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Discrete-time Markov Chains
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DEFINITION (MARKOV PROCESS)

A random process X is a Markov process if it satisfies the Markov

property
X L Xy | Xy

m Future and past are independent given current state

m The influence of history on future is summarized by status quo
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DEFINITION (DISCRETE-TIME MARKOV CHAIN)

Let X be a Markov process.
m X is a Markov chain if the random variables of X are discrete

m X is a discrete-time Markov chain (DTMC) if the time index
set is discrete

TERMINOLOGY
Let X be a discrete-time Markov chain starting from ¢t = 0.

| A\

m state variables: random variables denoted by Xg, X7, ...
m state visit: X; taking a value, often represented by X; =1
m state transition: can be denoted by X; =i N X441 =3

m state space: value set of Xy, e.g. {0,1,...,m} or {1,...,m}

Note we assume a finite state space unless stated otherwise.
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EXAMPLE (DISCRETE-TIME MARKOV CHAIN)

m daily stock (buy, sell, hold)
m daily weather (rain, cloudy, sunny)
m yearly snowfall (inches)

m monthly sales (up, down, flat)
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PROBABILITIES
Let X be DTMC starting from t = 0.

m The probabilistic distribution of X can be specified by initial
state probabilities

P(Xo =1i)

and state transition probabilities
P(Xn1=71Xn =1)

m Time homogeneity is assumed for state transition

P(Xpy1=j|Xn=14)=P(X1=j|Xo=1i), Vn >0
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STATE TRANSITION GRAPH

A DTMC can be represented by state transition graph.

Let X have m states. In the state transition graph, there are
m m nodes for the states of X
m n < (m x m) directed edges for the state transitions

m n probabilities for the state transitions
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TRANSITION PROBABILITY MATRIX

A DTMC can be represented by transition probability matrix (TPM).

Let X have m states with state transition probabilities

pij =PXp1=7|Xn=1), 1<i,j<m

The TPM is
b1 P12 - Pim
p_ p.21 p.22 : pz'm
Pml Pm2 "°° Pmm
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EXAMPLE (7.1)

Alice takes a probability course.

m In each week, she is either up-to-date or behind
m If she is up-to-date in a given week, the probability that she will
be up-to-date in the next week is 0.8

m If she is behind in a given week, the probability that she will be
up-to-date in the next week is 0.6

v

This is a DTMC with m = 2 states. The representation by a state
transition graph is as follows.

0.2

Up-to-Date 0.6 Behind
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EXAMPLE (7.2)
A fly moves along a straight line in unit increments.
m During each time slot, it moves one unit to the left with prob-

ability 0.3, one unit to the right with probability 0.3, and stays
in place with probability 0.4.

m Two spiders are lurking at positions 1 and m. If the fly lands
in these positions, it is captured by a spider.

This is a DTMC with m states. For m = 4, the representation by
a state transition graph or a TPM is as follows.
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A machine is either working or broken on a given day. If it is
working, it will be broken the next day with probability b, or continue
to be working with probability 1 — b. If it is broken on a given day,
it will be repaired and be working on the next day with probability
r, or continue to be broken with probability 1 — 7.

This is a DTMC with m = 2 states. The representation by a state
transition graph is as follows.

b

Working r Broken
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EXAMPLE (7.3 CONTINUED)

Suppose whenever the machine is broken for [ consecutive days, it
is replaced with a new machine.

This is a DTMC with m = [ + 1 states. The representation by a
state transition graph is as follows.

Working p Broken

Storing the number of consecutive broken days requires [ states.
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DEFINITION (STATE SEQUENCE)

Let X be DTMC starting from ¢t = 0. A state sequence s = sg - - - Sp,
of X is the event

(XQZSO)QH'Q(Xn:Sn)

The probability of a state sequence is

)
—

v/
S—

:P(XOZSOO-"ﬂXnZSn)

= P(XO = SO)P(Xl = 81|X0 = So)P(XQ = Sg’Xl =s1NXp= So) s

= P(Xo = s0)P(X1 = 1| Xo = s0)P(X2 = s2| X1 = 51) - - -

:PXO—SO lnpsk 1sk]
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DEFINITION (‘H—STEP STATE TRANSITION PR.OBABILITY)

Let X be DTMC with m states. The n-step state transition proba-
bility of X is the probability of transition from one state to another
state in n steps. That is

Fygm) = P, = 5 | Xy =0)

Note
rij(1) = P(X1 = j| Xo = i) = pyj
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CHAPMAN-KOLMOGOROV EQUATION

Let X be DTMC with m states, p;;'s be the state transition prob-
abilities, and 7;;(n)'s be the n-step state transition probabilities.

m We have

rij(n) =Y ri(n — D)pg;

k=1

m They are Chapman-Kolmogorov equations (abbr. CK Eqs)

Time 0 Time n-1 Time n

Tim(n-1)
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PROOF.

For n > 2

P(Xp=jN Xn_1 = k| Xo = 1)

M

B
II
—

-

P(Xn_l = k‘Xo = Z)P(Xn = j’Xn_l =kNXy= Z)

b
Il
—

-

P(X,—1 =k|Xo=19)P(X,, =j|Xn-1=k)

i
I

-

Tik(n — 1)pk;

=~
Il
—_
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Nn-STEP TRANSITION PROBABILITY MATRIX

Let X be DTMC with TPM P = {p;;}. Define n-step transition
probability matrices R,, = {r;;(n)}. Then

R, =P"

By definition Ry = P. For n > 2, the CK Eqgs

m
rij(n) = Z rik(n — 1)pk;
k=1

can be expressed as a matrix equation

R,=R, P
Applying the recurrence relation repeatedly, we have

R,=R, P = fin,QP2 . R1Pn—1 — pn
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AMPLE (7.1)

0.2

0.8 0.4
Up-to-Date 0.6 Behind

r1(n)
”””””””” 0.75[ " _——T(n)
ro2(n)
------------ 025 /"""
12(n)
n 0I n

n-step transition probabilities as a function of the numbern of transitions

UpD B
upD [0.8]0.2| [76].24] [752248 [7504] 2408 [7501] ass]
B [o6oa| [72].28| [744l256] |[748[2512] [7498] 2502
i 7i(2) 7i(3) rj(4) 7§(5)

Sequence of n -step transition probability matrices
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N

1.2 3 4
111.000]|0]0
210.3]0.4/0.3] 0
3(0 |0.3)0.4[0.3
4|0|0fo0([1.0
P
2Yf-mmmmmmmmmooe
MBPL oo e
0 n
n-step transition probabilities as a function of the time n
10lofofo 1o[o]oJo] [to]o]ofo] 10[ofo]o
42].25[.24| .09 s0[.17].17[.16]  [s5[.12].12[.21]  [273] 0 [0 |1/
.09|.24|.25.42] 16].17].17|.50| 21].12|.12| .55 1/3[ 0| 0 |2/3
0[o[0]10 0 o[o0]t0 olo[o0]10 ololo]to
@) @) 7(4) ()

Sequence of transition probability matrices
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Classification of States
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DEFINITION (ACCESSIBLE STATE)
Let X be DTMC.

m State j is accessible from state i if there exists a non-zero n-step
transition probability from i to j, i.e.

dn, T@'j(n) = P(Xn = j|X0 = Z) >0

m This is denoted by
i — ]
m ¢ — j implies existence of a path from node ¢ to node j in the
state transition graph of X with edges pointing along the path
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DEFINITION (RECURRENT STATE AND TRANSIENT STATE)
Let X be DTMC and 7 be a state of X.

m State i is recurrent if ¢ is accessible from any state of X that
is accessible from 1

m Otherwise, 7 is transient

Is state 7 recurrent? transient?

m Find the set of states S(¢) that are accessible from i
m For each state j € S(i), decide if i is accessible from j
m i is recurrent if 7 is accessible from j for every j € S(i)
m ¢ is transient if 35 € S(4) such that i is not accessible from j

Recurrent  Transient Recurrent Recurrent
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DEFINITION (RECURRENT CLASS)

Let X be DTMC. A recurrent class of X is a set of recurrent states
of X that are accessible to/from each other.

m A DTMC with a finite
state space has at least
one recurrent class.

m A DTMC may have mul-
tiple recurrent classes.

m Recurrent states in differ-
ent recurrent classes are
not accessible from one
another.

CHIA-PING CHEN
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Single class of recurrent states

Single class of recurrent states (1 and 2)
and one transient state (3)

Goysomoriomo

Two classes of recurrent states
(class of state1 and class of states 4 and 5)
and two transient states (2 and 3)
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PERIODIC/APERIODIC CLASSES
Let X be DTMC and C be a recurrent class of X.

m C can be partitioned into
subset(s)

C=51N---NSy

where a state transition of
C is from S to Sky1 or
from S, to S7.

m C is periodic for d > 2.
C is aperiodic for d = 1.

m C is single if it is the only
recurrent class.
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Steady-State Behavior
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DEFINITION (STEADY-STATE PROBABILITY)

Let X be DTMC with a finite state space, initial probability p, and
TPM P. If P(X,, = j) converges in the long run, then

m; = lim P(X, =j)

n— o0

is the steady-state probability of state j.

STEADY-STATE AND 7n-STEP TRANSITION PROBABILITY

Let X be DTMC with a finite state space and a single aperiodic
recurrent class.

m Every state of X has a steady-state probability

m The n-step transition probability from state ¢ to state j con-
verges to the steady-state probability of j

Jim_ri;(n) = m;
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BALANCE EQUATIONS

Let X be DTMC with a finite state space, a single aperiodic recur-
rent class, and TPM P.

m The steady-state probabilities satisfy
m
T = Zﬂ-kpk‘j? ]: 17 , TN

m They are the balance equations

Recall CK Egs for n-step transition probability

ng Z le n — l)pk]
k=1

Letting n — oo, we get

hm 7“” = lim Z”k Dpr; = m = Zwkpkj

n—o0
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FREQUENCY OF STATE VISIT

Let X be DTMC with a finite state space and a single aperiodic
recurrent class. The expected relative frequency of visits of state j
converges to the steady-state probability 7;.

Let 7;(t) be the indicator of X visiting j at time ¢. Let Vj(n) be
the count of X visiting j from time 1 to n. We have
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FREQUENCY OF STATE TRANSITION

Let X be DTMC with a finite state space and a single aperiodic
recurrent class. The expected relative frequency of state transition
from state j to state k converges to TiDjk-

Let 1,1 (t) be the indicator of X making a transition from j to k
at time ¢t. Then

t—»00
= TjPjk

Let Q;x(n) be the count of X making that transition from time 1
to n. By a similar argument, we have

n
tX:llj—ﬂf(t)
S Dl = Y
n TjPjk

n

E {ij(n)]
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BALANCE EQUATIONS

Consider the equations for steady-state probabilities

m
T =D TPk
k=1

m Steady-state probabilities must "balance” incoming and outgo-
ing state transitions.

outgoing = incoming
m m m
Tj = Ty ijk = Zﬂ'jpjk = Zﬂ'kpkj
k=1 k=1 k=1

m Define row vector w = {m;} and TPM P = {p;;}.

m=xP
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NORMALIZATION CONDITION

Let X be DTMC with a single aperiodic recurrent class. The steady-
state probabilities of X satisfy the normalization condition

Z?‘l’j:1
J

For any n

>_rij(n) =3 P(Xn =j|Xo=i) =1

J

Letting n — oo, we get

Jim (Z wW) = (Jim rign) =3

J J

CHIA-PING CHEN MARKOV CHAINS



EXAMPLE (7.5)

Consider a DTMC with m = 2 states and state transition probabil-
ities
p11 = 0.8, p12=0.2

p21 = 0.6, po2 =04

Find the steady-state probabilities of the states.

By balance equations

T = mp11 + m2p21 = 0.8m; + 0.672
To = T1P12 + TP = 0.27‘(’1 + 0.47'('2

and normalization condition
T +m =1
we can solve w1 and 9.
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An absent-minded professor has 2 umbrellas that he uses when com-
muting between home to office. Suppose that it rains with probabil-
ity p each time he commutes. What is the probability that he gets
wet during a commute?

We have a DTMC with the following state transition graph. The
steady-state probabilities satisfy balance equations

mo = m2(1 —p)

7 = 7m1(1 —p) + map

Ty =m0 1 +mp

and normalization mg + m; + w2 = 1. The wet probability is pmy.

1 p 1
p
Q. @ _ D
1-p P
No umbrellas Two umbrellas One umbrella
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A superstitious professor works in a circular building with m doors,
where m is odd, and never uses the same door twice in a row. In-
stead, he uses the door left with probability p or right with probability
1 — p. What is the probability that a particular door will be used
one day far into the future?

Let state ¢ represent using
door i. By symmetry
1

= —
m
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PROBABILITY DISTRIBUTION OVER STATES

Let X be DTMC with a finite state space and a single aperiodic
recurrent class. Let P be the TPM of X and row vector p, =
{P(X,, = j)} be the probability distribution of X,, over the states
at time n.

m Attimen +1

m
P(Xnt1=34) =Y P(Xny1 =j,Xn = 1)
i—1
lm
=" P(X,, = i)P(Xp41 = j| X5 = 0)
i—1
m Thatis
Dy = pnP
m It follows that
P, = poP"
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STATIONARITY OF STEADY-STATE PROBABILITIES

Let X be DTMC with a finite state space, a single aperiodic re-
current class, TPM P, and steady-state probability 7v. Then 7 is
stationary.

Suppose the probability distribution of X, over the states is 7. At
time n 4 1, the probability distribution of X,,;.1 over the states is

Pppr =P, P=nmP=m
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Birth-Death Processes
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DEFINITION (BIRTH-DEATH PROCESSES)

Let X be DTMC with a linear state transition graph and allow only
self-transitions or transitions between neighboring states. Then X
is a birth-death process.

m Transition to right neighbor is birth. The probability of birth
from state ¢ is

P(Xpi1=i+1|X,=14)=0b

m Transition to left neighbor is death. The probability of death
from state 7 is

P(Xpp1=i—1|Xp=1) =d;

1-bp 1-by-dy 1-bm.g -dm1 1-dpy

. bg . by bm-2 . bm-1 .

ONNEOSERIENEC IO,
dy do dm-1 dm
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BIRTH-DEATH LOCAL BALANCE

A birth-death process has local balance equations. Each local bal-
ance equation involves only 2 states.

mi—1bi—1 = m;d;

The numbers of transitions from state ¢ to state ¢ — 1 and from
state 7 — 1 to state ¢ differ by no more than 1.

Qi—1,i(n) =1 < Qii—1(n) < Qi—14i(n) +1

So
Qi—1,(n)

1 < Qii—1(n) < Qi-1,i(n) L
n n n n n

Letting n — oo, we get m;_1p;—1; = T Pii—1. Ihatis

Ti—1bi—1 = md;

CHIA-PING CHEN MARKOV CHAINS



BIRTH-DEATH STEADY-STATE PROBABILITY

Let X be a birth-death process with m states, birth probability b;'s,
and death probability d;'s.

m The balance equations of X are
mby = mada, -+, Tm—1bm—1 = Tmdm

m The steady-state probabilities are related to 7 by

- _ﬁb1 - _ﬂbl"‘bm—l
Q=M1 ", T =M —————
dy---dp,

do

m We determine m; by the normalization condition

m Then we find 7o, -+ , T,
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EXAMPLE (7.8)

Yoko walks along a straight line and, at each time slot, takes a step
to the right with probability b, and a step to the left with probability
1—0b. She starts in one of the positions 1, --- , m, but if she reaches
the position 0 (or position m + 1), her step is instantly reflected
back to 1 (or m, respectively). Introduce a DTMC whose states are
the positions 1,--- ,m. What are the steady-state probabilities?

b b b b
1-b 1-b 1-b 1-b
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EXAMPLE (7.9)

Packets arrive at a node of a communication network, where they
are stored in a buffer of size m and then transmitted. If m packets
are already in the buffer, any newly arriving packets are discarded.
We discretize time into very small slots, and assume that in each
slot, exactly one of the following events occurs.

m One new packet is stored to the buffer, with probability b > 0
if the buffer is not full

m One packet stored in the buffer completes transmission, with
probability d > 0 if the buffer is non-empty

m No new packet is stored and no stored packet completes trans-
mission, with probability 1 — b — d if the buffer is non-empty,
and with probability 1 — b if the buffer is empty

Introduce a DTMC whose states are the number of packets in the
buffer 0,1, --- ,m. What are the steady-state probabilities?
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1-b 1-b-d 1-b-d 1-d

bl 2B b

d d d

The DTMC is a birth-death process, with
bop=-=bp_1=5b, b,=0
do=0, di=---=dp=d

The local balance equations are m;_1b = m;d. Thus

e (== (B =
i=\q i—1 = ~\yq To, t =1, , M

o can be found by normalization
B 1 b
Tiltpto4em T

0

and m; = p'mo.
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Absorption
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ABSORBING STATE AND ABSORPTION PROBABILITY

Let X be DTMC with a finite state space.

m A state of X is an absorbing state if it does not transit to any
other states

m Let s be an absorbing state. We have
Dss = 1

m The absorption probability of s from state i is defined by

ai:P(lim Xn:s‘XO:i)

n—oo
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ABSORPTION PROBABILITY EQUATION

Let X be DTMC with a finite state space. Consider the absorption
probabilities of absorbing state s.

m If state 7 is recurrent
Gy = s

m If state 7 is transient
a; = P (lim X, = s|Xo = i)
n—oo

m

:ZP(JLIQOXn:sﬂXlzﬂXO:i)

<.
Il
L,

m
> P (X1 = j|Xo =) P ( lim X, = s5|X1 =)
7=1

b

Pijaj

<
I
2y
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EXAMPLE (7.10)

DTMC (a) has 2 recurrent classes, namely {1} and {4,5}. Merging
states 4,5 as a single absorbing state 6, we have DTMC (b). The
probability that DTMC (a) enters the recurrent class {4,5} from a
state is an absorption probability of state 6 in DTMC (b).
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EXAMPLE (7.11)

A gambler wins $1 at each round with probability p, and loses $1
with probability 1 — p. He gambles until he either accumulates $m
or loses all his money. What is the probability that he wins?

p p
p
@O ONNOEB OSSO
1-p 1-p :

Lose Win

Probability of winning depends on the amount of money he has.
Let state 7 represent the state that the gambler has ¢ dollars. The
probability that he wins is the absorption probability of m. For the
recurrent states

am =1, ag =0
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For the transient states

m

az':Zpijaj:(1—p)ai_1—|—pai+1, izl,---,m—l
j=0

= (1 —p)(a;i —ai-1) = p(ai+1 — a;)

= (Gi41 —a;) = (1;]9> (a; —a;—1)

1 —
= 0; = pdi—1, where §; = a;+1 —a;, p= —2
p

= 0 =poi_1=---=p'dy
From a,, —ap = (am — am—1) + -+ + (a1 — ap), we have

1—0=0m 1+ 40 =0+ +1)
1
— (5 e T———
0 pm—1_|_...+1
i SR

N ai:a0+50+---+5i—1:m
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DEFINITION (TIME TO ABSORPTION)
Let X be DTMC with a finite state space.

m The time to absorption is the first time to a recurrent state

T = min{n > 0, X,, = j where j is recurrent}

m The expected time to absorption from state i is

My = E[T‘Xo = Z]

Change of mode. Entering a recurrent state marks the switch of
a DTMC from short-term mode to long-term mode.
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EXPECTED TIME TO ABSORPTION
Let X be DTMC and pu; be expected time to absorption of state .

0, if 4 is recurrent

Wi = m e .
1+ > pijpy, if i is transient
i=1

I
&=

i = B[T'| Xo = i] = E[E[T[X1] [ Xo = 4]

P(Xl:j|X0:i)E[T|X1:jﬂX0:i]

-

1

.
Il

j=1

M

.
Il
—

m
pij(g +1) =14 piju
j=1

-

<.
Il
_
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EXAMPLE (POE DIVINATION)

For fair wood pieces, what is the expected number of drops until
back-to-back divines occur?

Define 3 states, where state ¢ means needing ¢ consecutive Ds to
end the drops. State 0 is an absorbing state. We have

po =0
m1 = 1+ 0.5#0 + 0.5/1,2
Mo = 1+ 0.5#2 + 0.5/1,1

The solution is 1 = 4 and pa = 6. Note pg = 6 agrees with the
conclusion reached earlier via total expectation.
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EXAMPLE (7.12)

Consider Example 7.2 with m = 4. What is the expected time for
the fly to be captured by a spider?

=
0.4 0.4 0.4 0.4
0.3 0.3 0.3 ‘ 0.3 “
0.3
AR 0.3 0.3 0.3 -

States 1 and 4 are recurrent states. We have

p1 =20
p2 =140.3p; + 0.4p2 + 0.3us3
H3 = 1+ 0.3#2 + 0.4#3 + 0.3,[1,4
pg =0

10

= H2= 3=
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Continuous-time Markov Chains
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DEFINITION (CONTINUOUS-TIME MARKOV CHAIN)

A continuous-time Markov chain (abbr. CTMC)
m is a continuous-time random process
m satisfies Markov property
m has a discrete state space

We assume time homogeneity in our discussion of CTMC.
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CTMC VARIABLES
Let X be a CTMC.

m [he random variables of X are

Ty 1> T3 Tn

Tn+1
Xo X1 Xo 7 000 Xn > Xny1---

m X, is the state variable after the nth state transition, not the
state variable at time n

m T, is the waiting time (in state X,,_1) of the nth state transition

v
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CTMC PROBABILITY MODELS

Let X be a CTMC with a finite state space.

m The waiting time for state transition is an exponential random
variable
Tn—l—l ’ (Xn = Z) ~ EXp(Vi)

m The distribution of next state is independent of the waiting time

P(Xpi1 = Xn=1,T,) = P(Xpny1 = j| Xpn = i) = pyj

P(Xnp1=i| X, =14)=p; =0
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CTMC EMBEDDING

Let X be a CTMC with a finite state space. Consider the sequence
of state variables
X' XoXg -

m X' is an embedded DTMC of X
m The TPM of X' is
P = {pi;}
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EXITING RATE AND TRANSITION RATE
Let X be a CTMC.

m The expected time to transition from state 7 is

o0 1
E[T, 1| X, =1i] = / tye Vitdt = —
0

Vi

m |t takes 1/{1 to exit state ¢ on average, so there are v; exits per
unit time

The state exiting rate from state i is v;

m A proportion p;; of the state transitions out of state ¢ go to
state 7

The state transition rate from state ¢ to state j is

qij = ViDij
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EXAMPLE (7.14)

A machine, once in production mode, operates continuously until
an alarm signal is generated. The time up to the alarm signal is
an exponential random variable with parameter 1. Subsequent to
the alarm signal, the machine is in test mode for an exponentially
distributed amount of time with parameter 5. The test results are
positive, with probability 1/2, in which case the machine returns
to production mode, or negative, with probability 1/2, in which
case the machine is taken for repair. The duration of the repair is
exponentially distributed with parameter 3. Construct a CTMC for
this machine.
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The states are production, test, and repair. The state transition
probabilities are

01 0
1 1
1 00

The state exiting rates are vy = 1,5 = 5,3 = 3. So the state
transition rates are

010
Q={vpy}=13 0 3
3 00
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CTMC CHARACTERIZATION

Let X be a CTMC. State exiting rates and state transition proba-
bilities of X can be derived from the state transition rates of X.

Suppose the state transition rates of X are
Gij, TFJ
m The state exiting rates of X are

Vi=Viy Dij = Y ViDij = Y dij
J J J

m The state transition probabilities of X are
Y

Pij = — == —
Vi 2.4
jl
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CTMC GRAPH REPRESENTATION
A CTMC can be represented by a graph.

m States are represented by nodes

m State transitions are represented by directed edges, which are
labelled by the state transition rates

From such a graph, we can determine model parameters 1i; and p;;.
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AuxiLIARY DTMC

Let X be a CTMC and X (t) be the state variable at time ¢t. Let Z
be the discrete-time random process defined by Z,, = X (nd) where
0> 0.

m Z satisfies the Markov property Z.,, L Z~, | Z,
m It is an auxiliary DTMC of X

Let P = {p;;} be the TPM of Z. For j # i
Dij = P(Zn41 = j| Zn = 1)
= (Z/Z5 + 0((5)) X Dij
—_———
transition from ¢ in §  transition to j
=V pij ) + 0((5)
= qij 1) + 0(5)
For j =1
Piu=1-=Y pij=1-0Y qi+o(5)
i i#i
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EXAMPLE (7.14 CONTINUED)
Let X be a CTMC for the machine. Let Z be an auxiliary DTMC
of X with Z,, = X (nd). If we neglect o(9) terms, the TPM of Z is

30 0 1-36
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CTMC ALTERNATIVE CHARACTERIZATION

Let X be a continuous-time random process with a finite value set
(state space). X is a CTMC if there exist g;; > 0 such that

_ . 50 + 0(9), J#i
PX(t+8)=4lX({E) =90 =115 g6+ 0(8), j=1i
i
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EXAMPLE (7.15)

Let the arrivals of packets at a node be a Poisson process with rate
A. Upon arrival, a packet is either stored in a buffer for m packets,
or discarded if the buffer is full. The time to transmit a packet is
exponential with parameter y. Show that the buffer can be modeled
as a CTMC.

A A A A
" u u u

v

Let X be a random process counting the packets in the buffer. X
is a CTMC as we have

P(X(t+68)=i—1|X(t)=i)=pud+0(5), i=1,-,m
P(X(t+68)=i+1|X(t)=i) =M +0(5), i=0,--,m—1
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CTMC STEADY-STATE PROBABILITIES

Let X be a CTMC with a finite state space.
m The steady-state probability of state j is defined by

m; = lim P(X(t) = j)

t—o00

m Let Z be an auxiliary DTMC of X. Then

lim P(X(t) =j) = lim P(Z,=j)

t—o00 n—00
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CTMC BALANCE EQUATIONS

Let X be a CTMC with a finite state space, a single recurrent class,
and state transition rates g;;. The steady-state probabilities of X
satisfy the balance equations

T Gk =Y Tklkj, Vj

k#j k#j

Let Z be an auxiliary DTMC of X with Z,, = X (nd). We have

T = Zﬁkﬁkj = m;pjj + Z TPk
k k#j

=T;j (1 -4 Z ¢k + 0(5)) + Z Tk (qrjd + 0(9))
k#j k#j
Thus

j qu‘k = Zﬂ'kaj

k£ k]
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EXAMPLE (7.14 CONTINUED)
What are the steady-state probabilities of Example 7.147

The balance equations are

5 5 5 5
m1(140) = §7T2+37T3,7T2 (2 + 2) = m 4073, m3(3+0) = 07T1+§7T2

We also have
m+me+m3=1
Hence

30 6 )

M= M=o

™= 1 1
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CONTINUOUS-TIME BIRTH-DEATH PROCESSES

A continuous-time birth-death process is a CTMC, in which the
states are linearly arranged and only transitions to neighboring states
are possible.

LOCAL BALANCE EQUATIONS

For a continuous-time birth-death process, the transition rate from
i to 7 + 1 equals the transition rate from i + 1 to 7.

T3 Qii+1 = Ti+1Gi+14
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EXAMPLE (7.15 CONTINUED)

What are the steady-state probabilities of Example 7.157

The local balance equations are

A = Tip1fh = Tyl =T <;\> = TP
= T = mp
We find my by normalization equation mg + 71 + - -+ + 7, = 1.
mo(l+p+-+p") =1 = mo=0+p+---+p")"
Then we find the other probabilities

P’ A
mapzi

T 1l4p+-+p [

T
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SUMMARY 1

Chapman-Kolmogorov equations for n-step transition

rij(1) = pij, rij(n) = Z rig(n — Dpr; (R, = P")
k=1

Steady-state convergence theorem

Jim rij(n) = lim P(X, = j)

Balance equations of DTMC

m
szzﬂ-kpkja .7:17 , TN
k=1
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SUMMARY 2

Exponential waiting time to a state transition

ST 1) Xn=i(t) = vie " u(t — 0)

State transition probability

PG = 9105 = 6) = my

Transition rate to state j while in state ¢

qij = ViPij
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SUMMARY 3

An auxiliary DTMC Z of a CTMC X

Zn = X(no)

Balance equations of CTMC

j qu'k = Zﬂ'kaj

k#j kj

Local balance equations of CTMC

TiQij = M;Q55, j =1 +£1
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