
Words
Notes on Natural Language Processing

Chia-Ping Chen

Department of Computer Science and Engineering

National Sun Yat-Sen University

Kaohsiung, Taiwan ROC

Words – p. 1

Introduction

words: the building blocks of human languages

emphasis on computational aspects

modeling targets
spelling
pronunciation
morphology

modeling tools
finite-state automata and transducers
hidden Markov models
n-gram models

Words – p. 2

Pattern Matching

Suppose we want to search a collection of texts for the
following “meaningful” strings

woodchuck, woodchucks, Woodchuck(s)
$199, $24.99, and other dollar amounts
variable identifiers in c programming language

all modeled by regular expressions

Words – p. 3

Regular Expression

a tool for string search, used in editing applications
such as emacs, vi, perl, and others

a specification of a pattern

all strings conforming to such a pattern (a regular
expression) constitute a set of strings, i.e., a language

Words – p. 4

Regular Expression Search

requires a regular expression and a corpus (text
collection)

searching the corpus for the pattern dictated by the
given regular expression

For example, the grep utility returns the lines in text
file(s) containing the pattern.

Words – p. 5

Basic Patterns

a sequence of plain symbols: /urgl/

disjunction: /[wW]oodchuck/

range: [0-9],[a-zA-Z]

negation by caret (used with opening [): [∧A-Z]

0 or 1 occurrence: /[wW]oodchucks?/

0 more occurrence: /ba*/

1 more occurrence: /ba+/ = /baa*/

wildcard: /beg.n/ matches begin and began

Words – p. 6

Anchors

the start of a line: /∧The/

the end of a line: /∧The dog\.$/

word boundary: /\bthe\b/

non-boundary: /\Bthe\B/

Words – p. 7

Precedence

disjunction of strings: /dog|cat/ meaning?

parenthesis: /pupp(y|ies)/

Operator precedence hierarchy
1. parenthesis: ()
2. counters: * + ?

3. sequences and anchors: the, ∧my, end$

4. disjunction: |

Words – p. 8

An Example

Suppose we want to find the occurrences of the.

The first thought is to use /the/.

But we want The as well. So we use /[tT]he/.

But we don’t want other. So we use /\b[tT]he\b/.

But we want also _the_. So we use

/[∧a-zA-Z][tT]he[∧a-zA-Z]/.

Still, we are missing those beginning a line. So we use

/(∧|[∧a-zA-Z])[tT]he[∧a-zA-Z]/.

Words – p. 9

A More Complex Example

“any PC faster than 2 GHz, and less than $1000”

/$[0-9]+\.[0-9][0-9]/: $199.99 but not $199

/$[0-9]+(\.[0-9][0-9])?/

/\b[2-9](\.[0-9]+)?\b*(GHz|[Gg]igahertz)/

Words – p. 10

Alias

\d: any digit, same as [0-9]

\D: any non-digit, same as [∧0-9]

\w: alphanumeric/underscore, [a-zA-Z0-9_]

\W: non-alphanumeric/underscore, [∧a-zA-Z0-9_]

\s: whitespace

\S: non-whitespace

Words – p. 11

Numbers of Occurrences

{n}: exactly n occurrences of the last expression

{n,m}

{n,}: at least n occurrences of the last expression

Words – p. 12

Special Characters

*: literal *
\.: literal .

\?: literal ?
Note *, ., ? have non-literal meanings.

\n: new-line

\t: tab

Words – p. 13

Registers

Parenthesis is used to delimit pattern.

A matched pattern is stored in a number variable \n,
e.g., \1 is the matched instance of the first pattern.

examples
put brackets around the first woodchuck

s/(woodchuck)/<\1>/

used with pattern matching

/the (.*)er they (.*), the \1er they \2/

Words – p. 14

ELIZA

This system responds by text substitution according to
certain rules written by regular expressions.

A session goes like this.
U: Men are all alike
E: IN WHAT WAY (s/.* all .*/IN WHAT
WAY/)
U: They’re always bugging us about something
E: CAN YOU THINK OF A SPECIFIC EXAMPLE
U: Well, my boy friend made me come here
E: YOUR BOYFRIEND MADE YOU COME HERE

Words – p. 15

Finite-State Automata

After studying regular expressions, we now turn our
attention to finite-state automata(FSA).

Both regular expressions and finite-state automata
describes the same set of languages.

Specifically, if L = L(M) for some FSA M , then
L = L(R) for some regular expression R. The converse
is also true.

They are said to be equivalent.

Words – p. 16

Components of an FSA

A finite-state automata, say A, is characterized by a
5-tuple {Q,Σ, δ, q0, F}

Q: a finite set of states
Σ: a finite set of input symbols
δ(q, a) ∀a ∈ Σ, q ∈ Q: state transition function
q0: initial state
F : a set of final states

Words – p. 17

Mechanism of an FSA

A begins with state q0.

Given an input string w, it processes w from left to
right, and make state transitions.

Specifically, suppose the current input symbol is a and
the current state is q, then the next state q′ is
determined by δ

q′ = δ(q, a).

When the end of input string is processed, the last
state, say p, decides whether w is accepted.

Words – p. 18

The Language of an FSA

A string w is said to be accepted, or recognized, by A if
the last state is in the set of final states, p ∈ F .

The languageof A is the set of strings accepted by A,
denoted by L(A).

Words – p. 19

An Example: Sheeptalk

The sounds of sheep can be modeled by

L = {baa!,baaa!, baaaa!,...}.

L can be described by a regular expression /baa+!/.

L can be described by a FSA, where
Q : {q0, q1, . . . , q4}

Σ : {b, a, !}

q0 : q0

F : {q4}

δ(q, i)

Figure 2.10

Words – p. 20

Dollar Amounts

Suppose we want an FSA to model dollar amounts (in
English), such as ten cents, three dollars,
one dollar thirty-five cents, etc.

It is more convenient to use words as symbols instead
of letters.

Fig 2.15: accepting the numbers 1 to 99

Fig 2.16: including dollars and cents

For larger amounts, we need to deal with hundred,
thousand, million, and so on.

You get the ideas.

Words – p. 21

Non-Deterministic FSA’s

In the definition of FSA, the state transition function δ is
“complete”, and the value is a single state.

Given an input string, there is only one path in the
graph of the FSA.

In a non-deterministic FSA (NFSA), there are multiple
choices of next state given current state and input
symbol. That is, the value of δ is a set of states.

We also allow “spontaneous” state transition, one
without consuming any input symbol.

multiple paths in the graph for a given input string

Words – p. 22

The Language of NFSA

Given an NFSA N and an input string w, w is said to be
accepted by N if any one of the state sequences ends
in a final state.

The set of strings accepted by N is the language of N ,
denoted by L(N).

The sheeptalk can be recognized by NFSA (Figures
2.17, 2.18).

Words – p. 23

Acceptance/Rejection by Search

Whether w is accepted by N is a searchproblem.
acceptance = there exists one path ending in a
final state
rejection = looking at every candidate and none
can be found

To systematically exhaust all possibilities
at a point of multiple choices, the search proceeds
with one and save the alternatives for later.
when no further progress can be made, the search
backs up to a previous point of choice.

Words – p. 24

Search State

For NFSA, at a point of choice, we need to store
the state
the input position

The combination of state and input position is called a
search-state.

We look for a search-state with a final state and the
end position to accept.

Words – p. 25

Order of Search

depth-first search
next search-state: the most recent
search agenda: a stack
It is commonly referred to as a depth-first search,
or Last-In-First-Out (LIFO).

breadth-first search
next search-state: the least recent
search agenda: a queue
It is commonly referred to as a breadth-first search,
or First-In-First-Out (FIFO).

Words – p. 26

Issues

depth-first search
infinite loop

breadth-first search
often use an enormous amount of memory

Words – p. 27

Recursive Definition

The set of regular languages represented by regular
expressions over an alphabet Σ can be defined by

∅ is a regular expression for ∅
∀a ∈ Σ ∪ {ǫ}, L(a) = {a}

If E,F are regular expressions
E + F is a regular expression and
L(E + F) = L(E) ∪ L(F)
EF is a regular expression and
L(EF) = L(E)L(F)
E∗ is a regular expression and L(E∗) = (L(E))∗

(E) is a regular expression and L((E)) = L(E)

Words – p. 28

Closure Properties

intersection

L1 ∩ L2.

complementation

L = Σ∗ − L.

reversal

LR = {w | wR ∈ L}.

difference (from intersection and complementation)

L1 − L2 = L1 ∩ L2.

Words – p. 29

Morphemes

morpheme: minimal bearing unit of meaning

for instance
fox: one morpheme fox

cats: two morphemes cat and -s

in the previous example
cats is called the surface form
NOUN-cat + PL-s is called the lexical form

Words – p. 30

Morphological Parsing

given the surface form, find the lexical form

foxes ⇒ NOUN-fox + PL-es

For the nouns, there are quite a few rules in converting
a singular noun to its plural,

book, fox, goose.

Similarly for the verbs.

A noun and a verb may have the same surface form,
further complicating the problem.

Words – p. 31

Stems and Affixes

two broad classes of morphemes
stems
affixes

prefixes: preceding a stem, undo
suffixes: following, eats
infixes: inserting inside
circumfixes: wrapping around, gesagt

A surface form may have more than one affixes,

unlikely, rewrites.

Words – p. 32

Inflection and Derivation

A surface form and its stem may be in the same or
different part of speech (POS).

Based on this, there are two types of morphological
transformation

inflection: a stem is transformed into a surface form
of the same POS
derivation: a stem is transformed into a surface
form of a different POS

Words – p. 33

Inflectional Morphology

English noun inflection
affix for plural: -s(cats), -es(brushes),
-en(oxen)

affix for possessive: -’s(cat’s), -’(cats’)

English verbal inflection
regular: -s(sends), -es(watches),
-ing(watching), -ed(watched)

irregular: eat/ate, cut/cut

Words – p. 34

Derivational Morphology

Nouns can be derived from adjectives or verbs, e.g.,
-ation(computerization), -ee(appointee),
-er(killer), -ness(fuzziness),
-ity(reality).

Adjectives can be derived from nouns or verbs, e.g.,
-al(national), -able(doable),
-less(clueless).

Words – p. 35

Morphological Parsing

example of morphological parsing





cats ⇒ cat +N+PL,

geese ⇒ goose+N+PL,

gooses ⇒ goose +V+3SG.

Specifically, a word in its surface form is parsed into its
stem and a set of morphological features, such as

POS
plurality
3SG
present participle, past participle, past tense, etc

Words – p. 36

Components of a Parser

lexicon: the lists of stems (with POS) and affixes

morphotactics: a model (rules) of morpheme ordering
in a word

to draw an analogy, syntax is a model of word
ordering in a sentence

orthographic rules: spelling rules when morphemes
combine

e.g., y→ie when city + PL

Words – p. 37

Nominal Inflection

lexicon
reg-noun (cat, dog)
-s (for plural).
irreg-sg-noun (goose, mouse)
irreg-pl-noun (geese, mice)

FSA (Fig 3.3)

Words – p. 38

Verbal Inflection

FSA (Fig 3.4)

There are three classes for verb stems
reg-verb-stem (walk, impeach)
irreg-verb-stem (cut, sing)
irreg-past-verb-form (caught, sang)

There are also four affix classes
-ed (for past tense)
-ed (for past participle)
-ing (for present participle)
-s (for 3SG)

Words – p. 39

Adjectives

FSA (Fig 3.5)
lexicon: stems (such as big, cool), prefix (un-),
and suffix (-er,-est,-ly)
morphotactics: a stem, optional prefix, optional
suffix

However, it also accepts something like unbig ...
need to separate stems which allow prefix from
those which do not allow prefix ...

Words – p. 40

Alphabet Set

The alphabet (symbol set) of a morphological FSA
contains “morphemes” so far.

The FSA can be expanded so that the new alphabet
contains letters.

Fig 3.7 gives an toy example for noun FSA
the label of any path that starts at the initial state
and ends at a final state is a noun
not exact, for example, the wrong word foxs is
accepted

Words – p. 41

Finite-State Transducer

A finite-state transducer (FST)maps an input string to
an output string.

A deterministic FST is defined by
Q: a finite state set
Σ: input alphabet
∆: output alphabet
q0: the start state
F : the set of final states
δ(q, w): transition function, returning a state in Q

σ(q, w): output function , returning a string in ∆∗

For FST as a morphological parser, the input is a string
of morphemes and the output is a string of letters.

Words – p. 42

Inversion and Composition

The inversion of an FST T is another FST, T−1, such
that

T (w) = u ⇒ T−1(u) = w, ∀ w

The compositionof two FSTs T1 and T2 is an FST,
T1 ◦ T2, such that





T1(x) = y

T2(y) = z
⇒ T1 ◦ T2(x) = z, ∀ x, y, z

One can also write

T1 ◦ T2(x) = T2(T1(x)).

Words – p. 43

Apply FST to M-Parsing

the two levels in m-parsing
lexical level: concatenation of morphemes
surface level: concatenation of letters

the two tapesof a m-parsing FST
(upper) lexical tape: for the concatenation of
morphemes
(lower) surface tape: for the concatenation of
letters

Words – p. 44

Tnum

an FST for singular/plural inflection (Fig. 3.13)
based on Fig. 3.3
add morphological features, +N, +SG, +PL

some features are mapped to the empty string,
morpheme boundary marker # or word boundary
marker ∧, as they do not produce any segment on
the surface tape

Note in Fig. 3.13, input symbol is above a transition
while output symbol is below; default input/output pair
a : a is simply denoted by by a.

Words – p. 45

Tlex

Fig. 3.13 needs to be expanded into letters, resulting in
Fig. 3.14 for the lexicon immediately above.

This FST is denoted by Tlex.

For example, we have

c:c a:a t:t +N:ǫ +PL:∧s#

The output string is not quite the surface form.

We put the output string in an intermediate tape.

Words – p. 46

Orthographic Rules

We need yet another transduction process from the
intermediate tape to the surface tape.

Here we focus on the application of orthographic rules.

an example for such a rule is the e-insertion.

rule notation

ǫ → e/





x

s

z




∧ s#

implemented by an FST Te (Fig. 3.17)

Words – p. 47

Putting It Together

There maybe other rules, each may be implemented
by an FST.

The entire picture is given in Fig. 3.19.

As an example, the transduction of foxes is shown in
Fig. 3.20.

Words – p. 48

Language Models

To develop computational linguistics, mathematical
models for natural languages are required.

A language modelgives a probability to a sentence.
In speech recognition, this is combined with
acoustic modelscore to decide optimal hypothesis.
In machine translation, this is combined with
translation model score to decide optimal
translation.

Here we introduce the n-gram language models.

Words – p. 49

Word Prediction

A language model can help us in word prediction , the
task of guessing next word. For example,

I’d like to make a collect ...

WP can help saving significant typing efforts in certain
situations

disabled users
Chinese input
mobile devices

Words – p. 50

n-Gram

An n-gram is an n-word sequence. For example,
a bigram is a sequence of two words;
a trigram is a sequence of three words;
a unigram is a single word.

For clarity, we also define the following terms
a type is a distinct sequence (n-gram);
a token is an instance of a type.

Thus, in the string

reading a good book is a good thing

there are 6 unigram types and 8 unigram tokens.

Words – p. 51

The Probability of A Sentence

What is the probability of a sentence, say

S = w1, . . . , wi?

Applying the chain rule of probability ,

Pr(S = w1, . . . , wi) = Pr(w1)Pr(w2|w1) . . . P r(wi|w1, . . . , wi−1).

If we have all the probabilities, we can compute the
probability of S.

However, the size of the probability table

Pr(wi|w1, . . . , wi−1)

grows exponentially with i.

Words – p. 52

n-Gram Language Model

An n-gram language model is based on the following
approximation (or assumption), that

the probability of a word following an (i − 1)-gram
depends at most on the last (n − 1)-gram.

That is,

p(wi = w|w1:i−1) = p(wi = w|wi−n+1:i−1).

Note the notation wm:n = wm, wm+1, . . . , wn.

Words – p. 53

How to Get Probability?

Probability is based on counting.

The basic idea is that of relative frequency.

It is reasonable to assume

Pr(w2|w1) =
o(w1w2)

o(w1)

where o(t) is the number of occurrences of type t.

To obtain these numbers (counts), we need a
collection of text, a.k.a. text corpus.

Words – p. 54

Text Corpus and LM

Using one text corpus leads to an n-gram probability,
while using another corpus leads to another.

Put in another way, the language model is highly
dependent on the text corpus.

exemplar text corpora
Switchboard: telephone conversations, 20k types,
2.4m tokens
Brown corpus: written texts, 60k types, 1m tokens

Words – p. 55

Data Sets

The data used to learn the language models and the
data to evaluate the learned models should be disjoint.

The learning data is called the training set.
The evaluating data is called the test set.

Sometimes we need extra set to learn certain
additional parameters. That is called the held-out set.

Sometimes we have no test set but need one for
evaluation. That is called the development test set, or
devset.

Words – p. 56

Random Sentence Generation

We can generate random sentences from the n-gram
models estimated from the work of Shakespeare.

randomly generated samples, Fig. 4.3
unigram
bigram
trigram

The larger n, the more coherent are the generated
sentences.

Using n-grams trained by the Wall Street Journal
corpus results in Fig. 4.4.

Differnt training sets leads to different language
models, generating different kinds of sentences.

Words – p. 57

LM Evaluation

extrinsic evaluation: apply LM in an application, to see
the performance of that application

e.g., measuring word error rate in speech
recognition

intrinsic evaluation: use a measure that is independent
of any application

e.g., perplexity

Words – p. 58

Perplexity

Given a LM, say p, the perplexity of a text

W = w1, . . . , wN

is defined by

PPL(W) = p(W)−
1

N .

average branching factor of next word

For n-grams, often a larger n leads to a lower
perplexity without data paucity.

Words – p. 59

Data Paucity

The data paucity problem, a.k.a., the 0-occurrence
problem, can be stated as follows.

Some n-grams may not occur in a given corpus
and the estimated probability is 0.
If the test set contain any n-gram instance that
does not occur in the training set, then the
probability is 0.

Indeed, as n gets large, the majority of n-gram types
will have 0 counts with any realistic corpus.

Words – p. 60

LM Smoothing

trade-off of n in n-grams
large n for accurate model, but non-robust
parameter estimation
small n for robust parameter estimation, but
inaccurate model

Smoothingcan hedge this problem.
A large n can be adopted, while some probability
mass is re-distributed to the n-grams with 0 or very
low counts.

Words – p. 61

Laplace Smoothing

a.k.a. add-1 smoothing

add 1 to every n-gram count; 0 → 1

The smoothed probability is




p∗(w) = o(w)+1

P

w′ o(w
′
)+V

, unigram smoothing

p∗(w|w0) = o(w0w)+1
P

w′ o(w0w
′
)+V

, bigram smoothing

The same idea can be generalized to add-δ, (δ > 0).
For type t,

p∗(t) =
o(t) + δ

N + δV
.

Words – p. 62

Discounting

In add-1 smoothing, we are effectively changing the
count of type t to be

c∗(t) = (o(t) + 1)
N

N + V
,

and

p∗(t) =
c∗(t)

N
.

The actual number of occurrences is o(t), so we also
say that each occurrence is discountedby

d(t) =
c∗(t)

o(t)
.

Words – p. 63

Example

Fig. 4.1: bigram counts and unigram counts

Fig. 4.2: bigram probability before smoothing

Fig. 4.5: adding 1 to every bigram count in

Fig. 4.7: c∗(t) (multiplied by N
N+V

)

Fig. 4.6: add-1 smoothed bigram probability

p∗(w|v) =
o(vw) + 1

o(v) + V
.

large discount when V >> N .

Words – p. 64

Good-Turing Discounting

described by Good, who credits Turing with the idea

frequency of frequency: the number of types (first
frequency) with a certain count (second frequency)

Nc =
∑

t:o(t)=c

1.

The new count c∗ (the count of a type which occurs c

times in the training data) is replaced by

c → c∗ = (c + 1)
Nc+1

Nc

.

Words – p. 65

Good-Turing Discounting

The total count is conserved, since

∞∑

c=0

c∗Nc =
∞∑

c=0

(c + 1)Nc+1 =
∞∑

c′=1

(c′)Nc′ =
∞∑

c=0

cNc.

Suppose this total count is C. The probability is for a
type t with o(t) = c is simply

P ∗(t) =
c∗

C

Specifically, for the set of all unseen types U ,

P ∗(U) =
N1

C
.

Words – p. 66

Example

Fig. 4.8: GTD from two different corpora

The count for c ≥ 1 is reasonably discounted.

Same idea can be applied to all low-count types, not
just the 0-count types.

Contrarily, we can also assume that o(t) > k is reliable
for a threshold k.

Words – p. 67

n-Gram Hierarchy

We have seen how to deal with the 0-occurrence
problem with smoothing/discounting schemes.

Another line of approach is to use the probability of a
lower n-gram.

If the count of uvw is zero, we approximate p(w|uv)
by p(w|v).
If the count of vw is also zero, we approximate by
p(w).

This is called n-gram hierarchy. We introduce schemes
of

(deleted) interpolation
backoff

Words – p. 68

Interpolation

linear combination of n-gram probabilities of
progressive n’s

For example, for trigrams,

p̂(w|uv) = λ1p(w|uv) + λ2p(w|v) + λ3p(w),
∑

i

λi = 1.

λi is often learned from a held-out corpus.

λi’s may depend on u, v.

Words – p. 69

Backoff

In the interpolation scheme, the lower-order n-grams
are always used.

In the backoff scheme, a lower-order n-gram is used
only when the higher orders fail.

For example, for a simple trigram backoff

p̂(w|uv) =





p(w|uv), o(uvw) > 0,

αp̂(w|v), o(uvw) = 0.

Note that those p(w|uv) with o(uvw) > 0 alone add
up to 1, so p̂ is not a probability.

Words – p. 70

Normalization Constant

We can use a discount scheme, such as Good-Turing,

p(w|uv) → p̃(w|uv).

α is set so that the total probability is 1. Define the set
A = {w|o(uvw) > 0} with non-zero trigram count.

1 = (
∑

w′∈A

+
∑

w′ /∈A

) p̂(w′|uv) =
∑

w′∈A

p̃(w′|uv) +
∑

w′ /∈A

αp̂(w′|v)

=
∑

w′∈A

p̃(w′|uv) + α(1 −
∑

w′∈A

p̂(w′|v))

⇒α =
1 −

∑
w′∈A p̃(w′|uv)

1 −
∑

w′∈A p̂(w′|v)
.

Fig. 4.9

Words – p. 71

Class-Basedn-Grams

The probability depends on the previous POS tags.

More specifically, the conditional probability of the next
word is

Pr(w1:i) =
∑

c1:i

Pr(w1:i|c1:i)Pr(c1:i)

=
∑

c1:i

∏

j

Pr(wj|cj)
∏

j

Pr(cj|cj−n+1:j−1)

more reliable estimation of parameters as

|C| << |V |

Words – p. 72

Part-of-Speech

The significance of parts-of-speech(a.k.a. POS, word
classes, lexical tags) is the large amount of information
they give about a word and its neighbors.

In fact, grammatical rules are written in terms of word
classes.

The POS tag of a word in a sentence, e.g. noun,
preposition, indicates its syntactical role.

The same word may be labeled by a different tag in
a different context. For example, book.

Words – p. 73

English Word Classes

closed: POS categories with fixed members
preposition, pronoun

small sets
function words

open: POS categories with non-fixed members
noun, verb

large sets
content words

Words – p. 74

Noun

a POS tag often given to words for people, places,
things

friend, restaurant, desk

also given to verb-like word according to the syntax
His writing is good.

given to abstraction as well
quality, generalization

miscellaneous
proper nouns, Chen, Kaohsiung
mass nouns vs. count nouns

Words – p. 75

Verbs

used to refer to actions and processes
paint, count, deal

morphological forms of a verb (sing)
3rd-person-sg (sings)
progressive (singing)
past (sang)
past-participle (sung)

Words – p. 76

Adjectives and Adverbs

adjectives: describing properties or qualities
color (pink/white), size (large/small), age
(old/young), etc.

adverbs: modifying/specializing something

John walked home extremely slowly yesterday.

locative adverbs (home, there)
degree adverbs (much, rarely, extremely)
manner adverbs (quickly, slowly)
temporal adverbs (now, tomorrow, yesterday)

Words – p. 77

Closed Classes

prepositions

determiners

pronouns

conjunctions

auxiliary verbs

particles

numberals

Words – p. 78

Prepositions and Particles

preposition: used to indicate spatial or temporal
relation

under the table, before noon

particle: combined with a verb to form a larger unit
called phrasal verb

call off, give up, give in

Fig. 5.1 lists prepositions and particles.

Words – p. 79

Determiners

occurring with nouns, marking the beginning of a noun
phrase

a book, the book, this book

articles: a subtype of determiners, consisting of
a, an, the

extremely frequent in English

Words – p. 80

Conjunctions

used to join two phrases, clauses or sentences
coordinating conjunctions: joining two elements of
equal status (and, or, but)
subordinating conjunctions: one of the element is
of an embedded status (that)

Fig. 5.3 lists conjunctions of English.

Words – p. 81

Miscellaneous Classes

pronouns: I, my, who

auxiliary verbs: be, have/do, can/may

interjections: oh, ah, hey, man, alas

negatives: no, not

politeness markers: please

greetings: hello

existential there: there

Words – p. 82

POS Tagsets

varies with application

Penn Treebank tagset: see Fig. 5.6

Each word token has a tag.

The/DT grand/JJ jury/NN commented/VBD on/IN

a/DT number/NN of/IN other/JJ topics/NNS ./.

Words – p. 83

POS Tagging

the process of assigning a POS tagto each word token
in a corpus

Often a punctuation mark is considered a token.

We are primarily interested in automatic taggers.

Words – p. 84

Ambiguity

POS tagging is non-trivial due to ambiguity.

Suppose the input word string is

Book that flight.

Book: noun? verb?
that: determiner? conjunction? pronoun?

In Brown corpus, 11.5% word types are ambiguous,
while 40% of word tokens are ambiguous.

most word types are unambiguous
but many common words are ambiguous

Words – p. 85

Tagging Algorithms

simple tagger: assigning to a word token its most
frequent tag

actually not too bad

rule-based tagger: using a set of hand-written
disambiguation rules

stochastic tagger: computing the probability of POS
tags in a sentence

HMM
log-linear model

Words – p. 86

Stochastic POS Tagging

Bayes criterion

T ∗ = arg max
T

P (T |W).

T = tn1 : tag sequence
W = wn

1 : word (token) sequence

T ∗ minimizes the probability of sequence-level error,
over all candidates T ,

1 − P (T |W).

Words – p. 87

Stochastic POS Tagging

Note that T ∗ minimizes the expected number of
sequence-level errors, as

E(Ns = IT 6=R) = E(IT 6=R) = (1 − P (T |W)).

In contrast, the total number of tag-level errors is

Nt =
l∑

i=1

Iti 6=ri
.

To minimize E(Nt), the criterion should be

t∗i = arg max
t

P (ti = t|W).

Stringing t∗i together does not necessarily yields T ∗!

Words – p. 88

Prior and Likelihood

We can re-write the posterior probability as

P (T |W) =
P (T, W)

P (W)
=

P (W |T)P (T)

P (W)
∝ P (W |T)P (T)

P (T) is called the prior probability of T

P (W |T) is called the likelihood of W for given T

Note

arg max
T

P (T |W) = arg max
T

P (T)P (W |T),

since P (W) does not vary with T .

Words – p. 89

HMM Assumptions

HMM (of order k) makes two assumptions

the probability of a word token, given its POS tag,
is independent of any other things

P (wn
1 |t

n
1) =

n∏

i=1

P (wi|ti)

the probability of a POS tag, given its (k − 1)

previous tags, is independent of any other things

P (tn1) = P (tk−1
1)

n∏

i=k

P (ti|t
i−1
i−k+1)

Words – p. 90

Bigram HMM Taggers

Suppose we have a bigram HMM tagger.

The joint probability of (T,W) is

p(W |T)p(T) = p(t1)p(w1|t1)
∏

i

p(ti|ti−1)p(wi|ti).

With the neighboring fixed, the optimal tag ti depends
on ti−1, ti+1, and wi,

t∗i = arg max
ti

p(wi|ti)p(ti|ti−1)p(ti+1|ti).

Words – p. 91

An Example

Consider the sentence W

Secretariat is expected to race tomorrow.

Fig. 5.12 illustrates possible 2 state sequences for the
given W .

We know that race is a verb.

Using bigram HMM, we need to compare

p(race|V B) p(V B|TO) P (NR|V B),

p(race|NN) p(NN |TO) P (NR|NN).

Words – p. 92

Decoding HMM

Given W , find T .

Viterbi decoding

initialization, recursion, and termination

v0(0) = 1;

vm(j) = max
i

vm−1(i)aijbj(wm);

vn+1(f) = max
i

vn(i)aif ;

where m is the index of input position, state 0 and f
are initial and final states.
back-trace

Fig. 5.18 depicts the algorithm.

Words – p. 93

Confusion Matrix

Suppose there are N classes. The confusion matrix or
the contingency tableC is an N ×N matrix, where Cij is
the number of instances of class i classified as class j.

a useful tool for error analysis for classification
problems

can also be used to estimate (error) probability (each
row can become a probability function)

Words – p. 94

Noisy Channel Model

Spelling can be modeled as mapping from one
(intended) string of symbols to another (spelled).

One can imagine a channel that has the correct word
as input and the observed string of letters as output.

The channel is noisy, so input and output may differ
(typo).

The same idea, called noisy channel model, can be
applied to model any input/output relations.

Words – p. 95

Spelling Error Patterns

single-error mis-spellings
insertion: the → ther
deletion: the → th
substitution: the → thw
transposition: the → hte

For typing, they occur due to typographic or cognitive
factors.

For OCR (optical character recognition), there are
other error types, e.g. space deletion/insertion and
multiple substitution.

Words – p. 96

Optimal Solution

We are given observation O and want to decide an
optimal ŵ.

The probability of error when deciding w, Pe(w), is

1 − P (w|O).

ŵ that minimizes Pe(w) must maximize P (w|O), so

ŵ = arg max
w

P (w|O) = arg max
w

P (O, w)

P (O)
= arg max

w
P (O|w)P (w).

We call P (O|w) likelihood and P (w) prior.

Words – p. 97

Example

Consider a non-word error acress.

actress? cress? caress? access? assess? ...

Which is the most likely original word?

How do we decide?

What do we need to decide?

Words – p. 98

Single-Error Assumption

To simplify the problem, we suppose typo t differs from
the correct spelling c by a single-error mis-spelling.

The Bayes decision rule is

ĉ = arg max
c

P (t|c)P (c).

To decide ĉ, we need two probabilities.
P (c)

P (t|c)

The problem now is how to estimate P (c), P (t|c).

Words – p. 99

Kernighan’s Idea

Kernighan proposed to approximate P (acress|across)
by S(e|o), the probability of substituting o by e.

To estimate S(e|o), we use a corpus of spelling errors
and count the number of times o is typed as e.

Let the error counts be stored in a matrix sub[o, e].

Define the counts of o to be the sum

count[o] =
∑

α

sub[o, α].

Then

S(e|o) =
sub[o, e]

count[o]
.

Words – p. 100

Confusion Matrices for Single Errors

del[x, y]: the count that xy is typed as x

ins[x, y]: the count that x is typed as xy

sub[x, y]: the count that x is typed as y

trans[x, y]: the count that xy is typed as yx

the single-error probabilities can be estimated by
counts of a labelled corpus






D(x|xy) = del[x,y]
count[xy]

, deletion

I(xy|x) = ins[x,y]
count[x]

, insertion

S(y|x) = sub[x,y]
count[x]

, substitution

T (yx|xy) = trans[x,y]
count[xy]

, transposition

Words – p. 101

Candidate List and Probability

For each position p, we check if t can results from a
real word c and a single-error mis-spelling.

If so, we approximate P (t|c) by

P (t|c) =






D(tp−1|tp−1cp), deletion of cp

I(tp−1tp|tp−1), insertion after cp−1

S(tp|cp), substitution of cp by tp

T (tp+1tp|tptp+1), transposition at p : p + 1

Fig. 5.25 provides the details.

Words – p. 102

Markov Chain

A Markov chain is an FSA with the following properties
state transition has a weight, representing
transition probability
input sequence = state sequence

So a Markov chain is a kind of weighted finite-state
automata (WFSA), specified by

a state set Q = {q1, . . . , qN}

transition probabilities, A = aij, with
∑

j

aij = 1, ∀ i

q0, qF , the start and end states

Words – p. 103

Markov Chain Assumptions

A Markov model is based on the following assumptions

conditional independence assumption

Pr(st|st−1, st−2, . . . , s1) = Pr(st|st−1)

time-invariance assumption

Pr(st = qj|st−1 = qi) = aij ∀t

We sometimes single out a0i = πi, to represent the
initial probability .

Words – p. 104

An Example

A starter W of New York Yankees
state set: Q = {1 = A, 2 = B, 3 = T}.
uniform initial probability

transition probability

A =





0.6 0.1 0.3

0.4 0.3 0.3

0.5 0.3 0.2





What is the probability that W leaves with leads for the
first 10 games he started, i.e. state = AAAAAAAAAA?

Words – p. 105

Hidden States and Observations

The performance of a starting pitcher is best measured
by the state when he leaves the field, A/B/T.

However, the win/loss result when the game is overis
often easier to track.

Suppose we have no data of the states but have the
win/loss record.

A/B/T are called the hidden states
the win/loss records are called the observations

It is clear hear that an observation depend on the
corresponding hidden state.

The above model constitutes a hidden Markov model.

Words – p. 106

HMM

An HMM is specified by
a state set Q = {q1, . . . , qN}

an observation sequenceo1, . . . , oT .

transition probabilities

A = aij = Pr(st+1 = qj|st = qi),
∑

j

aij = 1, ∀ i

observation likelihood,

B = bi(o) = p(o|s = qi).

q0, qF , the start and end states

Again, in some literature a0· is denoted by π.

Words – p. 107

Example: Ice Cream

Fig. 6.3 gives an HMM which models the weatherand
the number of ice creams eaten by Jason.

The weather is hidden, the number is observed.

With this example, we introduce the fundamental
problems in HMM .

likelihood computation
decoding
parameter estimation

Words – p. 108

Likelihood Computation

likelihood computation: computing the likelihood of a
given observation

What is the probability that Jason eats (2, 2, 2) ice
creams in three days?

We introduce the forward algorithm and the backward
algorithm for this problem.

Words – p. 109

Decoding

decoding: finding the most-likely state sequence for a
given observation

Suppose in three days, Jason eat (2, 2, 2) ice
creams. What is the most likely weather sequence?

We introduce the Viterbi algorithm for this problem.

Words – p. 110

Parameter Estimation

parameter estimation: estimating probability
parameters A,B from data observation, say a long
observation sequence or a set of sequences

Note the state sequence is unknown.

We introduce the EM algorithm for this problem.
The EM algorithm is based on the computation of
the posterior probabilities of (hidden) states, which
can be computed by the forward-backward
algorithm.

Words – p. 111

Forward Probability

We have the initial probability π, the transition
probability aij, and the observation likelihood bi(o).

Define the forward probability , denote by αj(t), to be
the joint probability that the hidden state at time t is qj

and the observation sequence from 1 to t is o1, . . . , ot,

αj(t) = p(o1, . . . , ot, st = qj).

Words – p. 112

Forward Algorithm

Recall q0 and qF are the start and end states. The
forward algorithm evaluates αj(t) progressively.

initialization

αj(1) = a0jbj(o1)

recursion

αj(t) =

N∑

i=1

αi(t − 1)aijbj(ot)

termination

αF (T) =

N∑

i=1

αi(T)aiF

Words – p. 113

Backward Probability

Similarly, we can define the backward probability ,
denote by βi(t), to be

βi(t) = p(ot+1, . . . , oT |st = qi).

In other words, it is the conditional probability of the
observation sequence from t + 1 to T is ot+1, . . . , oT ,
given st = qi.

Words – p. 114

Backward Algorithm

The backward algorithm evaluates βi(t) in the reverse
direction.

initialization

βi(T) = aiF

recursion

βi(t) =
N∑

j=1

aijbj(ot+1)βj(t + 1)

termination

β0(1) =
N∑

j=1

a0jbj(o1)βj(1)

Words – p. 115

Likelihood

If we multiply αj(t) and βj(t) for the same state qj at
any time t, we get

αj(t)βj(t) = p(o1, . . . , ot, st = qj)p(ot+1, . . . , oT |st = qj)

= p(o1, . . . , oT , st = qj) = p(O, st = qj).

The likelihood of the observation sequence is

p(O) =
∑

j

p(O, st = qj) =
∑

j

αj(t)βj(t).

Alternatively, the likelihood is also given by the forward
probability or backward probability alone,

p(O) = αF (T) = β0(1).
Words – p. 116

Viterbi Probability

We define the Viterbi probability , vj(t), to be the
maximum joint probability of o1, . . . , ot and a state
sequence s1, . . . , st with st = qj.

That is,

vj(t) = max
i1,...,it−1

p(s1 = qi1 , . . . , st−1 = qit−1
, st = qj, o1, . . . , ot).

Note the relation

vj(t) = max
i1,...,it−1

p(s1 = qi1 , . . . , st−1 = qit−1
, st = qj , o1:t)

= max
it−1

[
max

i1,...,it−2

p(. . . , st−2 = qit−2
, st−1 = qit−1

, o1:t−1)

]
ait−1jbj(ot)

= max
i

vi(t − 1)aijbj(ot)

Words – p. 117

Viterbi Algorithm

vj(t) can be computed by the Viterbi algorithm .

initialization

vj(1) = p(s1 = qj, o1) = a0jbj(o1)

recursion

vj(t) = max
i

vi(t − 1)aijbj(ot)

termination

vF (T) = max
i

vi(T)aiF

Note its resemblance to the forward algorithm.

Words – p. 118

Q Function

We need the following auxiliary function

Q(λ, λ0) = E[log p(S, O|λ)] =
∑

s

p(S = s|O, λ0) log p(S = s, O|λ)

λ0: current set of model parameters
O: observed data
S: hidden variable (a sequence of states)

The function Q is maximized with respect to the
unknown λ to yield a new set of model parameters.

Words – p. 119

Data Likelihood and Q

Note

Q(λ, λ0) − Q(λ0, λ0)

=
∑

s

[p(S = s|O, λ0) log p(S = s, O|λ) − p(S = s|O, λ0) log p(S = s, O|λ0)]

=
∑

s

p(S = s|O, λ0) [log p(O|λ) + log p(S = s|O, λ)]

−
∑

s

p(S = s|O, λ0) [log p(O|λ0) + log p(S = s|O, λ0)]

= log p(O|λ) − log p(O|λ0) −
∑

s

p(S = s|O, λ0) log
p(S = s|O, λ0)

p(S = s|O, λ)

= log p(O|λ) − log p(O|λ0) − D(p0||pλ).

D(p0||pλ) is called the relative entropy between p0 and
pλ. It is always non-negative.

Words – p. 120

EM Algorithm

Suppose Q(λ, λ0) is maximized by λ∗, meaning

Q(λ∗, λ0) ≥ Q(λ0, λ0).

We have

log p(O|λ∗) − log p(O|λ0)

= Q(λ∗, λ0) − Q(λ0, λ0) + D(p0||pλ)

≥ Q(λ∗, λ0) − Q(λ0, λ0)

≥ 0.

That is, maximizing the expected log likelihood Q

increases the data likelihood.

Words – p. 121

Q Function for HMM

From the independence assumption of HMM, we have

p(S,O) = p(S)p(O|S)

= p(s1)
T∏

t=2

p(st|st−1)
T∏

t=1

p(ot|st).

Taking the logarithm as required in the Q function

log p(S,O) = log p(s1) +
T∑

t=2

log p(st|st−1) +
T∑

t=1

log p(ot|st)

Words – p. 122

Putting Together

Q(λ, λ0) =
∑

s

p(s|O, λ0) log p(s, O|λ)

=
∑

s

p(s|O, λ0) log p(s1|λ) +
∑

s

p(s|O, λ0)

T∑

t=1

log p(ot|st, λ)

+
∑

s

p(s|O, λ0)
T∑

t=2

log p(st|st−1, λ)

=
N∑

i=1

p(s1 = qi|O, λ0) log πi +
T∑

t=1

N∑

i=1

p(st = qi|O, λ0) log bi(ot)

+
T∑

t=2

N∑

i=1

N∑

j=1

p(st−1 = qi, st = qj |O, λ0) log aij

Words – p. 123

Posterior Probability

posterior probability (given O) of st = qi

γi(t) = p(st = qi|O) =
αi(t)βi(t)∑
j αj(t)βj(t)

.

joint probability of st = qi, st+1 = qj and O

p(st = i, st+1 = j, O) = αi(t)aijbj(ot+1)βj(t + 1).

posterior probability of ξij(t) = p(st = qi, st+1 = qj|O)

ξij(t) =
p(st = qi, st+1 = qj, O)

p(O)
=

αi(t)aijbj(ot+1)βj(t + 1)

αF (T)
.

Words – p. 124

State Occupancy

If I is a Bernoulli random variable, then

E(I) = p(I = 1).

Thus, given the observation sequence O, the expected
number of occupancy in state qi is

T∑

t=1

γi(t)

Words – p. 125

State Transition

For the same reason, ξij(t) is expected number of
transition from state qi to state qj, at time t.

For the entire sequence, the expected number of
transitions from state qi to qj is

T∑

t=1

ξij(t).

Words – p. 126

Parameters in Markov Chains

initial probability

πi = γi(1).

transition probability

aij =

∑
t ξij(t)∑
t γi(t)

Words – p. 127

Parameters in Gaussians

We note without proof that the parameters of Gaussian
observation likelihood are updated by

mean

µi =

∑
t γi(t)ot∑
t γi(t)

covariance

σ2
i =

∑
t γi(t)(ot − µi)(ot − µi)

′

∑
t γi(t)

Words – p. 128

Maximum Entropy Models

This is another commonly used probability model in
speech and language processing.

We will cover this subject in the following order
linear regression
logistic regression
classification based on logistic regression
maximum entropy models

Words – p. 129

Regression and Classification

We discuss two distinguishable classes of problems.
When the output is real-valued, the task is called
regression.
When the output is discrete, the task is called
classification.

The input of a regression or classification system is
often called features, representing important quantities
or attributes of raw input data.

Words – p. 130

Linear Regression

A linear regressionis the special case of regression
where the input-output function is linear.

In the simplest case, there is a single input x, and the
output y is related to x by

ŷ = b + wx.

w is called weight and b is called bias.

With multiple features, f1, . . . , fn, we have

ŷ = b +

n∑

i=1

wifi

Words – p. 131

Vectorial Form

Define the extended vectors of feature and weight

f = (f0, . . . , fn) = (1, . . . , fn)

w = (w0, . . . , wn) = (b, . . . , wn).

The linear regression can be written as a dot product

ŷ = w · f .

Words – p. 132

Learning Weights

Suppose we have a data set of M instances {(y, f)}M
i .

Suppose the learning criterion is to minimize the sum
of squared errors

M∑

i=1

(ŷi − yi)
2.

It can be shown that the optimal weight is given by

w∗ = (F T F)−1F Ty,

where F is the matrix whose ith column is fi, and y is
the vector whose ith component is yi.

Words – p. 133

Classification

Next we turn to a classification problem.

Given feature f , we want to decide the class of the
data x represented by f .

In a classification problem, we are often content with a
probability distribution of different classes given f .

However, w · f cannot be a probability since the range
is unbounded.

Words – p. 134

Odds

Consider a two-class classification problem




y = 1, if x is in class 1

y = 0, otherwise

The oddsof y = 1, for a given x, is defined by

p(y = 1|x)

p(y = 0|x)
=

p(y = 1|x)

1 − p(y = 1|x)
.

The range of an odds is from 0 to ∞ ...

Words – p. 135

Logit Function

We can apply a logarithm to an odds. The range of log
odds is from −∞ to ∞.

Then we can equate log odds to a linear regression of
features

log
p(y = 1|x)

1 − p(y = 1|x)
= w · f .

The lhs function is called the logit function

logit(s) = log
s

1 − s
.

Words – p. 136

Logistic Function

Solving logit(p) = w · f for p, we get

logit(p) = log
p

1 − p
= w · f ⇒ p =

ew·f

1 + ew·f
=

1

1 + e−w·f

Define the logistic function

logistic(t) =
1

1 + e−t
.

We have

logit(p) = t ⇒ p = logistic(t).

Words – p. 137

Logistic Regression

Putting all together, the probability is given by

p(y = 1|x) =
1

1 + e−w·f
= logistic(w · f).

It is called a logistic regression.

Words – p. 138

Decision Boundary

Given x, we decide it class based on comparing the
probabilities p(y = 1|x) and p(y = 0|x).

From the logistic function, we can see that




w · f > 0 ⇒ p(y = 1|x) > 1

2
> p(y = 0|x),

w · f < 0 ⇒ p(y = 1|x) < 1
2

< p(y = 0|x).

So the decision boundary is a hyperplane in the
feature space, decided by w.

Words – p. 139

A Different Perspective

In logistic regression, the posterior probability of
sample x being in class 1 is given by

p(y = 1|x) =
ew·f

1 + ew·f
∝ ew1·f

p(y = 0|x) = e0 ∝ ew0·f .

The log probability of a class, say c, is proportional to a
class-dependent weighted sum of features

wc · f =
∑

i

wcifi.

wc represents the weights for class c.

Words – p. 140

Multiple Classes

We can use the same idea towards multi-class
classification problem.

Specifically, we can assume

p(y = c|x) ∝ ewc·f =
1

Z
ewc·f .

Z is a normalization constant to make total probability
1, so ∑

c

p(y = c|x) = 1 ⇒ Z =
∑

c

ewc·f .

For example, the two-class problem has Z = 1 + ew·f .

Words – p. 141

Stochastic Modeling

In the problem of stochastic modeling, we want to
construct a model to best characterize a random
process.

We have at our disposal some sample datafrom this
random process.

baseball managers
stock brokers
nlp researchers

We construct a model to “fit” the sample data. Put in
another way, we exploit data to decide the model.

Words – p. 142

Initial Model

Suppose we want to model the translation of the word
in in English to one of 5 candidates in French

dans, en, à, au cours de, pendant

The only knowledge we know about the probabilities is
that they sum to 1.

Without further information, it is reasonable (and wise)
to assume uniform probability for each candidate, i.e.,

p(dans) = · · · =
1

5
.

Words – p. 143

Knowledge From Sample

Suppose we have a sample of translation results by a
human expert translator on the translation of in.

Suppose in this sample, the expert chooses dans or en
30% of the time.

If we think this is an important piece of information, we
may require that our model has this feature.

We now have two constraints for the probabilities, i.e.,

p(dans) + p(en) = p1 + p2 =
3

10
p1 + p2 + p3 + p4 + p5 = 1.

Words – p. 144

More Knowledge From Sample

Suppose in this sample, we further find out that dans
or à are chosen 50% of the time.

We may require the model to satisfy

p(dans) + p(en) = p1 + p2 =
3

10

p(dans) + p(à) = p1 + p3 =
1

2
p1 + p2 + p3 + p4 + p5 = 1.

Now it is not clear how pi can be “uniformized”. We
need a mathematical measure for “uniformness”.

Words – p. 145

Entropy

Suppose Y is a discrete random variable with
probability

p(y) = Pr(Y = y), y ∈ Y.

The entropy of Y is defined by

H(Y) = −
∑

y∈Y

p(y) log p(y).

H(Y) is really a function of p(y), not Y .

If the base-2 logarithm is used, the unit of entropy is
bit .

For example, the entropy of a fair coin toss is 1 bit.

Words – p. 146

Entropy Bounds

Assuming Y = {y1, . . . , yK}, we can write the entropy
H(Y) as a function of the variables (p1, p2, . . . , pK)

H(Y) = −
K∑

i=1

pi log pi.

The probailities must satisfy

pi ≥ 0,
∑

i

pi = 1.

It can be proved that

0 ≤ H(Y) ≤ log K.

Words – p. 147

Uniformness and Entropy

It can be shown that the maximum entropy is achieved
when the distribution is uniform

pi =
1

K
= constant.

So we have a mathematical measure of “uniformness”:
the larger the entropy, the more uniform the
distribution.

Words – p. 148

Conditional Entropy

The entropy of a conditional probability is defined in
the same way as entropy

H(Y |X = x) = −
∑

y

p(y|x) log p(y|x).

The conditional entropy of a random variable Y given a
random variable X is defined by

H(Y |X) = −
∑

x,y

p(x, y) log p(y|x)

= −
∑

x,y

p(x)p(y|x) log p(y|x).

Words – p. 149

Training Data

Let the training sample data set be

{(x1, y1), (x2, y2), . . . , (xN , yN)}.

Here xi is the ith phrase containing in and yi is the
translation of that in.

x represents the contextual information relevant to the
classification.

Words – p. 150

Empirical Distribution

The empirical distribution of (x, y) is based on the
sample set

p̃(x, y) =
1

N

N∑

i=1

I(xi,yi)=(x,y).

Is is the indicator function for statement s

Is =





1, S is true

0, otherwise

Note p̃(x, y) is just the relative frequency.

Words – p. 151

Statistics of Data

We first decide certain statistics of the sample data set
are important in constructing the stochastic model.

For example, we have employed two such statistics,
the number of instances of ans or en, as well as the
number of instances of dans or à.

Certain contextual information x may be important,
such as

if April is the word following in, then the translation
of in is en 90% of the time.

Words – p. 152

Feature Functions

We can define a binary-valued function

f(x, y) =





1, y = en and April follows in in x

0, otherwise.

f(x, y) is called a feature function or just feature.

The expected value of f(x, y) with respect to p̃(x, y) is
just the relative frequency in the sample set.

Words – p. 153

Expected Values

f(x, y) is an indicator function .

The expected value of f with respect to the empirical
distribution is

p̃(f) =
∑

x,y

p̃(x, y)f(x, y).

The expected value of f with respect to a model p(y|x)

is

p(f) =
∑

x,y

p̃(x)p(y|x)f(x, y).

Words – p. 154

Constraint Equations

For feature f , we request the expected value of f with
respect to the model and to the empirical distribution to
agree, i.e.,

p̃(f) = p(f).

This equation is called a constraint equation, or simply
constraint.

We can see there is one constraint for each feature.

Words – p. 155

Feasible Set

Let P be the set of all probability distributions p(y|x).

Suppose we are given n features fi. We would like our
model p to be in a set C

C = {p ∈ P | p(fi) = p̃(fi), i = 1, . . . , n} .

Let Ci be the set of distributions satisfying the ith
constraint. Then

C = C1 ∩ C2 ∩ · · · ∩ Cn,

C is called the feasible set. It is often infinite.

Words – p. 156

Maximum Entropy Principle

Among all feasible models, we wan to decide an
optimal one.

The conditional entropy of a model p = p(y|x) is

H(p) = −
∑

x,y

p̃(x)p(y|x) log p(y|x).

p̃(x) is the empirical distribution of x.

The maximum entropy principle is to choose the model
with the maximum conditional entropy

p∗ = arg max
p∈C

H(p).

Words – p. 157

Lagrange Multipliers

For each feature fi, we introduce a Lagrange multiplier
λi. Then we define the Lagrangian

Λ(p, λ) = H(p) +
∑

i

λi(p(fi) − p̃(fi)).

The unconstrained optimization of Λ(p, λ) and the
constrained optimization of H(p) have the same
optimal value, i.e.,

max
λ

max
p

Λ(p, λ) = max
p∈C

H(p).

Words – p. 158

Dual Function

For a given λ,

let pλ be the model p that Λ(p, λ) achieves
maximum, i.e.,

pλ = arg max
p∈P

Λ(p, λ)

let Ψ(λ) be the value

Ψ(λ) = Λ(pλ, λ)

Ψ(λ) is called the dual function.

Words – p. 159

Kuhn-Tucker Theorem

The dual problem is defined to be the unconstrained
optimization problem

λ∗ = arg max
λ

Ψ(λ).

Kuhn-Tucker
The dual problem has the same value as the primal
problem.

Suppose λ∗ is the solution of the dual problem,
then the solution of the primal problem is

p∗ = pλ∗ .

Words – p. 160

Solvingpλ

Equating the derivative of Λ with respect to p(y|x) to 0,
one can show that, for a given λ,

pλ(y|x) ∝ e
P

i
λifi(x,y) =

1

Zλ(x)
e

P

i
λifi(x,y)

The normalizing Z is given by

Zλ(x) =
∑

y

e
P

i
λifi(x,y)

Note that this is a log-linear model.

Words – p. 161

	Introduction
	Pattern Matching
	Regular Expression
	Regular Expression Search
	Basic Patterns
	Anchors
	Precedence
	An Example
	A More Complex Example
	Alias
	Numbers of Occurrences
	Special Characters
	Registers
	ELIZA
	Finite-State Automata
	Components of an FSA
	Mechanism of an FSA
	The Language of an FSA
	An Example: Sheeptalk
	Dollar Amounts
	Non-Deterministic FSA's
	The Language of NFSA
	Acceptance/Rejection by Search
	Search State
	Order of Search
	Issues
	Recursive Definition
	Closure Properties
	Morphemes
	Morphological Parsing
	Stems and Affixes
	Inflection and Derivation
	Inflectional Morphology
	Derivational Morphology
	Morphological Parsing
	Components of a Parser
	Nominal Inflection
	Verbal Inflection
	Adjectives
	Alphabet Set
	Finite-State Transducer
	Inversion and Composition
	Apply FST to M-Parsing
	T_{num}
	T_{lex}
	Orthographic Rules
	Putting It Together
	Language Models
	Word Prediction
	n-Gram
	The Probability of A Sentence
	n-Gram Language Model
	How to Get Probability?
	Text Corpus and LM
	Data Sets
	Random Sentence Generation
	LM Evaluation
	Perplexity
	Data Paucity
	LM Smoothing
	Laplace Smoothing
	Discounting
	Example
	Good-Turing Discounting
	Good-Turing Discounting
	Example
	n-Gram Hierarchy
	Interpolation
	Backoff
	Normalization Constant
	Class-Based n-Grams
	Part-of-Speech
	English Word Classes
	Noun
	Verbs
	Adjectives and Adverbs
	Closed Classes
	Prepositions and Particles
	Determiners
	Conjunctions
	Miscellaneous Classes
	POS Tagsets
	POS Tagging
	Ambiguity
	Tagging Algorithms
	Stochastic POS Tagging
	Stochastic POS Tagging
	Prior and Likelihood
	HMM Assumptions
	Bigram HMM Taggers
	An Example
	Decoding HMM
	Confusion Matrix
	Noisy Channel Model
	Spelling Error Patterns
	Optimal Solution
	Example
	Single-Error Assumption
	Kernighan's Idea
	Confusion Matrices for Single Errors
	Candidate List and Probability
	Markov Chain
	Markov Chain Assumptions
	An Example
	Hidden States and Observations
	HMM
	Example: Ice Cream
	Likelihood Computation
	Decoding
	Parameter Estimation
	Forward Probability
	Forward Algorithm
	Backward Probability
	Backward Algorithm
	Likelihood
	Viterbi Probability
	Viterbi Algorithm
	$mathcal {Q}$ Function
	Data Likelihood and $mathcal {Q}$
	EM Algorithm
	$mathcal {Q}$ Function for HMM
	Putting Together
	Posterior Probability
	State Occupancy
	State Transition
	Parameters in Markov Chains
	Parameters in Gaussians
	Maximum Entropy Models
	Regression and Classification
	Linear Regression
	Vectorial Form
	Learning Weights
	Classification
	Odds
	Logit Function
	Logistic Function
	Logistic Regression
	Decision Boundary
	A Different Perspective
	Multiple Classes
	Stochastic Modeling
	Initial Model
	Knowledge From Sample
	More Knowledge From Sample
	Entropy
	Entropy Bounds
	Uniformness and Entropy
	Conditional Entropy
	Training Data
	Empirical Distribution
	Statistics of Data
	Feature Functions
	Expected Values
	Constraint Equations
	Feasible Set
	Maximum Entropy Principle
	Lagrange Multipliers
	Dual Function
	Kuhn-Tucker Theorem
	Solving $p_lambda $

