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Sets
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Definition (set and member)
A set is a collection (may be empty) of objects
An object in a set is called a member or an element of the set

member
↓

set −→ {dog, bear, pig}
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Definition (universal set and empty set)
A universal set contains all objects of interest
An empty set does not contain any member

A universal set is often denoted by Ω. For example

Ω = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

if we are discussing random outcome of a digit.
We denote an empty set by ∅. That is

∅ = { }
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Definition (subset)
Let T be a set. A subset of T is formed by member(s) of T . Note
that, by definition, ∅ is a subset of every set.

Let S be a subset of T .
This is denoted by

S ⊂ T

Every member of S is a member of T

For example, Ω = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and S = {2, 3, 5, 7}

S ⊂ Ω
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Sets in probability theory
Many concepts in probability theory are based on sets. In particular

A sample space is a universal set
A field is a set of subsets of the sample space with certain
properties
An event is a member of the field and a subset of the sample
space
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Definition (set operation)
Let Ω be a universal set and A, B ⊂ Ω.

complement
Ac = {x ∈ Ω | x /∈ A}

union
A ∪ B = {x | x ∈ A or x ∈ B}

intersection

A ∩ B = {x | x ∈ A and x ∈ B}

For the above example

Sc = {0, 1, 4, 6, 8, 9}

S ∪ Sc = Ω

S ∩ Sc = ∅
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Set algebra
Let Ω be a universal set and S, T, U ⊂ Ω.

commutative law

S ∩ T = T ∩ S, S ∪ T = T ∪ S

associative law

S ∩ (T ∩ U) = (S ∩ T ) ∩ U, S ∪ (T ∪ U) = (S ∪ T ) ∪ U

distributive law

S∩(T ∪U) = (S∩T )∪(S∩U), S∪(T ∩U) = (S∪T )∩(S∪U)

identity
S ∪ Sc = Ω, S ∩ Sc = ∅

S ∪ ∅ = S, S ∩ ∅ = ∅, S ∪ Ω = Ω, S ∩ Ω = S
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Boolean algebra (bit algebra)
Note the similarity between set algebra and bit algebra.

Let p, q, r be bits (0 and 1).

p ∧ q = q ∧ p, p ∨ q = q ∨ p

p ∧ (q ∧ r) = (p ∧ q) ∧ r, p ∨ (q ∨ r) = (p ∨ q) ∨ r

p ∧ (q ∨ r) = (p ∧ q) ∨ (p ∧ r), p ∨ (q ∧ r) = (p ∨ q) ∧ (p ∨ r)

p ∨ ¬p = 1, p ∧ ¬p = 0

p ∨ 0 = p, p ∧ 0 = 0, p ∨ 1 = 1, p ∧ 1 = p
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De Morgan’s law
Let Ω be a universal set and S1, . . . , Sn be subsets of Ω. Then(

n⋃
i=1

Si

)c

=
n⋂

i=1
Sc

i

(
n⋂

i=1
Si

)c

=
n⋃

i=1
Sc

i

Complement of union is intersection of complements
Complement of intersection is union of complements
Base case

(A ∪ B)c = Ac ∩ Bc

(A ∩ B)c = Ac ∪ Bc
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Proof.

x ∈

(
n⋃

i=1

Si

)c

⇔ x /∈

(
n⋃

i=1

Si

)
⇔ x /∈ Si for every i

⇔ x ∈ S
c
i for every i

⇔ x ∈

n⋂
i=1

S
c
i

x ∈

(
n⋂

i=1

Si

)c

⇔ x /∈

(
n⋂

i=1

Si

)
⇔ x /∈ Si for some i

⇔ x ∈ S
c
i for some i

⇔ x ∈

n⋃
i=1

S
c
i

Note
A = B ⇔ (x ∈ A ⇔ x ∈ B)
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Definition (disjoint sets)
Sets A and B are said to be disjoint if

A ∩ B = ∅

A group of sets is said to be disjoint if any pair of sets in the
group are disjoint
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Definition (partition of a set)
Let T be a set. A partition of T is a group of sets such that

the group is disjoint
the group union is T

In the earlier example of digits, is (S, Sc) a partition of Ω?
Yes, since we have

S ∩ Sc = ∅

S ∪ Sc = Ω
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Venn diagrams

Useful for showing set relations and set operations
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Random Experiment and Probability Model
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Definition (random experiment)
A procedure that produces a random outcome
The stopping criteria and final outcome must be clear

Example
Flip a coin 3 times and record the 3-long sequence
Flip 3 coins and record the number of heads
Flip a coin until back-to-back heads show up and record the
number of flips
Draw 3 cards from a deck with replacement and record the 3-
long sequence
Draw 3 cards from a deck without replacement and record the
3-long sequence
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Definition (sample space)
A set for the possible outcomes of a random experiment
Members of a sample space must be exclusive and exhaustive

Example
Consider the random experiment of throwing a dice once.

If we care about which face comes up, use {1, 2, 3, 4, 5, 6} as
sample space
If we only care about whether the outcome is even or odd, use
{even, odd} as sample space
Both sets are exclusive and exhaustive
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Example (1.1 Choice of sample space)
Consider two games involving n successive coin tosses.

Game A: We receive $1 each time a head comes up.
Game B: The reward for the next toss is doubled whenever a
head comes up. Specifically, we receive $1 for each coin toss,
up to and including the first time a head comes up; after the
first head, we receive $2 for each coin toss, up to and including
the second time a head comes up, etc.

Choice of sample space
Game A: the number of heads (n + 1 members)
Game B: all length-n binary sequences (2n members)

Chia-Ping Chen Probability
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Definition (finite set, countable set)
A set is finite if it has a finite number of members
Otherwise, it is infinite
A set is countable if there exists a one-to-one mapping from
this set to (not necessarily onto) the set of natural numbers
Otherwise, it is uncountable
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Size of sample space
A sample space may be finite or infinite
An infinite sample space may be countable or uncountable

Example (Sample space sizes)
Flip a coin once
→ A sample space is Ω1 = {H, T}. It is finite.
Flip a coin until a head comes up
→ A sample space is Ω2 = {ω1, ω2, . . . }, where ωn means that
the first head shows up at the nth flip. Ω2 is countable.
Flip a coin forever
→ A sample space Ω3 is the set of infinite sequences of heads
and tails. Ω3 is 1-to-1 to the set of real numbers in [0, 1] if we
let bit 1 denote head and bit 0 denote tail. It is uncountable.
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Definition (probability model)
A probability model is a triplet

(Ω, F , P )

Ω is a sample space
F , called field, is a set of subsets of Ω
P , called probability law, is a mapping from F to [0, 1]

In other words
Ω consists of exclusive and exhaustive outcomes
Every member of F is a subset of Ω
Every member of F is assigned a probability by P

Chia-Ping Chen Probability
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Probability model construction

random experiment: produce random outcome
⇓

sample space Ω: exclusive and exhaustive set of outcomes
⇓

field F : set of subsets of Ω
⇓

probability law: mapping F to [0, 1]

An event is a member of F .
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Sequential experiment
A random experiment may be sequential
Then the sample space may be structured by a tree
Depth corresponds to stage

Chia-Ping Chen Probability



25/102

Field properties
Let (Ω, F , P ) be a probability model. By definition, F is a set of
subsets of Ω. Furthermore

F contains Ω
Ω ∈ F

F is closed with respect to set intersection

(S1 ∈ F) ∧ (S2 ∈ F) ⇒ (S1 ∩ S2 ∈ F)

F is closed with respect to set union

(S1 ∈ F) ∧ (S2 ∈ F) ⇒ (S1 ∪ S2 ∈ F)

F is closed with respect to set complement

(S ∈ F) ⇒ (Sc ∈ F)
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Example (fields)
Let Ω be a sample space.

1 The power set of Ω defined by P(Ω) = {S | S ⊂ Ω} is a field
2 For any S ⊂ Ω, {∅, S, Sc, Ω} is a field
3 What is the smallest field with sample space Ω?
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Definition (event)
Let (Ω, F , P ) be a probability model. Every member of F is called
an event of the model.

For example, for the field F = {∅, S, Sc, Ω}, the events are

∅, S, Sc, Ω
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Probability law
Let (Ω, F , P ) be a probability model.

P maps F to [0, 1]

P : F 7→ [0, 1]

That is, for every event A ∈ F , we have

0 ≤ P (A) ≤ 1

P (A) is called the probability of A
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Probability axioms
Let (Ω, F , P ) be a probability model. The probability law P must
have the following properties.

non-negativity

P (A) ≥ 0, for any event A ∈ F

normalization
P (Ω) = 1

additivity

P (A ∪ B) = P (A) + P (B), for any disjoint events A and B
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Union probability (2 sets)
Let (Ω, F , P ) be a probability model. For any events A and B we
have

P (A ∪ B) = P (A) + P (B) − P (A ∩ B)

P (A ∪ B) = P (A) + P (B ∩ Ac)
= P (A) + P (B) − P (A ∩ B)
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Union probability (3 sets)
Let (Ω, F , P ) be a probability model. For any events A, B and C
we have

P (A ∪ B ∪ C) = P (A) + P (B) + P (C)
− P (A ∩ B) − P (A ∩ C) − P (B ∩ C)

+ P (A ∩ B ∩ C)

P (A ∪ B ∪ C) = P (A ∪ B) + P (C) − P (C ∩ (A ∪ B))
= P (A ∪ B) + P (C) − P ((C ∩ A) ∪ P (C ∩ B))
= P (A ∪ B) + P (C) − (P (C ∩ A) + P (C ∩ B) − P (C ∩ A ∩ B))
= P (A) + P (B) − P (A ∩ B) + P (C) − (P (C ∩ A) + P (C ∩ B) − P (C ∩ A ∩ B))
= P (A) + P (B) + P (C) − P (A ∩ B) − P (A ∩ C) − P (B ∩ C) + P (A ∩ B ∩ C)
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Inclusion-exclusion principle
Let (Ω, F , P ) be a probability model. For any events A1, . . . , An,
the probability of set union is related to the probabilities of set
intersection by

P

(
n⋃

i=1
Ai

)
=

n∑
i=1

P (Ai)

−
n∑

i=1

n∑
j=i+1

P (Ai ∩ Aj)

+
n∑

i=1

n∑
j=i+1

n∑
k=j+1

P (Ai ∩ Aj ∩ Ak)

+ · · · + (−1)n+1P

(
n⋂

i=1
Ai

)
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The equality holds for the base case n = 2

P (A1 ∪ A2) = P (A1) + P (A2) − P (A1 ∩ A2)

For the induction case, the induction assumption is that the equality holds for n = k

P

(
k⋃

i=1

Ai

)
=

k∑
i=1

P (Ai) −

k∑
i=1

k∑
j=i+1

P (Ai ∩ Aj ) + · · · + (−1)k+1
P

(
k⋂

i=1

Ai

)

For n = k + 1, we have

P

(
k+1⋃
i=1

Ai

)
= P

((
k⋃

i=1

Ai

)
∪ Ak+1

)

= P

(
k⋃

i=1

Ai

)
+ P (Ak+1) − P

((
k⋃

i=1

Ai

)
∩ Ak+1

)

= P

(
k⋃

i=1

Ai

)
+ P (Ak+1) − P

(
k⋃

i=1

(Ai ∩ Ak+1)

)
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Using the induction assumption, we re-write the last term

P

(
k⋃

i=1

(Ai ∩ Ak+1)

)
=

k∑
i=1

P (Ai ∩ Ak+1)

−

k∑
i=1

k∑
j=i+1

P ((Ai ∩ Ak+1) ∩ (Aj ∩ Ak+1)) + · · · + (−1)k+1
P

(
k⋂

i=1

(Ai ∩ Ak+1)

)

=

k∑
i=1

P (Ai ∩ Ak+1) −

k∑
i=1

k∑
j=i+1

P (Ai ∩ Aj ∩ Ak+1) + · · · + (−1)k+1
P

(
k+1⋂
i=1

Ai

)

and get

P

(
k+1⋃
i=1

Ai

)
=

k+1∑
i=1

P (Ai) −

k+1∑
i=1

k+1∑
j=i+1

P (Ai ∩ Aj ) + · · · + (−1)k+2
P

(
k+1⋂
i=1

Ai

)

Thus, the equality holds for n = k + 1 if it holds for n = k.
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Definition (discrete probability model)
Let (Ω, F , P ) be a probability model. It is discrete if Ω is countable.

P is often specified by the probabilities of the members of Ω
For any event A

P (A) =
∑
ω∈A

P (ω)
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Definition (continuous probability model)
Let (Ω, F , P ) be a probability model. It is continuous if Ω is un-
countable.

P is often specified by the probabilities of infinitesimal subsets
of Ω
For an event S ∈ F , partition S to infinitesimal subsets

S =
⋃
i

∆i

Then
P (S) =

∑
i

P (∆i)
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Uniform model
Let (Ω, F , P ) be a probability model. It is said to be uniform if P
has no preference to any member of Ω.

discrete uniform model

P (A) = |A|
|Ω|

, A ∈ F

continuous uniform model

P (A) = vol(A)
vol(Ω) , A ∈ F

Chia-Ping Chen Probability
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Example (1.2 Probability model)
Construct a probability model for a single toss of a fair coin
Construct a few probability models for 3 tosses of a fair coin
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Example (1.3 Discrete uniform model)
Consider rolling a pair of dice of 4 sides. Assume the dice are fair.
Calculate the probability of the following events.

The sum of the rolls is even
The sum of the rolls is odd
The first equals the second
The first ≥ the second
At least one roll is 4

Ω = {1, 2, 3, 4} × {1, 2, 3, 4}
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Example (1.4 Continuous uniform model)
A wheel of fortune is uniformly calibrated from 0 to 1. The outcome
of a spin is a point in Ω = (0, 1).

What is the probability of a single number?
What is the probability of an interval (a, b) ⊂ Ω ?
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Example (1.5 Continuous uniform model)
Romeo and Juliet have a date. Each arrives with a delay between 0
and 1 hour, all times of delay being equally likely, and waits for 15
minutes. What is the probability that they meet?

X, Y : delays of R and J
Sample space

Ω = [0, 1] × [0, 1]

Event that they meet

M =
{

(X, Y )
∣∣∣∣ |X − Y | ≤ 1

4

}

P (M) = 1 − 9
16 = 7

16
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Conditional Probability
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Definition (conditional probability)
Let (Ω, F , P ) be a probability model and A, B ∈ F be events. The
conditional probability of A given (the occurrence of) B is defined
by

P (A|B) = P (A ∩ B)
P (B)

Implicitly assume B has non-zero probability
Probability is exclusively re-allocated to B

P (B) in denominator re-normalizes probability
Only outcomes in B matter, so P (A|B) ∝ P (A ∩ B)
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Definition (conditional probability model)
Let (Ω, F , P ) be a probability model and B ∈ F be an event.
Define PB : F 7→ [0, 1] with PB(S) = P (S|B) for all S ∈ F . Then
(Ω, F , PB) is a probability model.

non-negativity

PB(S) =
P (S ∩ B)

P (B)
≥ 0

normalization
PB(Ω) =

P (Ω ∩ B)
P (B)

=
P (B)
P (B)

= 1

additivity

S1 ∩ S2 = ∅ ⇒ PB(S1 ∪ S2) =
P ((S1 ∪ S2) ∩ B)

P (B)

=
P ((S1 ∩ B) ∪ (S2 ∩ B))

P (B)

=
P (S1 ∩ B)

P (B)
+

P (S2 ∩ B)
P (B)

−
P (S1 ∩ S2 ∩ B)

P (B)

=
P (S1 ∩ B)

P (B)
+

P (S2 ∩ B)
P (B)

= PB(S1) + PB(S2)

Chia-Ping Chen Probability



45/102

Conditional probability of union and intersection

P (A ∩ B|C) = P (A|B ∩ C)P (B|C)

P (A ∪ B|C) = P (A|C) + P (B|C) − P (A ∩ B|C)

P (A ∩ B|C) =
P (A ∩ B ∩ C)

P (C)

=
P (A ∩ B ∩ C)

P (B ∩ C)
P (B ∩ C)

P (C)

= P (A|B ∩ C)P (B|C)

P (A ∪ B|C) =
P ((A ∪ B) ∩ C)

P (C)

=
P ((A ∩ C) ∪ (B ∩ C))

P (C)

=
P (A ∩ C) + P (B ∩ C) − P (A ∩ B ∩ C)

P (C)

= P (A|C) + P (B|C) − P (A ∩ B|C)
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Example (1.6 Conditional probability)
Toss a fair coin three times. Define events

A = {more heads than tails come up}
B = {1st toss is a head}

Compute P (A|B).

Ω = {H, T} × {H, T} × {H, T}
A = {HHH, HHT, HTH, THH}
B = {HHH, HHT, HTH, HTT}

A ∩ B = {HHH, HHT, HTH}

P (A|B) = P (A ∩ B)
P (B) =

3
8
4
8

= 3
4
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Example (1.7 Conditional probability)

A fair four-face dice is rolled twice,
with outcomes X and Y . Define

Am = {max(X, Y ) = m}
B = {min(X, Y ) = 2}

Compute P (Am|B), m = 1, 2, 3, 4.

Ω = {(x1, x2) | x1,2 = 1, 2, 3, 4}
A1 = {(1, 1)}, A2 = {(1, 2), (2, 2), (2, 1)}, . . .

B = {(2, 2), (2, 3), (2, 4), (3, 2), (4, 2)}
A1 ∩ B = ∅, A2 ∩ B = {(2, 2)}, A2 ∩ B = {(3, 2), (2, 3)}, . . .

P (Am|B) = P (Am ∩ B)
P (B)
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Example (1.8 Conditional probability)
A conservative team and an innovative team are asked to design a
new product within a month. Based on past experience

the conservative team is successful with probability 2/3
the innovative team is successful with probability 1/2
at least one team is successful with probability 3/4

Given that exactly one team is successful, what is the probability
that it is the innovative team?

Let A be the event that the conservative team succeeds and B be
the event that the innovative team succeeds. From the problem
statement, we have

P (A) = 2
3 , P (B) = 1

2 , P (A ∪ B) = 3
4

Chia-Ping Chen Probability
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With the help of Venn diagram, we have

P (A ∩ B) = P (A) + P (B) − P (A ∪ B) =
5

12

P (A ∩ B
c) = P (A) − P (A ∩ B) =

2
3

−
5

12
=

1
4

P (A
c ∩ B) = P (B) − P (A ∩ B) =

1
2

−
5

12
=

1
12

Thus

P (B | (A ∩ B
c) ∪ (A

c ∩ B)) =
P (B ∩ ((A ∩ Bc) ∪ (Ac ∩ B)))

P ((A ∩ Bc) ∪ (Ac ∩ B))

=
P ((B ∩ (A ∩ Bc)) ∪ (B ∩ (Ac ∩ B)))

P (A ∩ Bc) + P (Ac ∩ B) − P ((A ∩ Bc) ∩ (Ac ∩ B))

=
P (Ac ∩ B)

P (A ∩ Bc) + P (Ac ∩ B)

=
1
4
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Factorization
Let (Ω, F , P ) be a probability model and A, B ∈ F be events. Then

P (A ∩ B) = P (A) P (B|A)

P (A ∩ B) = P (B) P (A|B)

One event at a time

”A and B occur” = ”A occurs” + ”B occurs given A occurs”

Factorization (a.k.a. multiplication rule or chain rule)

P (A1 ∩ · · · ∩ An) = P (A1)
n∏

k=2

Ak occurs given A1 . . . Ak−1 occur︷ ︸︸ ︷
P (Ak|A1 ∩ · · · ∩ Ak−1)
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Joint event as sequence of single events
Arrange sequence of events in a tree

Start from root
An edge for every possible next event
Every node corresponds to a joint event

Probability of an edge: conditional probability
Probability of a node: joint probability

Chia-Ping Chen Probability
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Example (1.9)
If an aircraft is present in a military zone, a radar detects it and
generates a (true) alarm with probability 0.99. If an aircraft is not
present, the radar generates a (false) alarm with probability 0.10.
Suppose that an aircraft is present with probability 0.05. What is
the probability of no aircraft presence and a (false) alarm? What is
the probability of aircraft presence and no detection, i.e. a miss?

Define
A = {an aircraft is present}
B = {radar generates alarm}

From the problem statement, we have

P (A) = 0.05, P (B|A) = 0.99, P (B|Ac) = 0.1

By factorization rule

P (B ∩ A
c) = P (A

c)P (B|Ac) = 0.95 × 0.1

P (B
c ∩ A) = P (A)P (B

c|A) = 0.05 × 0.01
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Example (1.10)
3 cards are drawn from a 52-card deck without replacement. What
is the probability that not a Heart is drawn?

Define Ai = {drawn card i is not a Heart}. From the definition, we
have

P (A1) = 39
52 , P (A2|A1) = 38

51 , P (A3|A1 ∩ A2) = 37
50

Define A = {not a Heart is drawn}. Then
A = A1 ∩ A2 ∩ A3. By factorization

P (A) = P (A1 ∩ A2 ∩ A3)
= P (A1)P (A2|A1)P (A3|A1 ∩ A2)

= 39
52

38
51

37
50
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Example (1.11)
Four graduate and 12 undergraduate students are divided into four
groups of four students. What is the probability that every group
includes a graduate student?

Define Ai = {graduate students 1, . . . , i, i + 1 in different groups}.
From the problem statement, we have

P (A1) = 12
15 , P (A2|A1) = 8

14 , P (A3|A2) = 4
13

Note A3 = {every group includes a graduate student}.
Since A3 = A1 ∩ A2 ∩ A3, we have

P (A3) = P (A1 ∩ A2 ∩ A3)
= P (A1)P (A2|A1)P (A3|A2 ∩ A1)

= 12
15

8
14

4
13

Chia-Ping Chen Probability



55/102

Total Probability Theorem
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Total probability through a partition
Let (Ω, F , P ) be a probability model, A1 . . . An be events, and
(A1, . . . , An) be a partition of Ω. The for any event B

P (B) =
n∑

i=1
P (Ai)P (B|Ai)

B = Ω ∩ B =
(

n⋃
i=1

Ai

)
∩ B =

n⋃
i=1

(Ai ∩ B)

P (B) = P

(
n⋃

i=1
(Ai ∩ B)

)
=

n∑
i=1

P (Ai ∩ B)

Using factorization, we have

P (B) =
n∑

i=1
P (Ai)P (B|Ai)
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How TPT works
Use partition (A1, . . . , An) of Ω such that P (Ai) and P (B|Ai)
can be decided
(A1 ∩ B, . . . , An ∩ B) is a partition of B

(Ai ∩ B) has probability P (Ai)P (B|Ai)
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Example (Total probability)
You win if the sum of two rolls of a fair six-face dice is more than
9. What is the probability of winning?

Define B = {you win} and Ai = {first roll is i}. Using partition
(A1, . . . , A6), we have

P (B) =
6∑

i=1
P (Ai ∩ B)

=
6∑

i=1
P (Ai)P (B|Ai)

= 1
6 · 0

6 + 1
6 · 0

6 + 1
6 · 0

6 + 1
6 · 1

6 + 1
6 · 2

6 + 1
6 · 3

6
= 6

36
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Example (1.13 Total probability)
In a chess tournament, your probability of winning a game is 0.3
against half the players, 0.4 against a quarter of the players, and 0.5
against the remaining players. You play a game against a randomly
chosen opponent. What is the probability of winning?

Define B = {you win} and Ai = {an opponent of type i is chosen}.
Using partition (A1, A2, A3), we have

P (B) =
3∑

i=1
P (Ai ∩ B)

=
3∑

i=1
P (Ai)P (B|Ai)

= 1
2(0.3) + 1

4(0.4) + 1
4(0.5)
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Example (1.14 Total probability)
You roll a fair four-face dice. If the result is 1 or 2, you roll once
more, otherwise you stop. What is the probability that the total of
the roll(s) is at least 4?

Define B = {total is at least 4} and Ai = {first roll is i}. Using
partition (A1, . . . , A4), we have

P (B) =
4∑

i=1
P (Ai ∩ B)

=
4∑

i=1
P (Ai)P (B|Ai)

= 1
4 · 2

4 + 1
4 · 3

4 + 1
4 · 0 + 1

4 · 1
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Example (1.15 Total probability)
Alice is taking a course. At the end of a week, she is either up-to-
date or behind. If she is up-to-date, she will be up-to-date the next
week with probability 0.8. If she is behind, she will be behind the
next week with probability 0.6. What is the probability that she is
up-to-date after three weeks?

Define
Ui = {up-to-date at the end of week i}

Bi = {behind at the end of week i}

Note (Ui, Bi) is a partition of Ω for any i. Thus

P (Ui+1) = P (Ui+1|Ui) P (Ui) + P (Ui+1|Bi)P (Bi)
= 0.8 P (Ui) + 0.4 P (Bi)

P (Bi+1) = P (Bi+1|Ui) P (Ui) + P (Bi+1|Bi)P (Bi)
= 0.2 P (Ui) + 0.6 P (Bi)
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Total conditional probability
Let (Ω, F , P ) be a probability model, (A1, . . . , An) be a partition
of Ω. Then for any events B and C

P (B|C) =
n∑

i=1
P (Ai|C)P (B|Ai ∩ C)

P (B|C) = P
((

∪n
i=1Ai

)
∩ B|C

)
= P
(

∪n
i=1 (Ai ∩ B) |C

)
=

P
(

∪n
i=1 (Ai ∩ B ∩ C)

)
P (C)

=

n∑
i=1

P (Ai ∩ B ∩ C)
P (C)

=

n∑
i=1

P (Ai ∩ B ∩ C)P (Ai ∩ C)
P (Ai ∩ C)P (C)

=

n∑
i=1

P (Ai|C)P (B|Ai ∩ C)
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Bayes Rule
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Bayes rule
Let (Ω, F , P ) be a probability model and A, B be events. Then
P (A) and P (A|B) are related by

P (A|B) = P (B|A)P (A)
P (B)

Applying the definition of conditional probability, we get

P (A|B) = P (A ∩ B)
P (B)

= P (B|A)P (A)
P (B)

Let A be hypothesis and B be information (data). P (A) is the prior
probability of A, P (A|B) is the posterior probability of A given B,
P (B|A) is the likelihood of B conditional on A. Bayes rule means

posterior ∝ prior × likelihood
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Bayes theorem
Let (Ω, F , P ) be a probability model and (A1, . . . , An) be a partition
of Ω. Then for any event B

P (Ak|B) = P (Ak)P (B|Ak)
n∑

i=1
P (Ai)P (B|Ai)

, k = 1, . . . , n

P (Ak|B) = P (Ak ∩ B)
P (B)

= P (Ak ∩ B)
n∑

i=1
P (Ai ∩ B)

= P (Ak)P (B|Ak)
n∑

i=1
P (Ai)P (B|Ai)
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Cause-effect scenario

Event B denotes an Effect (Shade Observed)
Event Ai denotes Cause i that could lead to the Effect
Without observation, the prior probability of Cause i is P (Ai)
After the Effect is observed (B occurs), the probability of Cause
i is updated to P (Ai|B) by Bayes rule
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Example (1.12 Monty Hall problem)
You are told that a prize is equally likely to be placed behind any
one of three closed doors in front of you. You first choose one of
the doors. The host opens another door for you, after making sure
that the prize is not behind it. At this point, you can stick with your
choice, or switch to the other door. Will you switch?

Define A = {Prize door is chosen} and B = {Empty door is opened}.
By Bayes rule

P (A|B) = P (A)P (B|A)
P (A)P (B|A) + P (Ac)P (B|Ac) =

1
3 · 1

1
3 · 1 + 2

3 · 1
= 1

3

P (Ac|B) = P (Ac)P (B|Ac)
P (A)P (B|A) + P (Ac)P (B|Ac) = 2

3

Believe it or not, the probability that the prize is behind the other
door is doubled as soon as an empty door is open.
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Example (1.16 Bayes)
Refer to Example 1.9. Given that an alarm has been generated by
the radar, what is the probability that an aircraft is present?

Define A = {aircraft is present} and B = {radar generates alarm}.
By Bayes rule

P (A|B) = P (A)P (B|A)
P (A)P (B|A) + P (Ac)P (B|Ac)

= (0.05)(0.99)
(0.05)(0.99) + (0.95)(0.1)
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Example (1.17 Bayes)
Refer to Example 1.13. Given that you have won a game, what is
the probability that the opponent is of type 1?

Define Ai = {play an opponent of type i} and B = {you win}. By
Bayes rule

P (A1|B) = P (A1)P (B|A1)
3∑

i=1
P (Ai)P (B|Ai)

=
1
2(0.3)

1
2(0.3) + 1

4(0.4) + 1
4(0.5)
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Example (1.18 Bayes)
The test result of a certain rare disease is correct 95% of the time.
A person has a probability of 0.001 of having the disease. Given
that a person has just tested positive, what is the probability that
the person actually has the disease?

Define A = {has disease} and B = {test positive}. By Bayes rule

P (A|B) = P (A)P (B|A)
P (A)P (B|A) + P (Ac)P (B|Ac)

= (0.001)(0.95)
(0.001)(0.95) + (0.999)(0.05)

Here the probability that a person has the disease is still below 5%
after test positive, even the test result is 95% correct.
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Example (Probability in bridge)
A newbie always leads a Spade. He knows not to lead an honor
if he has a choice. Suppose the declarer has 10-card Spade suit
missing K, 3, 2 and the newbie leads Spade 2 from West. What is
the probability that East has Spade K? Spade 3? (3-0 split is 22%)

Define B = {2 played}, A1 = {West has 2}, A2 = {West has 2, 3},
and A3 = {West has 2, K}, A4 = {West has 2, 3, K}. By Bayes
rule

P (Ak|B) = P (Ak)P (B|Ak)∑4
i=1 P (Ai)P (B|Ai)

Probability that East has Spade K

P (A1 ∪ A2|B) = P (A1)P (B|A1) + P (A2)P (B|A2)∑4
i=1 P (Ai)P (B|Ai)

= 39
76

Probability that East has Spade 3

P (A1 ∪ A3|B) = P (A1)P (B|A1) + P (A3)P (B|A3)∑4
i=1 P (Ai)P (B|Ai)

= 52
76

Chia-Ping Chen Probability



72/102

Independence

Chia-Ping Chen Probability



73/102

Definition (independent events)
Let (Ω, F , P ) be a probability model. Events A, B ∈ F are inde-
pendent if

P (A ∩ B) = P (A)P (B)

Note independence requires A, B to have non-zero probabilities.

Independence is denoted by

A ⊥⊥ B
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Disjointness vs. Independence
Let (Ω, F , P ) be a probability model and A, B ∈ F have non-zero
probabilities.

A ⊥̸⊥ B if they are disjoint
A ⊥⊥ B then they are not disjoint

A ∩ B = ∅ ⇒ 0 = P (A ∩ B) ̸= P (A)P (B) > 0 ⇒ A ⊥̸⊥ B

A ⊥⊥ B ⇒ P (A ∩ B) = P (A)P (B) > 0 ⇒ A ∩ B ̸= ∅
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Invariance of probability
Let (Ω, F , P ) be a probability model and A ⊥⊥ B. Then

P (B|A) = P (B) and P (A|B) = P (A)

By factorization

P (A ∩ B) = P (A)P (B|A) = P (A)P (B)

By independence

P (A ∩ B) = P (A)P (B)

Hence
P (B|A) = P (B)

Similarly
P (A|B) = P (A)
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Definition (conditional independence)
Let (Ω, F , P ) be a probability model and A, B, C ∈ F have non-zero
probabilities. By definition, A and B are conditionally independent
given C if

P (A ∩ B|C) = P (A|C)P (B|C)

Conditional independence is denoted by

A ⊥⊥ B | C
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Invariance of conditional probability
Let (Ω, F , P ) be a probability model and A ⊥⊥ B | C. Then

P (A|C) = P (A|B ∩ C) and P (B|C) = P (B|A ∩ C)

By factorization

P (A ∩ B|C) = P (A|B ∩ C)P (B|C)

By conditional independence

P (A ∩ B|C) = P (A|C)P (B|C)

Hence
P (A|C) = P (A|B ∩ C)

Similarly
P (B|C) = P (B|A ∩ C)
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Example (1.20 Independence ⇏ CI)
For 2 tosses of a fair coin, define events Hi = {toss i is a head}
and D = {2 tosses have different results}.

H1 ⊥⊥ H2

P (H1 ∩ H2) = 1
4 = 1

2
1
2 = P (H1)P (H2)

H1 ⊥̸⊥ H2 | D

P (H1 ∩ H2|D) = 0 ̸= 1
2

1
2 = P (H1|D)P (H2|D)
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Example (1.21 CI ⇏ independence)
The probability of head is 0.99 for a blue coin and 0.01 for a red coin.
We choose one coin with equal probability, and toss the coin twice.
Define Hi = {toss i is a head} and B = {blue coin is chosen}.

H1 ⊥⊥ H2 | B

P (H1 ∩ H2|B) = P (H1|B)P (H2|B)

H1 ⊥̸⊥ H2

P (H1) = P (H1|B)P (B) + P (H1|Bc)P (Bc) = 1
2 = P (H2)

P (H1 ∩ H2) = P (H1 ∩ H2 ∩ B) + P (H1 ∩ H2 ∩ Bc)
= P (H1 ∩ H2|B)P (B) + P (H1 ∩ H2|Bc)P (Bc)
̸= P (H1)P (H2)
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Definition (joint independence)
Let A1, . . . , An be events. By definition, they are jointly indepen-
dent if and only if

P

(⋂
i∈S

Ai

)
=
∏
i∈S

P (Ai)

holds for every S ⊂ {1, . . . , n}.

In particular, joint independence implies joint factorization

P

(
n⋂

i=1
Ai

)
=

n∏
i=1

P (Ai)

and pair-wise factorization

P (Ai ∩ Aj) = P (Ai)P (Aj), i ̸= j
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Example (1.22 Pair-wise ⇏ Joint factorization)
For 2 tosses of a fair coin, define Hi = {toss i is head} and D =
{2 tosses have different results}. We have

P (H1) = 1
2 = P (H2) = P (D)

Pair-wise factorization holds

P (H1 ∩ H2) = 1
4 = 1

2
1
2 = P (H1)P (H2)

P (H1 ∩ D) = 1
4 = 1

2
1
2 = P (H1)P (D)

P (H2 ∩ D) = 1
4 = 1

2
1
2 = P (H2)P (D)

Joint factorization does not hold

P (H1 ∩ H2 ∩ D) = 0 ̸= P (H1)P (H2)P (D)
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Example (1.23 Joint ⇏ Pair-wise factorization)
For 2 rolls of a fair dice, define A = {first roll is 1, 2, or 3}, B =
{first roll is 3, 4, or 5} and C = {sum of the rolls is 9}. We have

P (A) = 1
2 , P (B) = 1

2 , P (C) = 1
9

Joint factorization holds

P (A ∩ B ∩ C) = 1
36 = 1

2
1
2

1
9 = P (A)P (B)P (C)

Pair-wise factorization does not hold

P (A ∩ B) = 1
6 ̸= 1

2
1
2 = P (A)P (B)

P (A ∩ C) = 1
36 ̸= 1

2
1
9 = P (A)P (C)

P (B ∩ C) = 1
12 ̸= 1

2
1
9 = P (B)P (C)
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Example (1.24)
A computer network connects two nodes A and B through nodes
C, D, E, F. For every pair of directly connected nodes, say i and j,
there is a given probability pij that the link from i to j is up. It is
assumed that link failures are independent of each other. What is
the probability that there is a path from A to B without link failures?

For the connectivity between A and B, the network is equivalent to
a network with just one link.
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Two links in series can be replaced by an equivalent link. Since
the equivalent link is up if and only if both links are up, the
probabilities of being up are related by

r = pq

Two links in parallel can be replaced by an equivalent link. Since
the equivalent link is down if and only if both links are down,
the probabilities of being up are related by

1 − r = (1 − p)(1 − q)

That is
r = p + q − pq
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Independent trials
A random experiment may consist of a sequence of independent
stages called independent trials.

A trial of two possible outcomes is a Bernoulli trial. The following
diagram is an experiment consisting of a sequence of 3 independent
and identical Bernoulli trials with outcomes {H, T}.
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Example (Binomial)
Consider an experiment that consists of n tosses of a coin with head
probability p. What is the probability of event Bk = {k heads}?

Bk consists of the length-n sequences with k heads. Every sequence
in Bk has probability pk(1−p)n−k. Denote the number of sequences

in Bk by
(

n
k

)
. We have

P (Bk) =
(

n
k

)
pk(1 − p)n−k

We will decide
(

n
k

)
by the counting principles shortly.
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Example (1.25)
An internet service provider has installed c modems to serve n dialup
customers. It is estimated that at a given time, each customer needs
a connection with probability p, independent of the other customers.
What is the probability that there are more customers needing a
connection than there are modems?

Let Bk = {k customers need connection}. Then

A =
n⋃

k=c+1
Bk

and
P (A) =

n∑
k=c+1

P (Bk) = 1 −
c∑

k=0
P (Bk)
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Counting

Chia-Ping Chen Probability



89/102

Counting principles

Suppose there are 2 stages to
complete a task, m ways for
stage 1 and n ways for stage
2. Then the number of ways
to complete the task is m ·n.
Suppose there are 2 options
to complete a task, m ways
for option 1 and n ways for
option 2. Then the number
of ways to complete the task
is m + n.
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Example (1.26)
A local telephone number is a 7-digit sequence, but the first digit
cannot be 0 or 1. How many possible telephone numbers are there?

The task of forming a local telephone number can be completed in 7
stages. In stage i, a digit is selected for position i. By the counting
principle, the number of possible telephone numbers is

N = (8)(10) · · · (10) = 8 × 106
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Example (1.27)
Let S be a set with n members

S = {s1, . . . , sn}

In how many possible ways can we form a subset of S?

The task of forming a subset of S can be completed in n stages. In
stage i, the decision to include si or not is made. By the counting
principle, the number of possible subsets is

N = (2) · · · (2) = 2n
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Permutation
The number of ways we can arrange a sequence of k objects selected
from n distinct objects is called (n, k)-permutation.

A sequence of k objects has k positions. An (n, k)-permutation
can be completed in k stages. In stage i, a not-yet-selected object
for position i is selected. By the counting principle, the number of
arrangements in (n, k)-permutation is

pn
k = (n)(n − 1) · · · (n − k + 1) = n!

(n − k)!

Chia-Ping Chen Probability



93/102

Example (1.28)
How many possible 4-letter words are there without any repeated
letter?

A 4-letter word has 4 positions. The task of forming a 4-letter
word without any repeated letter can be completed in 4 stages,
each selecting a new letter for the next position. This is an (n, k)-
permutation with n = 26 and k = 4. Hence

N = p26
4 = 26!

22!
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Example (1.29)
You have n1 classical music CDs, n2 rock music CDs, and n3 country
music CDs. In how many possible ways can you arrange them so
that the CDs of the same type are contiguous?

The overall task can be completed in 4 stages. The first 3 stages
arrange classical music CDs, rock music CDs, and country music
CDs. For music type i, there are (ni, ni)-permutation with pni

ni
= ni!

ways. Stage 4 is to arrange the order of the music types, which is
an (3, 3)-permutation with p3

3 = 3! ways. Hence

N = n1!n2!n3!3!
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Combination
The number of ways we can select k objects from n distinct objects
is called (n, k)-combination.

Consider the (n, k)-permutation task again. It can be completed in
2 stages: an (n, k)-combination followed by a (k, k)-permutation.

Denote the number of ways in (n, k)-combination by
(

n
k

)
. By

counting principle

pn
k = n!

(n − k)! =
(

n
k

)
k!

Hence (
n
k

)
= n!

(n − k)!k!
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Example (1.31)
The members of a club are selected from a group of n persons. It
must have a leader and it may have additional members. In how
many possible ways can such a club be formed?

There are n options for the number of club members, 1 to n.
For each option, the task of forming a club can be completed
in 2 stages: select the members and then select a leader among
them. By counting principle

N =
(

n
1

)
1 + · · · +

(
n
n

)
n =

n∑
k=1

(
n
k

)
k

Alternatively, the task of forming a club can also be completed
in 2 stages: select a leader and then select additional members.
We have

N = n 2n−1
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Partition
The number of ways we can partition n distinct objects into r distinct
groups of sizes n1, . . . , nr is called (n, r, n1:r)-partition.

(n, r, n1:r)-partition can be completed in r stages. Stage i is (n −
(n1 + · · · + ni−1), ni)-combination. Denote the number of ways in

(n, r, n1:r)-partition by
(

n
n1, . . . , nr

)
. By counting principle

(
n

n1, . . . , nr

)
=
(

n
n1

)(
n − n1

n2

)
. . .

(
n − n1 − · · · − nr−1

nr

)

= n!
n1!n2! . . . nr!

Note (n, k)-combination is a special case of (n, r, n1:r)-partition with

r = 2, n1 = k, n2 = n − k
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Example (1.32)
In how many ways can we form a word by rearranging the letters in
the word TATTOO?

A re-arrangement of the letters corresponds to allocating 6 positions
into 3 groups of sizes 1, 2, 3 for letters A, O, T respectively. There-
fore, it is (6, 3, (1, 2, 3))-partition. The number of ways is

N =
(

6
1, 2, 3

)
= 6!

1! 2! 3!
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Example (1.33)
Four graduate students and 12 undergraduate students are divided
into four groups of four students. What is the probability that every
group includes a graduate student?

The task of forming 4 groups of 4 students is a partition with

N0 =
(

16
4, 4, 4, 4

)
= 16!

4! 4! 4! 4!

The task of forming 4 groups of 4 students and each group includes a
graduate student can be completed in 2 stages: partition of 4 grad-
uate students followed by partition of 12 undergraduate students.
So

N =
(

4
1, 1, 1, 1

) (
12

3, 3, 3, 3

)
= 4! 12!

3! 3! 3! 3!

The probability is N
N0

.
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Summary 1

Basic set operations: intersection, union, complementation

Probability model
(Ω, F , P )

Conditional probability

P (A|B) = P (A ∩ B)
P (B)

Independence

P (A ∩ B) = P (A)P (B)
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Summary 2

Probability of set union (inclusion-exclusion principle)

P

(
n⋃

i=1
Ai

)
=

n∑
i=1

P (Ai) −
n∑

i<j

P (Ai ∩ Aj) + . . .

+ (−1)n+1P (
n⋂

i=1
Ai)

Factorization (probability of joint event)

P

(
n⋂

i=1
Ai

)
= P (A1)

n∏
k=2

P (Ak|A1 ∩ · · · ∩ Ak−1)
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Summary 3

Total probability theorem

P (B) =
∑

i

P (B ∩ Ai) =
∑

i

P (Ai)P (B|Ai)

Bayes rule

P (Ak|B) = P (Ak)P (B|Ak)
n∑

i=1
P (Ai)P (B|Ai)

Counting

N = n1 × · · · × nS , N = n1 + · · · + nC
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