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Random Variables
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Definition (random variable)
Let (Ω, F , P ) be a probability model. A random variable (RV), say
X, is a function from domain Ω to the real number set R

X(ω) = x, where ω ∈ Ω, x ∈ R

Chia-Ping Chen Discrete Random Variables



5/87

Random variable as enumeration or summarization
Enumerating the possible outcomes of a random experiment
Summarizing aspects of the outcomes in sample space

A sample space with 2 elements can be enumerated by a random
variable with 2 values, e.g. 0 and 1.

head | tail
men | women
win | lose
pass | fail
yes | no
busy | idle
spin up | down
real | fake
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Distribution
Let (Ω, F , P ) be a probability model and X be a random variable
defined on Ω.

The distribution of X specifies the probabilities of events as-
sociated with X

The probability law over Ω is converted to distribution of X

Distribution is specified by probabilistic function
probability mass function (PMF)
probability density function (PDF)
cumulative distribution function (CDF)
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Discrete Random Variables
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Definition (discrete random variables)
Let (Ω, F , P ) be a probability model.

Let X be a random variable defined on Ω with range X
X is a discrete random variable (DRV) if X is countable
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Definition (probability mass function)
Let (Ω, F , P ) be a probability model and X be a DRV defined on
Ω with range X .

X = x is an event for any x ∈ R
The probability mass function (PMF) of X is

pX(x) = P (X = x) =
{

P ({ω ∈ Ω | X(ω) = x}), x ∈ X
0, otherwise

PMF is non-negative

P (X = x) ≥ 0 ⇒ pX(x) ≥ 0

PMF is normalized⋃
x∈X

(X = x) = Ω ⇒
∑
x∈X

P (X = x) = P (Ω) = 1

⇒
∑
x∈X

pX(x) = 1
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PMF from probability model
Let M = (Ω, F , P ) be a probability model and X be a DRV defined
on Ω. Both X and pX can be derived.

Example

Let X be the maximum of two rolls
of a fair 4-face dice.

Ω = {1, 2, 3, 4} × {1, 2, 3, 4}

X = {1, 2, 3, 4}

pX(x) = P (X = x) =



1
16 , x = 1
3
16 , x = 2
5
16 , x = 3
7
16 , x = 4
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Basic random variables
uniform
Bernoulli
binomial
geometric
Poisson
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Uniform
A uniform DRV has a constant PMF over its range.

The uniform DRV taking an integer value from a ∈ Z to b ∈ Z
has PMF

pX(k) =
{ 1

b−a+1 , k = a, . . . , b

0, otherwise

This is denoted by
X ∼ Uni[a, b]
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Bernoulli
A Bernoulli random variable X has PMF

pX(k) =


p, k = 1,

1 − p, k = 0,

0, otherwise

Note pX(·) has a parameter 0 ≤ p ≤ 1.
This is denoted by

X ∼ Ber(p)

Note the PMF can be written as

pX(k) =
{

pk(1 − p)1−k, k = 0, 1
0, otherwise
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Binomial
A binomial random variable has PMF

pX(k) =


(

n

k

)
pk(1 − p)n−k, k = 0, 1, . . . , n

0, otherwise

Note pX(·) has parameters n ∈ N and 0 ≤ p ≤ 1.
This is denoted by

X ∼ Bin(n, p)
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Geometric
A geometric random variable has PMF

pX(k) =
{

(1 − p)k−1p, k = 1, 2, . . .

0, otherwise

Note pX(·) has parameter 0 ≤ p ≤ 1.
This is denoted by

X ∼ Geo(p)
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Poisson
A Poisson random variable has PMF

pX(k) =
{

e−λ λk

k! , k = 0, 1, . . .

0, otherwise

Note pX(·) has parameter λ > 0.
This is denoted by

X ∼ Poi(λ)
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Binomial and Poisson
Let Y be Bin(n, p) and Z ∼ Poi(np). For n ≫ 1 and p ≈ 0, the
PMFs satisfy

pY (k) ≈ pZ(k)

for small k.

For k ≪ n, we have n − k ≈ n. Therefore

pY (k) =
(

n
k

)
pk(1 − p)n−k ≈ (np)k

k! e−np = pZ(k)

The approximations used above are(
n
k

)
pk ≈ (np)k

k!

(1 − p)n−k ≈ (1 − p)n =
(
(1 − p)− 1

p

)−np
≈ e−np
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Basic random variables and coin flips
Uni[0, 1] ↔ # heads in a fair coin flip

Ber(p) ↔ # heads in a coin flip

Geo(p) ↔ # flips until the first head shows up

Bin(n, p) ↔ # heads in n coin flips

Poi(np) ↔ # heads in n coin flips with rare heads
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Expectation
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Definition (Expectation)
Let X be a DRV with range X and PMF pX .

The expectation (or expected value, mean) of X is defined by

E[X] =
∑
x∈X

x pX(x)

E[X] is the center of gravity of the ”probability mass”∑
x∈X

(x − E[X]) pX(x) = E[X] − E[X] = 0
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Example (2.2)
Two coins, each with probability 3/4 for head, are tossed. Let X be
the number of heads obtained. Decide pX and E[X].

The range of X is X = {0, 1, 2}. We have

pX(0) = P (TT ) =
(1

4

)2

pX(1) = P (HT ) + P (TH) =
(3

4

)(1
4

)
+
(1

4

)(3
4

)
pX(2) = P (HH) =

(3
4

)2

Hence

E[X] = 0 · pX(0) + 1 · pX(1) + 2 · pX(2) = 0 + 6
16 + 18

16 = 3
2
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Example (2.4)
If the weather is good, with probability 0.6, Alice walks the 2 miles
to school at a speed of 5 miles per hour. Otherwise, she rides her
motorcycle at a speed of 30 miles per hour. What is the mean time
for Alice to get to school?

Let V and T be speed and time. The ranges for V and T are
V = {5, 30} and T =

{
2
5 , 2

30

}
. We have

pV (5) = pT

(2
5

)
= 0.6, pV (30) = pT

( 2
30

)
= 0.4

Hence
E[T ] =

∑
t∈T

t pT (t) = 2
5 · 0.6 + 2

30 · 0.4 = 4
15

Note that
E
[ 2

V

]
= E[T ] = 4

15 ̸= 2
15 = 2

E[V ]
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Example (2.8)
There are questions Q1 and Q2 in a game. The probabilities of
answering Q1 and Q2 correctly are 0.8 and 0.5. The rewards of
answering Q1 and Q2 correctly are 100 and 200. If the question
answered first is answered correctly, the remaining question can be
answered. Which question should be answered first to maximize the
expected reward?

Let R1 and R2 be the rewards when answering Q1 and Q2 first.

E[R1] = 0 · 0.2 + 100 · 0.4 + 300 · 0.4 = 160, E[R2] = 140
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Basic expectations
U ∼ Uni[a, b] E[U ] = a+b

2

X ∼ Ber(p) E[X] = p

Y ∼ Bin(n, p) E[Y ] = np

G ∼ Geo(p) E[G] = 1
p

Z ∼ Poi(λ) E[Z] = λ
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Uniform expectation
Case U ∼ Uni[a, b].

E[U ] =
b∑

k=a

k pU (k)

=
( 1

b − a + 1

) b∑
k=a

k

=
( 1

b − a + 1

) (a + b)(b − a + 1)
2

= a + b

2
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Bernoulli expectation
Case X ∼ Ber(p).

E[X] = 0 · pX(0) + 1 · pX(1)
= 0 · (1 − p) + 1 · p

= p
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Binomial expectation
Case Y ∼ Bin(n, p).

E[Y ] =

n∑
k=0

k

(
n
k

)
p

k(1 − p)n−k

=

n∑
k=1

k
n!

k!(n − k)!
p

k(1 − p)n−k

= np

n∑
k=1

(n − 1)!
(k − 1)!(n − k)!

p
k−1(1 − p)n−k

= np

n−1∑
k′=0

(n − 1)!
k′!(n − 1 − k′)!

p
k′

(1 − p)n−1−k′

= np

n′∑
k′=0

n′!
k′!(n′ − k′)!

p
k′

(1 − p)n′−k′

= np
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Geometric expectation
Case G ∼ Geo(p).

∞∑
k=1

p(1 − p)k−1 = 1

⇒
∞∑

k=1
p(1 − p)k = 1 − p

⇒
∞∑

k=1
(1 − p)k −

∞∑
k=1

kp(1 − p)k−1 = −1

⇒
∞∑

k=1
kp(1 − p)k−1 =

∞∑
k=1

(1 − p)k + 1

⇒ E[G] = 1 − p

1 − (1 − p) + 1 = 1
p
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Poisson expectation
Case Z ∼ Poi(λ).

E[Z] =

∞∑
k=0

k pZ (k)

=

∞∑
k=0

k

(
e

−λ λk

k!

)
= e

−λ

∞∑
k=1

λk

(k − 1)!

= e
−λ

∞∑
k′=0

λk′+1

k′!

= λe
−λ

∞∑
k′=0

λk′

k′!

= λe
−λ

e
λ

= λ
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Function of a random variable
Let (Ω, F , P ) be a probability model, X be a DRV defined on Ω,
and Y = g(X). Then Y is a DRV.

Let Y be the range of Y .
Y is determined by X and g(·)
|Y| ≤ |X |, so Y (and Y ) is discrete

To determine the PMF of Y , let Sy = {x ∈ X | g(x) = y} for y ∈ Y.
We have

(Y = y) =
⋃

x∈Sy

(X = x)

⇒ P (Y = y) =
∑

x∈Sy

P (X = x)

⇒ pY (y) =
∑

x∈Sy

pX(x)
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Example (2.1)
Let X be Uni[−4, 4] and Y = |X|. Find pY .

The range of Y is Y = {0, 1, 2, 3, 4}.
For y ∈ Y, we determine pY (y) through Sy.
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Function expectation
Let X be a DRV with range X and PMF pX . For any function g(·)

E[g(X)] =
∑
x∈X

g(x) pX(x)

Define Y = g(X). We have
E[g(X)] = E[Y ]

=
∑
y∈Y

y pY (y)

=
∑
y∈Y

y

∑
x∈Sy

pX (x)

=
∑
y∈Y

∑
x∈Sy

y pX (x)

=
∑
y∈Y

∑
x∈Sy

g(x) pX (x)

=
∑
x∈X

g(x) pX (x)
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Linear function expectation
Let X be a DRV with range X and PMF pX . The expectation of a
linear function of X is

E[aX + b] = a E[X] + b

E[aX + b] =
∑
x∈X

(ax + b)pX(x)

=
∑
x∈X

ax pX(x) +
∑
x∈X

b pX(x)

= a

(∑
x∈X

x pX(x)
)

+ b

(∑
x∈X

pX(x)
)

= a E[X] + b
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Definition (variance, standard deviation, moments)
Let X be a DRV with range X and PMF pX .

The variance of X, denoted by var(X), is the expectation of
(X − E[X])2

var(X) = E
[
(X − E[X])2

]
The standard deviation of X, denoted by σX , is the square root
of the variance of X

σX =
√

var(X)

The nth moment of X is the expectation of Xn
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Linear function variance
Let X be a DRV. The variance of a linear function of X is

var(aX + b) = a2 var(X)

var(aX + b) = E
[
(aX + b − (aE[X] + b))2

]
= E

[
(aX − aE[X])2

]
= a2 E

[
(X − E[X])2

]
= a2 var(X)
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Variance formula
Let X be a DRV. We have

var(X) = E
[
X2
]

− E2[X]

var(X) = E
[
(X − E[X])2

]
= E

[
X2 − 2XE[X] + E2[X]

]
= E

[
X2
]

− 2E2[X] + E2[X]

= E
[
X2
]

− E2[X]
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Example (2.3)
Let X be Uni[−4, 4]. Find the variance of X.

var(X) = E
[
X2
]

− E2[X]

=
4∑

k=−4
k2pX(k) − 02

= 1
9

4∑
k=−4

k2

= 20
3
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Basic variances

U ∼ Uni[a, b] var(U) = (b−a)(b−a+2)
12

X ∼ Ber(p) var(X) = p(1 − p)

Y ∼ Bin(n, p) var(Y ) = np(1 − p)

G ∼ Geo(p) var(G) = 1−p
p2

Z ∼ Poi(λ) var(Z) = λ
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Uniform variance
Consider U ∼ Uni[a, b]. Define V = U − a so V ∼ Uni[0, b − a].

var(U) = var(V )

= E
[

V
2
]

− E2 [V ]

=
(

1
b − a + 1

) b−a∑
k=0

k
2 −
(

b − a

2

)2

=
(

1
b − a + 1

)
(b − a)(b − a + 1)(2(b − a) + 1)

6
−
(

b − a

2

)2

=
(b − a)

6

(
2(b − a) + 1 −

3
2

(b − a)
)

=
(b − a)(b − a + 2)

12
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Bernoulli variance
Consider X ∼ Ber(p). The second moment of X is

E
[
X2
]

= 02 · pX(0) + 12 · pX(1)

= 02 · (1 − p) + 12 · p

= p

Thus
var(X) = E

[
X2
]

− E2[X]

= p − p2

= p(1 − p)
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Geometric variance
Let G be Geo(p). We have shown earlier that

E[G] =

∞∑
k=1

k(1 − p)k−1
p =

1
p

Multiplying the sides by (1 − p) and taking the derivative with respect to p, we get

∞∑
k=1

k(1 − p)k −

∞∑
k=1

k
2(1 − p)k−1

p =
−1
p2

⇒

∞∑
k=1

k
2(1 − p)k−1

p =

∞∑
k=1

k(1 − p)k +
1

p2

E
[

G
2
]

=

∞∑
k=1

k(1 − p)k +
1

p2
=

1 − p

p

1
p

+
1

p2
=

2 − p

p2

Thus
var(G) = E

[
G

2
]

− E2[G] =
2 − p

p2
−

1
p2

=
1 − p

p2
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Poisson variance
Consider Z ∼ Poi(λ). We have shown

E [Z] =

∞∑
k=1

ke
−λ λk

k!
= λ ⇒

∞∑
k=1

k
λk

k!
= λe

λ

Taking the derivative with respect to λ, we have

∞∑
k=1

k
2 λk−1

k!
= e

λ + λe
λ

⇒

∞∑
k=1

k
2 λk

k!
= λe

λ + λ
2

e
λ

⇒

∞∑
k=1

k
2

e
−λ λk

k!
= λ + λ

2

⇒ E
[

Z
2
]

= λ + λ
2

⇒ var(Z) = E
[

Z
2
]

− E2[Z] = λ
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Multiple Random Variables
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Example (multiple random variables)
We may look at multiple aspects of the elements in a sample space.

1 date of birth of a person (Y, M, D)

Y = year, M = month, D = day

2 Hi-Life customers in one day (M, F )

M : # male customers, F : # female customers

3 exit poll of a referendum (X1, . . . , Xn)

Xi =
{

1, pollee i votes yes
0, otherwise
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Joint probability mass function
Let X and Y be DRVs with ranges X and Y. The joint probability
mass function (joint PMF) of X and Y specifies the probabilities
over X × Y. Specifically

pXY (x, y) =
{

P (X = x ∩ Y = y), x ∈ X , y ∈ Y
0, otherwise

A joint PMF is non-negative

pXY (x, y) ≥ 0

A joint PMF is normalized∑
x∈X

∑
y∈Y

pXY (x, y) = 1
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Example (Joint PMF)
1 date of birth

pY MD(y, m, d) = P (Y = y ∩ M = m ∩ D = d)

2 Hi-Life customers

pMF (m, f) = P (M = m ∩ F = f)
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Marginalization (sum rule)
Let (Ω, F , P ) be a probability model. Let X and Y be DRVs defined
on Ω, with ranges X and Y and joint PMF pXY . Then

pX(x) =
∑
y∈Y

pXY (x, y)

pX (x) = P (X = x) = P

(
(X = x)

⋂
Ω
)

= P

(
(X = x)

⋂(⋃
y∈Y

(Y = y)

))

= P

(⋃
y∈Y

((X = x) ∩ (Y = y))

)
=
∑
y∈Y

P (X = x ∩ Y = y)

=
∑
y∈Y

pXY (x, y)
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Example (2.9 Joint PMF)
Joint PMF of n DRVs can be represented by n-dimensional array.

By the sum rule, the marginal PMF pY consists of the row sums.
Similarly, the marginal PMF pX consists of the column sums.
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Function of multiple random variables
A function of multiple DRVs is a DRV.

Let X and Y be DRVs and Z = g(X, Y ). Then Z is a DRV.
Range Z can be derived from X and Y.
To determine the PMF of Z, consider

Sz = {(x, y) ∈ X × Y | g(x, y) = z}, z ∈ Z

We have

(Z = z) =
⋃

(x,y)∈Sz

(X = x ∩ Y = y)

⇒ P (Z = z) =
∑

(x,y)∈Sz

P (X = x ∩ Y = y)

⇒ pZ(z) =
∑

(x,y)∈Sz

pXY (x, y)
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Function expectation
Let X and Y be DRVs and g(·, ·) be a function. Then

E[g(X, Y )] =
∑
x∈X

∑
y∈Y

g(x, y) pXY (x, y)

Consider Z = g(X, Y ). We have

E[g(X, Y )] = E[Z] =
∑
z∈Z

z pZ (z)

=
∑
z∈Z

z

∑
(x,y)∈Sz

pXY (x, y)

=
∑
z∈Z

∑
(x,y)∈Sz

z pXY (x, y)

=
∑
z∈Z

∑
(x,y)∈Sz

g(x, y) pXY (x, y)

=
∑
x∈X

∑
y∈Y

g(x, y) pXY (x, y)
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Example (2.9 Expectation)

Find the expectation of Z = X + 2Y .
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More than 2 random variables
Results with 2 random variables can be extended to more than two
random variables.

marginalization

pXY (x, y) =
∑
z∈Z

pXY Z(x, y, z)

pX(x) =
∑
y∈Y

∑
z∈Z

pXY Z(x, y, z)

expectation of a function of random variables

E[g(X, Y, Z)] =
∑
x∈X

∑
y∈Y

∑
z∈Z

g(x, y, z)pXY Z(x, y, z)
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Linear function expectation

E

[
n∑

i=1

aiXi

]
=
∑

x1∈X1

· · ·
∑

xn∈Xn

(
n∑

i=1

aixi

)
pX1...Xn (x1, . . . , xn)

=

n∑
i=1

ai

[ ∑
x1∈X1

· · ·
∑

xn∈Xn

xi pX1...Xn (x1, . . . , xn)

]

=

n∑
i=1

ai

[∑
xi∈Xi

xi

( ∑
x1∈X1

· · ·
∑

xn∈Xn

pX1...Xn (x1, . . . , xn)

)]

=

n∑
i=1

ai

[∑
xi∈Xi

xi pXi
(xi)

]

=

n∑
i=1

ai E[Xi]
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Binomial as a Bernoulli sum
Consider B ∼ Bin(n, p).

B is the number of successes in n independent Bernoulli trials,
where p is the probability of success for each trial
Let Xi is the number of success for trial i (also known as an
indicator). Then Xi ∼ Ber(p) and

B = X1 + . . . Xn

The expectation of B is

E[B] = E[X1 + · · · + Xn]
= E[X1] + · · · + E[Xn]
= np

The result agrees with the earlier direct derivation of E[B]
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Example (2.10 Independent Bernoulli sum)
Each student in a 300-student class has probability 1/3 of getting a
grade of A, independent of other students. What is the mean of X,
the number of students getting A?

We have
X = X1 + · · · + X300

where Xi ∼ Ber
(

1
3

)
is the indicator for student i getting A. Thus

E[X] = E[X1 + · · · + X300]
= E[X1] + · · · + E[X300]

= 300
(1

3

)
= 100
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Example (2.11 Dependent Bernoulli sum)
n persons put their hats in a box, and then each person randomly
retrieves a hat. What is the expected value of H, the number of
persons retrieving their own hats?

H = X1 + · · · + Xn, where Xi is the indicator for person i getting
own hat. Thus

E[H] =
n∑

i=1
E[Xi]

=
n∑

i=1
P (Xi = 1)

=
n∑

i=1
P (hat i still in)P (picks hat i | hat i still in)

=
n∑

i=1

(
n − (i − 1)

n

)( 1
n − (i − 1)

)
=

n∑
i=1

1
n

= 1
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Conditional Probability of a Random Variable
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PMF conditional on event
Let X be a DRV and A be an event with non-zero probability.

Conditional on A, the probability of (X = x) is

P (X = x | A) = P (X = x ∩ A)
P (A)

By definition, the conditional PMF of X given A, denoted by
pX|A, is

pX|A(x) = P (X = x | A)
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Example (2.12 Conditional PMF)
Let X be the roll of a fair six-face dice, and A be the event that X
is even. What is pX|A?

pX|A(x) = P (X = x | A)

= P (X = x ∩ A)
P (A)

=
{1

3 , x = 2, 4, 6
0, otherwise
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PMF conditional on random variable
Let X and Y be DRVs. Note (Y = y) is an event.

The probability of (X = x) given (Y = y) is

P (X = x | Y = y) = P (X = x ∩ Y = y)
P (Y = y)

We define the conditional PMF of X given (Y = y)

pX|Y (x|y) = P (X = x | Y = y)
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PMF factorization
Let X, Y be DRVs. For x ∈ X and y ∈ Y, we have

P (X = x ∩ Y = y) = P (X = x | Y = y)P (Y = y)

It follows that

pXY (x, y) = pX|Y (x|y) pY (y)

Thus, joint PMF pXY can be obtained via marginal PMF pY

and conditional PMF pX|Y (or pX and pY |X)
Factorization is also known as the multiplication rule
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Example (2.14 Factorization)
Professor May B. Right answers a question incorrectly with probabil-
ity 1/4, independent of other questions. In a lecture, she is asked 0,
1, or 2 questions with equal probability 1/3. Let X be the number
of questions she is asked, and Y be the number of questions she
answers wrong in a lecture. Find pXY (x, y). What is the probability
that she answers at least one question incorrectly?

We have

P (Y ≥ 1) = 1 − P (Y = 0)

= 1 −
∑
x∈X

pXY (x, 0)

= 1 −
∑
x∈X

pX (x)pY |X (0|x)
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Example (2.15 Factorization)
A transmitter sends messages over a computer network. Let Y be
the length of a message, X be the transmission time, and

pY (y) =


5
6 , y = 102

1
6 , y = 104

0, otherwise
, pX|Y (x|y) =



1
2 , x = 10−4y
1
3 , x = 10−3y
1
6 , x = 10−2y

0, otherwise

Is X discrete? If so, what is the PMF of X?

From Y = {102, 104}, the range of X is

X = {10−2, 10−1, 100}∪{100, 101, 102} = {10−2, 10−1, 100, 101, 102}

So X is discrete. For the PMF of X, we have

pX(x) =
∑
y∈Y

pXY (x, y) =
∑
y∈Y

pY (y)pX|Y (x|y)
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Total Probability and Total Expectation
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Total probability theorem
Let (Ω, F , P ) be a probability model, (A1, . . . , An) be a partition,
and X be a DRV. Then

pX(x) =
n∑

i=1
P (Ai) pX|Ai

(x)

(X = x) = (X = x ∩ Ω)

=

(
X = x ∩

n⋃
i=1

Ai

)

=

n⋃
i=1

(X = x ∩ Ai)

⇒ P (X = x) =

n∑
i=1

P (X = x ∩ Ai) =

n∑
i=1

P (Ai)P (X = x|Ai)

⇒ pX (x) =

n∑
i=1

P (Ai) pX|Ai
(x)
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Total probability theorem
Let X and Y be DRVs. Then

pX(x) =
∑
y∈Y

pY (y)pX|Y (x|y)

The collection {(Y = y) | y ∈ Y} is a partition of sample space, so

P (X = x) =
∑
y∈Y

P (Y = y)P (X = x|Y = y)

Re-writing this with PMFs, we get

pX(x) =
∑
y∈Y

pY (y)pX|Y (x|y)

Note the consistency with marginalization

pX(x) =
∑
y∈Y

pY (y)pX|Y (x|y) =
∑
y∈Y

pXY (x, y)
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Definition (Conditional expectation)
Let X be a DRV. A conditional expectation of X is an expectation
with respect to a conditional PMF of X.

The expectation of X conditional on event A is

E[X | A] =
∑
x∈X

x pX|A(x)

Let Y be a DRV. The expectation of X conditional on (Y = y)
is

E[X | Y = y] =
∑
x∈X

x pX|Y (x|y)

Define the conditional expectation of X given Y by

E[X|Y ] = g(Y ) where g(y) = E[X | Y = y]
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Total expectation theorem
Let (Ω, F , P ) be a probability model, (A1, . . . , An) be a partition,
and X be a DRV. Then

E[X] =
n∑

i=1
P (Ai)E[X|Ai]

E[X] =
∑
x∈X

x pX(x)

=
∑
x∈X

x
n∑

i=1
pX|Ai

(x)P (Ai)

=
n∑

i=1
P (Ai)

∑
x∈X

x pX|Ai
(x)

=
n∑

i=1
P (Ai) E[X|Ai]
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Total expectation theorem
Let X and Y be DRVs. The conditional expectation E[X|Y ] is a
random variable. The expectation of E[X|Y ] is E[X].

E[X] = E[E[X|Y ]]

E[E[X|Y ]] =
∑
y∈Y

pY (y)E[X|Y = y]

=
∑
y∈Y

pY (y)
∑
x∈X

xpX|Y (x|y)

=
∑
y∈Y

∑
x∈X

xpY (y)pX|Y (x|y)

=
∑
x∈X

x

∑
y∈Y

pXY (x, y)

=
∑
x∈X

xpX (x)

= E[X]
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Example (2.16 Total expectation)
Message transmitted by a computer in Boston through a data net-
work is destined for New York with probability 0.5, for Chicago
with probability 0.3, and for San Francisco with probability 0.2.
The transmission time X is random. The mean transmission time
is 0.05 seconds for a message destined for New York, 0.1 seconds
for a message destined for Chicago, and 0.3 seconds for a message
destined for San Francisco. What is E[X]?

The partitioning events are

A1 = {to NY}, A2 = {to Chicago}, A3 = {to SF}

We have
E[X] =

n∑
i=1

P (Ai)E[X|Ai]

= 0.5 · 0.05 + 0.3 · 0.1 + 0.2 · 0.3
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Example (2.17 Total expectation)
A program written for a task works with probability p. What is the
mean and variance of X, the number of tries until a program works?
Define A = {first program works} and let X′ = X − 1. Applying total expectation of X using A and Ac, we
have

E[X] = P (A)E[X|A] + P (A
c)E[X|Ac] = p · 1 + (1 − p)E

[
1 + X

′|Ac
]

= p · 1 + (1 − p)(1 + E
[

X
′|Ac
]

)
p

X′|Ac = pX
−−−−−−−−−−→ E[X] =

1
p

E
[

X
2
]

= P (A)E
[

X
2|A
]

+ P (A
c)E
[

X
2|Ac
]

= p · 12 + (1 − p)E
[

(1 + X
′)2|Ac

]
−→ E

[
X

2
]

=
2 − p

p2

⇒ var(X) = E
[

X
2
]

− E2[X] =
1 − p

p2

Note X ∼ Geo(p) and the consistency with earlier results.
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Poe divination
In poe divination, a.k.a. bwa bwei

A divination seeker drops two little wooden pieces on the floor
to get an answer represented by the positions of the pieces
We assume the pieces are fair for simplicity
We are interested in X, the random number of drops until
back-to-back ”divines” occur
You can extend the analysis to back-to-back-to-back divines
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E[X] via total expectation
Let the result of a drop of poe be D (for divine) or T . Use partition-
ing events A1 = {first drop is T}, A2 = {first 2 drops are DT},
and A3 = {first 2 drops are DD}. By total expectation

E[X] = P (A1)E[X|A1] + P (A2)E[X|A2] + P (A3)E[X|A3]

= 1
2 (E

[
1 + X ′|A1

]
) + 1

4 (E
[
2 + X

′′ |A2
]
) + 1

4 E[2|A3]

= 1
2 (1 + E

[
X ′|A1

]
) + 1

4 (2 + E
[
X

′′ |A2
]
) + 1

4 · 2

= 1
2 (1 + E[X]) + 1

4 (2 + E[X]) + 1
2

since pX′′ |A2
= pX′|A1 = pX . It follows that

1
4 E[X] = 3

2 ⇒ E[X] = 6
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E[X] via alternative total expectation
Use N , the number of drops until the first divine occurs, as condi-
tioning random variable. We have

E[X] = E[E[X|N ]]

= E
[1

2(N + 1) + 1
2(N + 1 + X ′)

]
= E[N + 1] + 1

2 E[E[X ′|N ]]

= E[N + 1] + 1
2 E[E[X]] (since pX′|N = pX)

= E[N ] + 1 + 1
2 E[X]

= 2 + 1 + 1
2 E[X]

Therefore
E[X] = 6
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PMF
Let Tn (resp. Dn) be the event of n drops ending in T (resp. D)
still without a back-to-back divine. Note that Tn can be either Dn−1
or Tn−1 followed by a drop of T , while Dn must be Tn−1 followed
by a drop of D. That is

P (Tn) = P (Tn−1)P (T )+P (Dn−1)P (T ) = 1
2P (Tn−1)+1

2P (Dn−1)

P (Dn) = P (Tn−1)P (D) = 1
2P (Tn−1)

Event (X = n) is Dn−1 followed by D, so

P (X = n) = 1
2P (Dn−1)

For a small n, we can compute P (X = n) recursively starting from
P (D1) = P (T1) = 1

2 . A general formula of P (X = n) can be
worked out from the recursion relation (exercise).

Chia-Ping Chen Discrete Random Variables



76/87

Independence
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Independence
Let X be DRV and A be an event. By definition, X is independent
of A if (X = x) is independent of A for every x ∈ X .

The independence of X and A is denoted by

X ⊥⊥ A

For X ⊥⊥ A, we have

P (X = x ∩ A) = P (X = x)P (A)

Dividing both sides by P (A), we have

pX|A(x) = pX(x)
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Example (2.19)
Flip a fair coin twice. Let X be the number of heads and A be the
event that X is even. Then X and A are not independent.
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Independence of random variables
Let X and Y be DRVs. By definition, X and Y are independent if

pXY (x, y) = pX(x)pY (y)

The independence of X and Y is denoted by

X ⊥⊥ Y

For X ⊥⊥ Y , we have

P (X = x ∩ Y = y) = P (X = x)P (Y = y)

Dividing both sides by P (Y = y), we have

pX|Y (x|y) = pX(x)
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Conditional independence
Let X, Y, Z be DRVs and A be an event.

X and Y are conditionally independent given A if (X = x) and
(Y = y) are independent given A for every x ∈ X and y ∈ Y
X and Y are conditionally independent given Z if X and Y are
conditionally independent given (Z = z) for every z ∈ Z

The conditional independence of X and Y given A is denoted by

X ⊥⊥ Y | A

The conditional independence of X and Y given Z is denoted by

X ⊥⊥ Y | Z
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Simplification by independence
Suppose X ⊥⊥ Y . We have

E[g(X)h(Y )] = E[g(X)]E[h(Y )]

var(X + Y ) = var(X) + var(Y )

E[g(X)h(Y )] =
∑
x,y

pXY (x, y)g(x)h(y)

=
∑
x,y

pX (x)pY (y)g(x)h(y)

=
∑

x

pX (x)g(x)
∑

y

pY (y)h(y)

= E[g(X)]E[h(Y )]

var(X + Y ) = E
[

(X + Y )2
]

− E2[X + Y ]

= E
[

X
2 + 2XY + Y

2
]

− (E[X] + E[Y ])2

= E
[

X
2
]

− E2[X] + E
[

Y
2
]

− E2[Y ]

= var(X) + var(Y )

Chia-Ping Chen Discrete Random Variables



82/87

Example (2.20 Independent Bernoulli sum)
Consider B ∼ Bin(n, p). The variance of B can be derived as
follows.

B is the sum of n independent Ber(p)

B = X1 + · · · + Xn

By the previous slide

var(B) = var(X1) + · · · + var(Xn)

=
n∑

i=1
p(1 − p)

= np(1 − p)

Note the consistency with earlier results.
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Example (2.21 Independent Bernoulli average)
The approval rating of a politician can be estimated by asking voters
randomly drawn from the voter population, called a poll. Let Xi

indicate whether the ith asked voter approves the politician. Then
the approval rating based on the poll is

Rn = X1 + · · · + Xn

n

Assume X1, . . . , Xn are independent Ber(p), where p is the un-
known approval rating. Find the mean and variance of Rn.
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Example (2.22 Independent Bernoulli average)
Let A be an event. The probability of A can be estimated with the
relative frequency of A in a simulation consisting of n independent
runs of a random experiment.

Let Xi indicates whether A occurs in run i

The relative frequency of A in n runs is

Fn = X1 + · · · + Xn

n

It follows that

E[Fn] = 1
n

n∑
i=1

E[Xi] = P (A)

var(Fn) = 1
n2

n∑
i=1

var(Xi) = 1
n

[P (A)(1 − P (A))] n→∞−−−−−→ 0
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Summary 1

Probability mass function (PMF)

pX(x) = P (X = x)

Expectation
E[X] =

∑
x

x pX(x)

Basic DRVs

Uni[a, b], Ber(p), Bin(n, p)

Geo(p), Poi(λ)
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Summary 2

Joint PMF

pXY (x, y) = P (X = x ∩ Y = y)

Marginalization

pX(x) =
∑

y

pXY (x, y)

Conditional PMF

pX|Y (x|y) = P (X = x|Y = y) = pXY (x, y)
pY (y)

pX|A(x) = P (X = x|A)
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Summary 3

Total probability theorem

pX(x) =
∑

i

P (Ai)pX|Ai
(x)

pX(x) =
∑

y

pY (y)pX|Y (x|y)

Total expectation theorem

E[X] =
∑

i

P (Ai)E[X|Ai]

E[X] =
∑

y

pY (y)E[X|Y = y] = E[E[X|Y ]]
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