

qij

The state transition probabilities of X are

pij = qij
νi

= qij∑
j′
qij′
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CTMC graph representation
A CTMC can be represented by a graph.

States are represented by nodes
State transitions are represented by directed edges, which are
labelled by the state transition rates

From such a graph, we can determine model parameters µi and pij .
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Auxiliary DTMC
Let X be a CTMC and X(t) be the state variable at time t. Let Z
be the discrete-time random process defined by Zn = X(nδ) where
δ > 0.

Z satisfies the Markov property Z<n ⊥⊥ Z>n |Zn
It is an auxiliary DTMC of X

Let P̄ = {p̄ij} be the TPM of Z. For j 6= i

p̄ij = P (Zn+1 = j |Zn = i)
= (νiδ + o(δ))︸ ︷︷ ︸

transition from i in δ

× pij︸︷︷︸
transition to j

= νi pij δ + o(δ)
= qij δ + o(δ)

For j = i

p̄ii = 1−
∑
j 6=i

p̄ij = 1− δ
∑
j 6=i

qij + o(δ)

Chia-Ping Chen Markov Chains



66/76

Example (7.14 continued)
Let X be a CTMC for the machine. Let Z be an auxiliary DTMC
of X with Zn = X(nδ). If we neglect o(δ) terms, the TPM of Z is

P̄ =


1− δ δ 0

5
2δ 1− 5δ 5

2δ

3δ 0 1− 3δ


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CTMC alternative characterization
Let X be a continuous-time random process with a finite value set
(state space). X is a CTMC if there exist qij ≥ 0 such that

P (X(t+ δ) = j|X(t) = i) =

qijδ + o(δ), j 6= i

1−
∑
j 6=i

qijδ + o(δ), j = i
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Example (7.15)
Let the arrivals of packets at a node be a Poisson process with rate
λ. Upon arrival, a packet is either stored in a buffer for m packets,
or discarded if the buffer is full. The time to transmit a packet is
exponential with parameter µ. Show that the buffer can be modeled
as a CTMC.

Let X be a random process counting the packets in the buffer. X
is a CTMC as we have

P (X(t+ δ) = i− 1 |X(t) = i) = µδ + o(δ), i = 1, · · · ,m
P (X(t+ δ) = i+ 1 |X(t) = i) = λδ + o(δ), i = 0, · · · ,m− 1
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CTMC steady-state probabilities
Let X be a CTMC with a finite state space.

The steady-state probability of state j is defined by

πj = lim
t→∞

P (X(t) = j)

Let Z be an auxiliary DTMC of X. Then

lim
t→∞

P (X(t) = j) = lim
n→∞

P (Zn = j)
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CTMC balance equations
Let X be a CTMC with a finite state space, a single recurrent class,
and state transition rates qij . The steady-state probabilities of X
satisfy the balance equations

πj
∑
k 6=j

qjk =
∑
k 6=j

πkqkj , ∀ j

Let Z be an auxiliary DTMC of X with Zn = X(nδ). We have

πj =
∑
k

πkp̄kj = πj p̄jj +
∑
k 6=j

πkp̄kj

= πj

1− δ
∑
k 6=j

qjk + o(δ)

+
∑
k 6=j

πk (qkjδ + o(δ))

Thus
πj
∑
k 6=j

qjk =
∑
k 6=j

πkqkj
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Example (7.14 continued)
What are the steady-state probabilities of Example 7.14?

The balance equations are

π1(1+0) = 5
2π2+3π3, π2

(5
2 + 5

2

)
= π1+0π3, π3(3+0) = 0π1+5

2π2

We also have
π1 + π2 + π3 = 1

Hence
π1 = 30

41 , π2 = 6
41 , π3 = 5

41
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Continuous-time birth-death processes
A continuous-time birth-death process is a CTMC, in which the
states are linearly arranged and only transitions to neighboring states
are possible.

Local balance equations
For a continuous-time birth-death process, the transition rate from
i to i+ 1 equals the transition rate from i+ 1 to i.

πiqi i+1 = πi+1qi+1 i
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Example (7.15 continued)
What are the steady-state probabilities of Example 7.15?

The local balance equations are

πiλ = πi+1µ ⇒ πi+1 = πi

(
λ

µ

)
= πiρ

⇒ πi = π0ρ
i

We find π0 by normalization equation π0 + π1 + · · ·+ πm = 1.

π0(1 + ρ+ · · ·+ ρm) = 1 ⇒ π0 = (1 + ρ+ · · ·+ ρm)−1

Then we find the other probabilities

πi = ρi

1 + ρ+ · · ·+ ρm
, ρ = λ

µ
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Summary 1

Chapman-Kolmogorov equations for n-step transition

rij(1) = pij , rij(n) =
m∑
k=1

rik(n− 1)pkj (Rn = P n)

Steady-state convergence theorem

lim
n→∞

rij(n) = lim
n→∞

P (Xn = j)

Balance equations of DTMC

πj =
m∑
k=1

πkpkj , j = 1, · · · ,m
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Summary 2

Exponential waiting time to a state transition

fTn+1|Xn=i(t) = νie
−νitu(t− 0)

State transition probability

P (Xn+1 = j|Xn = i) = pij

Transition rate to state j while in state i

qij = νipij
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Summary 3

An auxiliary DTMC Z of a CTMC X

Zn = X(nδ)

Balance equations of CTMC

πj
∑
k 6=j

qjk =
∑
k 6=j

πkqkj

Local balance equations of CTMC

πiqij = πjqji, j = i± 1
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