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DEFINITION (RANDOM VARIABLE)

Let (2, F, P) be a probability model. A random variable (RV), say
X, is a function from domain €2 to the real number set R

X(w) =z, wherewe Q, z € R

Random Variable X'

Sample Space
Q

Real Number Line

(a)

4 Random Variable:
— X = Maximum Roll
3
2 1 2 3 4
Real Number Line
1
1 2 3 4

Sample Space:
Pairs of Rolls

(b)
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RANDOM VARIABLE AS ENUMERATION OR SUMMARIZATION

m Enumerating the possible outcomes of a random experiment

m Summarizing aspects of the outcomes in sample space

A sample space with 2 elements can be enumerated by a random
variable with 2 values, e.g. 0 and 1.

m head | tail

m men | women

K
m win | lose *In\
m pass | fail I
m yes | no -
m busy | idle %
m spin up | down YES
m real | fake NO'
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DISTRIBUTION
Let (2, F, P) be a probability model and X be a random variable
defined on .

m The distribution of X specifies the probabilities of events as-
sociated with X

m The probability law over €2 is converted to distribution of X
m Distribution is specified by probabilistic function

m probability mass function (PMF)
m probability density function (PDF)
m cumulative distribution function (CDF)
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Discrete Random Variables
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DEFINITION (DISCRETE RANDOM VARIABLES)

Let (2, F, P) be a probability model.
m Let X be a random variable defined on 2 with range X
m X is a discrete random variable (DRV) if X is countable
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DEFINITION (PROBABILITY MASS FUNCTION)

Let (2, F, P) be a probability model and X be a DRV defined on
Q with range X.

m X =z is an event for any z € R
m The probability mass function (PMF) of X is

px(z)=P(X =1)= {OP({w el = :t:ef\fvise

v

m PMF is non-negative
PX=x2)>0 = px(z)>0
m PMF is normalized

UX=2=0= Y PX=2)=PQ) =1
TeEX zeX

= pr(ac)zl

zeX
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PMF FROM PROBABILITY MODEL

Let M = (Q, F, P) be a probability model and X be a DRV defined
on ). Both X and px can be derived.

v

Let X be the maximum of two rolls
of a fair 4-face dice.

0 ={1,2,3,4} x {1,2,3,4}

X = {17 27 3) 4}

1 _

162 _ ’

3 g=2 .

px(z)=P(X=2)=7% ~ TR

1_6 , = b ©
7 _

167 -
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BASIC RANDOM VARIABLES

m uniform
m Bernoulli
m binomial

m geometric

Poisson
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A uniform DRV has a constant PMF over its range.

m The uniform DRV taking an integer value froma € Zto b € Z
has PMF

L k=a,...,b

k) = b—a+1’
px (k) {O, otherwise

m This is denoted by

X ~ Uni[a, b]
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BERNOULLI
m A Bernoulli random variable X has PMF

D, k=1,
0, otherwise

Note px(-) has a parameter 0 < p < 1.

m This is denoted by
X ~ Ber(p)

m Note the PMF can be written as

pk(l_p)l_ka kZOal

0, otherwise

px (k) = {
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BINOMIAL

m A binomial random variable has PMF

(Z)pk(l_p)n_k’ k:O717"'7n

0, otherwise

px (k) =

Note px(-) has parameters n € N and 0 < p < 1.

m This is denoted by
X ~ Bin(n,p)

) iy

Binomial PMF n=9, p=1/2

Binomial PMF
n = Large, p = Small
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m A geometric random variable has PMF

(1—p)*lp, Ek=1,2,...
0, otherwise

px (k) = {

Note px(-) has parameter 0 < p < 1.

m This is denoted by
X ~ Geo(p)

Px(k)

N
“l“lll
O‘ 2 3 k

1
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m A Poisson random variable has PMF

—H 28
e "2r, k=0,1,...
k) — kIl 9 4k
px (k) 0, otherwise
Note px(-) has parameter A > 0.

m This is denoted by

X ~ Poi()\)

Pxlk) Px(k)

Poisson A = 0.5 Poisson =3
et ~086

[SH
L )
=

ol 1
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BINOMIAL AND POISSON

Let Y be Bin(n,p) and Z ~ Poi(np). For n > 1 and p = 0, the
PMFs satisfy
py (k) = pz(k)

for small k.

For k < n, we have n — k = n. Therefore

np)k
py(k) — (Z) pk(l _p)n—k ~ ( ]S) e~ P sz(k‘)

The approximations used above are

n\ & _ (np)*
(k:)p TR
1

1-—p)"Fa(1—p"= ((1 _p)*p)_"” ~ P
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BASIC RANDOM VARIABLES AND COIN FLIPS
Unil0, 1]

Ber(p)
Geo(p)
Bin(n, p)

Poi(np)

>

# heads in a fair coin flip

# heads in a coin flip

# flips until the first head shows up
# heads in n coin flips

# heads in n coin flips with rare heads
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DEFINITION (EXPECTATION)

Let X be a DRV with range X and PMF px.

m The expectation (or expected value, mean) of X is defined by

E[X] = Z xpx(z)

TEX

m E[X] is the center of gravity of the "probability mass”

> (z—E[X])px(z) = E[X] - E[X] =0

Ll

Center of Gravity
¢ =Mean E[X]
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Two coins, each with probability 3/4 for head, are tossed. Let X be
the number of heads obtained. Decide px and E[X].

The range of X is X = {0,1,2}. We have

px(0) = ) = (1)

=y~ () )+ () )

px(2) = oz = (3)

Hence
6 18 3

EX: . ]_' ]_ 2~ 2: —_— _ = =
[(X]=0-px(0)+1-px(1)+2-px(2) 0+ 16+ 15 = 3
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If the weather is good, with probability 0.6, Alice walks the 2 miles
to school at a speed of 5 miles per hour. Otherwise, she rides her
motorcycle at a speed of 30 miles per hour. What is the mean time
for Alice to get to school?

Let V and T be speed and time. The ranges for V and T are
YV =1{5,30} and T = {%,%} We have

pv(5) =pr (?) = 0.6, pv(30) = pr <320) =04

Hence 5 5 A
(7] =3 tpr(t) = 06+ 5, 0.4=
teT
Note that 5 A 5 5
E|l=|=ET|=—+#—=
{V] 7] 15 7 15  E[V]
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EXAMPLE (2.8)

There are questions Q1 and Q2 in a game. The probabilities of
answering Q1 and Q2 correctly are 0.8 and 0.5. The rewards of
answering Q1 and Q2 correctly are 100 and 200. If the question
answered first is answered correctly, the remaining question can be
answered. Which question should be answered first to maximize the

expected reward?

02, 80
05/ $100 02, $200
0.8
05> $300 $300
Question 1 Question 2
Answered 1st Answered 1st

Let Ry and Ry be the rewards when answering Q1 and Q2 first.

E[R)] =0-0.2+100-0.4 + 300 - 0.4 = 160, E[R,] = 140
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BASIC EXPECTATIONS

U ~ Uni[a, b] E[U] =
X ~ Ber(p) EX]=p
Y ~ Bin(n, p) E[Y] = np
G ~ Geo(p) E[G] =1
Z ~ Poi()\) E[Z] = A
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UNIFORM EXPECTATION
Case U ~ Uni[a, b].

b
E[U] =) kpu(k)

- (b—clt+1>k§b:k
(b—clb—i—l) (a+b)(2—a+1)
a-t+b
2
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BERNOULLI EXPECTATION
Case X ~ Ber(p).

EX]=0-px(0)+1-px(1)
=0-(1-p)+1-p
=P
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BINOMIAL EXPECTATION

Case Y ~ Bin(n, p).

n
E[Y1=§ k(z) pF—p) "
k=0
n
n! k —k
= k—-—p (1 —p)"
Z M —m? 7P
k=1
n
(n —1)! k—1 n—k
—n — WOTIH il —
P FoDim—m? 7P
k=1
n—1
(n —1)! K/ 1k’
=n _— 1 -
ka’!(nflfk’)!p (@ =2)
k'=0
TL,
n'! k! n k!
7"”21«!@'—1@/)1? a-r)
k/=0
= @

CHIA-PING CHEN DISCRETE RANDOM VARIABLES



GEOMETRIC EXPECTATION

Case G ~ Geo(p).
Y p(l-p)ft=1
k=1
=Y pl-plF=1-p
k=1

= i(l —p)F - i kp(1—p)*~' = -1
k=1 k=1

= > kp(l—p) = (1-p’F+1
k=1 k=1
1—p 1
SE[G=——* 4+1==
] 1-(1-p) p
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PoissoN
Case Z ~ Poi().

oo

BlZ) = Y kpz(h)

k=0
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FUNCTION OF A RANDOM VARIABLE

Let (©2, F, P) be a probability model, X be a DRV defined on €2,
and Y = g(X). Then Y is a DRV.

Let YV be the range of Y.
m ) is determined by X and g(-)
m Y| < |X], s0)Y (and Y) is discrete

To determine the PMF of Y, let Sy = {z € X' | g(x) = y} fory € V.

We have
Y=y9= X=0
xESy
= P(Y=y)= > P(X=q)
xESy
= py(y) = > px(z)
€Sy
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Let X be Uni[—4,4] and Y = | X|. Find py.

px(x)

Y= YY)
1

| | | |g

4 -3 -2 MNP 1 3 4 x

©|= ©|n
- —

m The range of Y is Y = {0,1,2,3,4}.
m For y € Y, we determine py (y) through S,,.
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FUNCTION EXPECTATION
Let X be a DRV with range X and PMF px. For any function g(+)

E[g(X)] = > g(z) px(x)

TeEX

Define Y = g(X). We have
E[g(X)] = E[Y]

= Zypy(y)

yey

:Zy pr(w)

yeEY €Sy

=Z Z y px (z)

YEY xESy

> i@ ex@

YEY xESyY

= @ px@)

rEX
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LINEAR FUNCTION EXPECTATION

Let X be a DRV with range X and PMF px. The expectation of a
linear function of X is

E[aX +b] =aE[X]|+b

EjaX +0] = Z (az + b)px (z)
reX

= Z arpx(z) + Z bpx(zx)

TeX rzeX

—a <Z :cpx(x)> +b (Z px(»’v)>

reX reX
=aE[X]+D
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DEFINITION (VARIANCE, STANDARD DEVIATION, MOMENTS)

Let X be a DRV with range X and PMF px.

m The variance of X, denoted by var(X), is the expectation of
(X — E[X])?

var(X) = B |(X - B[X])?]

m The standard deviation of X, denoted by ox, is the square root

of the variance of X
rx = fvar(X)

m The nth moment of X is the expectation of X™
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LINEAR FUNCTION VARIANCE
Let X be a DRV. The variance of a linear function of X is

var(aX + b) = a®var(X)

var(aX + ) = B [(aX + b~ (aE[X] +1))’]
—E [(aX — aE[X])ﬂ
— ®E [(X — E[X])ﬂ
= a?var(X)
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Let X be a DRV. We have

var(X) = E [ X?| - E*[X]

var(X) = E [(X — B[X])?]
= E[X? - 2XB[X] + E*[X]|
= E[X?| - 2E%[X] + E2[X]

= E[X?] - E’[X]
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Let X be Uni[—4,4]. Find the variance of X.

var(X) = E [X?| - E?[X]

4
= > k’px(k) -0
k=—4
1 &,
=3 Z k
k=—4
_20
3
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BASIC VARIANCES

U ~ Unia, ]

X ~ Ber(p)
Y ~ Bin(n,p)
G ~ Geo(p)

Z ~ Poi(\)

_ (b—a)(b—a+2)

var(U) = T

var(X) = p(1 - p)

var(Y) = np(1 — p)
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UNIFORM VARIANCE
Consider U ~ Uni[a, b]. Define V. =U — a so V ~ Uni[0, b — a].

var(U) = var(V)

-E [V2] - E2[V]

() S (55

3 1 (b—a)(b—a+1)(2(b—a)+1) b—a)?
" \b-a+1 6 a 2

(b—a) 3
= (2(b—a)+1—§(b—a))

_(b—a)(b—a+2)
- 12
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BERNOULLI VARIANCE

Consider X ~ Ber(p). The second moment of X is

E [XQ] =02 px(0) + 12 - px (1)
=0 (1—-p)+1%*-p
=p

Thus
var(X) = B [X?| - E?[X]
=p—p’
=p(l—p)
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VARIANCE

Let G be Geo(p). We have shown earlier that

oo

ElG)= Y k(1 —p)"p ==

k=1
Multiplying the sides by (1 — p) and taking the derivative with respect to p, we get

oo oo co oo

_ -1 _ 1
E k(1 —p)* - E Fal-phlp= = = k(1 = p)* 1p=§ k1-p)*+ =
p P
k=1 k=1 k=1 k=1
oo
1 1—pl 1 2—p
B[e?] =) ra-pfr =P =
p p P p p
k=1
Thus 5 1 1
var(G):El:Gz] 7E2[G]: 2;07_2: 2p
p p P
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POISSON VARIANCE

Consider Z ~ Poi(\). We have shown

E[Z]:f: *ﬁfx = Z
k=1

Taking the derivative with respect to A, we have

oo
Ak:fl N N
E k:2 7 =e” + de
k=1
==
)\k
= E K22 = xe* + a2
k!
k=1

oo
AR
= E e :A+/\2

= E[Z2] =2+ A2

= var(Z) = E [22] —E%[Z] = A
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EXAMPLE (MULTIPLE RANDOM VAR,IABLES)

We may look at multiple aspects of the elements in a sample space.
date of birth of a person (Y, M, D)

Y =year, M = month, D = day
Hi-Life customers in one day (M, F)
M : # male customers, F' : # female customers

exit poll of a referendum (X;,..., X})

X — 1, pollee ¢ votes yes
’ 0, otherwise
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JOINT PROBABILITY MASS FUNCTION

Let X and Y be DRVs with ranges X and ). The joint probability
mass function (joint PMF) of X and Y specifies the probabilities
over X x ). Specifically

PX=znY=y), z€X,yc)
0, otherwise

pxy(z,y) = {

m A joint PMF is non-negative

pxy(z,y) >0

m A joint PMF is normalized

S pxv(zy) =1

zeX yey
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ExampLE (JoinT PMF)

date of birth
pymp(y,m,d) =P(Y =yNM =mnND =d)

Hi-Life customers

pur(m, f)=P(M=mnNF = f)
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MARGINALIZATION (SUM RULE)

Let (2, F, P) be a probability model. Let X and Y be DRVs defined
on €2, with ranges X and ) and joint PMF pxy. Then

px(z) =Y pxy(z,y)

yey

px(z):P(X:z):P((X::v) mﬂ)

—P(U((X—xmw—y»)
yeyY
:ZP(X:xﬂY:y)

yey

= pry(ﬂmy)

yey
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EXAMPLE (2.9 JoiINT PMF)

Joint PMF of n DRVs can be represented by n-dimensional array.

Joint PMF Py y(x.y)
in tabular form

4| o |1/20[1720 | 1/20] 320

7/20
3 (1/20]|2/20(3/20|1/20,— =27 o Lo o

Marginal PMF Py{y)

2 |[1/20|2/20| 3/20|1/20] __7/20

1/‘20 1(20 1|/20

0 3/20
|
1 2 3 4 x

3/20 6/20 8/20 3/20

Column Sums:
Marginal PMF Px(x)

By the sum rule, the marginal PMF py consists of the row sums.
Similarly, the marginal PMF px consists of the column sums.
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FUNCTION OF MULTIPLE RANDOM VARIABLES

A function of multiple DRVs is a DRV.

m Let X and Y be DRVs and Z = ¢g(X,Y). Then Z is a DRV.
m Range Z can be derived from X and ).
m To determine the PMF of Z, consider

Sy ={(z,y) e X xV|g(z,y) =2}, 2€Z2

We have
(Z=2z2)= U (X=znY =y)
(z,y)€S:
(x,y)eSZ
= pz(z2)= > pxv(z,y)
(z,y)ES:
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FUNCTION EXPECTATION
Let X and Y be DRVs and g(-,-) be a function. Then

Ejg(X,Y) = > Y g(z,y) pxv(z,y)

TeX yey

Consider Z = g(X,Y). We have

El¢(X,Y)] = E[Z] = Z 2pz(2)

z€EZ

= ZZ Z pxy (z,y)

2€Z (z,y)€ES:

= Z Z z2pxy (=, y)

2€EZ (z,y)ES,

=Z Z 9(z,y) pxy (z,9)

z€Z (z,y)€Sz

= Z Z g(z,y) pxy (z,y)

TEX yeY
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Joint PMF Py y(x.))
in tabular form

4| o |1720|1/20| 1720 320

7/20
3 |1/20|2/20|3/20| /20— =" o g o

Marginal PMF Py(y)

2 [1/20|2/20| 3/20[1/20] ____7/20

1/20[ /20| 0 | 3[20

Y
S

3/20 6/20 8/20 3/20

Column Sums:
Marginal PMF Py(x)

Find the expectation of Z = X + 2Y.
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MORE THAN 2 RANDOM VARIABLES

Results with 2 random variables can be extended to more than two
random variables.

m marginalization

pxy(z,y) = Y pxvz(z,y,2)
z€EZ

pX((I:) = Z Z pXYZ(xv Y, Z)
yeY ze2
m expectation of a function of random variables

Eg(X,Y,2)]=> > > gy ,2)pxvz(z,y,2)

zeEX yeY zeZ
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LINEAR FUNCTION EXPECTATION

n n
E Zaixi = Z Z Zdizi PXq..Xp (X1, @)
i=1 ©1€EX]  @n€Xp \i=l
N -
:Zai Z Z TiPXy.. Xp (T1s- - Tn)
=1 Lz €X T €EXn
N -
:Zai Z z; Z Z PXy..Xp (X1, @n)
=1 Lz; €EX; x] EX Ty €EXp
N -
= Zai Z z; px; (T4)
i=1  Llejex;
n
:ZaiE[Xi]
i=1
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BINOMIAL AS A BERNOULLI SUM
Consider B ~ Bin(n,p).

m B is the number of successes in n independent Bernoulli trials,
where p is the probability of success for each trial

m Let X; is the number of success for trial i (also known as an
indicator). Then X; ~ Ber(p) and

B=X;+...X,
m The expectation of B is

EB] =E[X; + - -+ X,)]
=E[Xi] + -+ E[X,]
=np

m The result agrees with the earlier direct derivation of E[B]
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EXAMPLE (2.10 INDEPENDENT BERNOULLI SUM)

Each student in a 300-student class has probability 1/3 of getting a
grade of A, independent of other students. What is the mean of X,
the number of students getting A?

We have
X=X+ -+ Xa00

where X; ~ Ber (%) is the indicator for student ¢ getting A. Thus

E[X] =E[X;1 + -+ X300
= E[X1] + - + E[X300]

)

=100

CHIA-PING CHEN DISCRETE RANDOM VARIABLES



EXAMPLE (2.11 DEPENDENT BERNOULLI SUM)

n persons put their hats in a box, and then each person randomly
retrieves a hat. What is the expected value of H, the number of
persons retrieving their own hats?

H =X+ -+ X, where X, is the indicator for person i getting
own hat. Thus

= ZP(hat i still in) P(picks hat 7| hat 4 still in)

i=1
5 () =i =2
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Conditional Probability of a Random Variable
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PMF CONDITIONAL ON EVENT
Let X be a DRV and A be an event with non-zero probability.
m Conditional on A, the probability of (X = z) is

P(X=xznA)

PX =z|4) = =5

m By definition, the conditional PMF of X given A, denoted by
Px|A, IS

pxja(z) = P(X = z|A)

Sample Space
Q
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EXAMPLE (2.12 CONDITIONAL PMF)

Let X be the roll of a fair six-face dice, and A be the event that X
is even. What is px|47?

pxja(®) = P(X = 2| A)
P(X=xNnA)
P(A)

3 =246
0, otherwise
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PMF CONDITIONAL ON RANDOM VARIABLE

Let X and Y be DRVs. Note (Y = y) is an event.
m The probability of (X = z) given (Y =y) is

m We define the conditional PMF of X given (Y = y)
pxjy(zly) = P(X =z|Y =y)

Conditional PMIF

PxyiXI3)
"SLICE VIEW"
of Conditional PMF i
XYY
Conditional PMF
Ppytx|2)
v
y= ,
Condiional PMF
A Pxyl 1)
P py yix.y) ~
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PMEF FACTORIZATION
Let X,Y be DRVs. For x € X and y € ), we have

PX=znY=y)=PX=z|Y=yPY =y

It follows that

pxy(z,y) = px|y (z|y) py (y)

V,

m Thus, joint PMF pxy can be obtained via marginal PMF py
and conditional PMF px|y (or px and py|x)

m Factorization is also known as the multiplication rule
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EXAMPLE (2.14 FACTORIZATION)

Professor May B. Right answers a question incorrectly with probabil-
ity 1/4, independent of other questions. In a lecture, she is asked 0,
1, or 2 questions with equal probability 1/3. Let X be the number
of questions she is asked, and Y be the number of questions she
answers wrong in a lecture. Find pxy (z,y). What is the probability
that she answers at least one question incorrectly?

Prob: 1/48

We have

Prob: 6/48

P(Y >1)=1-P(Y =0)

=1- ZPXY(CC’O)

Prob: 9/48

Prob: 4/48 2 0 0 |18

TEX 1| 0 |4/48|6/48
Prob: 12/48
» o fie/4g12/48| 9148
=1- pX(m)py‘X(th) Prob: 16/48 PRI
TEX ‘ Joint PMF Py y(x.y)

X :Number of Y : Number of
questions asked i
wrong

in tabular form
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EXAMPLE (2.15 FACTORIZATION)

A transmitter sends messages over a computer network. Let Y be
the length of a message, X be the transmission time, and

1 —4
5, =10
2 y=10° : —3y
1 4 3 =107
py (y) = 5 y=10" , pX|Y(°T|y) =931 _
G xr = ].0 2y
0, otherwise .
0, otherwise

Is X discrete? If so, what is the PMF of X?

From ) = {10%,10%}, the range of X is
X = {102,107, 10°}u{10%, 10, 10°} = {102,107}, 10°, 10", 10%}
So X is discrete. For the PMF of X, we have

=Y pxv(z,y)=> py(Wpxy ()
yeY yey
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Total Probability and Total Expectation
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TOTAL PROBABILITY THEOREM

Let (92, F, P) be a probability model, (Ajy,...,A,) be a partition,
and X be a DRV. Then

= O(X ==z NA;)
i=1

= P(X =ux)= ZP(X =xzNA;) = ZP(AUP(X =xz|A;)
i=1 i=1

= px(@) = Y P(A)pxa, (@)

i=1
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TOTAL PROBABILITY THEOREM
Let X and Y be DRVs. Then

= pv(Wpx)y (zly)
yey

The collection {(Y =y) |y € Y} is a partition of sample space, so

=Y P(Y =y)P(X =a|Y =y)

yey

Re-writing this with PMFs, we get

Z Py (y pX\Y zly)
yeyY

Note the consistency with marginalization

ZPY pX|Y (zly) = ZPXY (z,9)
yey yey
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DEFINITION (CONDITIONAL EXPECTATION)

Let X be a DRV. A conditional expectation of X is an expectation
with respect to a conditional PMF of X.

m The expectation of X conditional on event A is

E[X A=Y zpxa(e)
rzeX

m Let Y be a DRV. The expectation of X conditional on (Y = y)
is

EX|Y =y = > zpxy(zly)
rEX

m Define the conditional expectation of X given Y by

E[X|Y] = g(Y) where g(y) = E[X |Y = y]
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TOTAL EXPECTATION THEOREM

Let (2, F, P) be a probability model, (Ajy,...,A,) be a partition,
and X be a DRV. Then

n

E[X] = 3 P(4)E[X]|4]
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TOTAL EXPECTATION THEOREM

Let X and Y be DRVs. The conditional expectation E[X|Y] is a
random variable. The expectation of E[X Y] is E[X].

E[X] = E[E[X|Y]

E[E[X|Y]] = Zw(y)E[X\Y =yl

yeY

= Zpy(y) le’xw(whﬂ

yey TEX

= Z Z zpy (Vpx |y (=]y)

YyEY zEX

= ZIZPXY(I,W

zEX yeY

= Z apx (@)

rEX
= E[X]
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EXAMPLE (2.16 TOTAL EXPECTATION)

Message transmitted by a computer in Boston through a data net-
work is destined for New York with probability 0.5, for Chicago
with probability 0.3, and for San Francisco with probability 0.2.
The transmission time X is random. The mean transmission time
is 0.05 seconds for a message destined for New York, 0.1 seconds
for a message destined for Chicago, and 0.3 seconds for a message
destined for San Francisco. What is E[X]?

v

The partitioning events are
Ay = {to NY}, Ay = {to Chicago}, Az = {to SF}

We have

i E[X|A]

= 0.5 -0.05+0.3-0.1+0.2-0.3
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EXAMPLE (2.17 TOTAL EXPECTATION)

A program written for a task works with probability p. What is the
mean and variance of X, the number of tries until a program works?

Define A = {first program works} and let X' =X -1 Applying total expectation of X using A and A®, we
have
E[X] = P(A)E[X|A] + P(A°)E[X|A°] = p- 1 + (1 — p)E [1 + x’|AC}

Px/iac =PX
=p- 1+ (-0 +E[xac])

EX] =+
p

E [XQ] — P(A)E [X2\A] 4 P(ASE [XZ\AC]

2p—2p

—p- 124 (1-pE [(1+X')2\AC] — E [XZ] -

1—p
p2

= var(X) = E [Xz] _E%[X] =

Note X ~ Geo(p) and the consistency with earlier results.
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POE DIVINATION

In poe divination, a.k.a. bwa bwei

m A divination seeker drops two little wooden pieces on the floor
to get an answer represented by the positions of the pieces

m We assume the pieces are fair for simplicity

m We are interested in X, the random number of drops until
back-to-back "divines” occur

m You can extend the analysis to back-to-back-to-back divines
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E[X] VIA TOTAL EXPECTATION

Let the result of a drop of poe be D (for divine) or T'. Use partition-
ing events A; = {first drop is T'}, Ay = {first 2 drops are DT},
and As = {first 2 drops are DD}. By total expectation

E[X] = P(A1)E[X|A1] + P(A2)E[X|45] + P(A3)E[X|A3]

(1 +B{X]) + 7 2+ E[X]) + 3

= % (E[1+ X'|A1]) + i (E [2 +X”|A2}) + iE[Q]Ag]
%(1+E [X'|A1]) + i(2+E [X”|A2]) - % .2
1
T2

since Px"|a, = PX'|A, = DX- It follows that
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E[X] VIA ALTERNATIVE TOTAL EXPECTATION

Use IV, the number of drops until the first divine occurs, as condi-
tioning random variable. We have

E[X] = E[E[X|N]]
=E %(N+1)+%(N+1+X/)
= B[N +1] + 5 E[B[X'|N]
= BN +1] + 3 BE[X]] (since pxj = px)
= B[N+ 1+ ; B[]
=241+ B[X]

Therefore
E[X]=6
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Let 7), (resp. D,,) be the event of n drops ending in T' (resp. D)
still without a back-to-back divine. Note that 7;, can be either D,,_1
or T,,_1 followed by a drop of T, while D,, must be T}, 1 followed
by a drop of D. That is

1

P(Ty) = P(Ty 1) P(T)+ P(Do 1) P(T) = £ P(Tn1)+5 P(Dn 1)

P(Dy) = P(To 1)P(D) = L P(Ty 1)

Event (X =n) is D,_; followed by D, so
1
P(X =n)= EP(Dn,l)

For a small n, we can compute P(X = n) recursively starting from

P(D1) = P(T1) = 5. A general formula of P(X = n) can be

worked out from the recursion relation (exercise).

= = = = =
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INDEPENDENCE

Let X be DRV and A be an event. By definition, X is independent
of A if (X = z) is independent of A for every z € X.

The independence of X and A is denoted by
X1LA
For X 1L A, we have
P(X=2nA)=P(X =x)P(A)
Dividing both sides by P(A), we have

pX|A($) = px ()
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Flip a fair coin twice. Let X be the number of heads and A be the
event that X is even. Then X and A are not independent.
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INDEPENDENCE OF RANDOM VARIABLES
Let X and Y be DRVs. By definition, X and Y are independent if

pxy(z,y) = px()py (y)

The independence of X and Y is denoted by
X1lY
For X 1L Y, we have
P X=znY=y)=PX=x)P(Y =vy)
Dividing both sides by P(Y = y), we have

PX|Y(CU|y) = px ()
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CONDITIONAL INDEPENDENCE
Let X,Y,Z be DRVs and A be an event.

m X and Y are conditionally independent given A if (X = z) and
(Y = y) are independent given A for every x € X and y € Y

m X and Y are conditionally independent given Z if X and Y are
conditionally independent given (Z = z) for every z € Z

4

The conditional independence of X and Y given A is denoted by
XL1YJA
The conditional independence of X and Y given Z is denoted by

X1Y|Z
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SIMPLIFICATION BY INDEPENDENCE

Suppose X L Y. We have

var(X +Y) = var(X) + var(Y)

BloCORY = Y pxy (@ n)a(@)h()

x,y

- prmpy W)9(@)h(y)

z,y

= ex@s@ Y ry @)

x Y

= E[g(X)]E[R(Y)]

var(X +Y) = E [(X + Y)2] —E%[X 4+ Y]
=B [X? 42XV + Y] — (B[X] + E[Y))?
= [x?] - E’IX] +E [v?] - E?[v]
= var(X) + var(Y)
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EXAMPLE (2.20 INDEPENDENT BERNOULLI SUM)

Consider B ~ Bin(n,p). The variance of B can be derived as
follows.

m B is the sum of n independent Ber(p)
B=X,+-+X,
m By the previous slide

var(B) = var(X1) + - - - + var(X,,)

= Zn:p(l — D)
i=1

=np(1 —p)

Note the consistency with earlier results.
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EXAMPLE (2.21 INDEPENDENT BERNOULLI AVERAGE)

The approval rating of a politician can be estimated by asking voters
randomly drawn from the voter population, called a poll. Let X;
indicate whether the ith asked voter approves the politician. Then
the approval rating based on the poll is

Xt Xa
N n

Ry,

Assume Xi,..., X, are independent Ber(p), where p is the un-
known approval rating. Find the mean and variance of R,,.
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EXAMPLE (2.22 INDEPENDENT BERNOULLI AVERAGE)

Let A be an event. The probability of A can be estimated with the
relative frequency of A in a simulation consisting of n independent
runs of a random experiment.

m Let X; indicates whether A occurs in run %

m The relative frequency of A in n runs is

X+ + X,
ol S i
n
m It follows that
1 n
E[F,] = — > E[X)] = P(4)
i=1

) = % S var(X;) = %[P(A)(l _ P(A))] ==,
o=l
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SUMMARY 1

Probability mass function (PMF)

Expectation

Basic DRVs
Uni[a, b], Ber(p), Bin(n,p)

Geo(p), Poi())
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SUMMARY 2

Joint PMF

pxy(z,y) = P(X =2NY =y)

Marginalization

px(z) =) pxy(z,y)

pxpy(zly) = P(X = zY =y) =

pxja(z) = P(X = z[A)

Conditional PMF

. pxy(z,y)
py (y)
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SUMMARY 3

Total probability theorem

ZP )Px |4, ()

ZPY pX|Y 1Y)

Total expectation theorem

E[X] = ZP E[X|A;]

Zpy EX|Y =y] = E[E[X]Y]]
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