Words

Notes on Natural Language Processing

Chia-Ping Chen

Department of Computer Science and Engineering National Sun Yat-Sen University Kaohsiung, Taiwan ROC

Introduction

- words: the building blocks of human languages
- emphasis on computational aspects
- modeling targets
 - spelling
 - pronunciation
 - morphology
- modeling tools
 - finite-state automata and transducers
 - hidden Markov models
 - *n*-gram models

Pattern Matching

- Suppose we want to search a collection of texts for the following "meaningful" strings
 - woodchuck, woodchucks, Woodchuck(s)
 - \$199, \$24.99, and other dollar amounts
 - variable identifiers in c programming language
- all modeled by regular expressions

Regular Expression

- a tool for string search, used in editing applications such as emacs, vi, perl, and others
- a specification of a pattern
- all strings conforming to such a pattern (a regular expression) constitute a set of strings, i.e., a language

Regular Expression Search

- requires a regular expression and a corpus (text collection)
- searching the corpus for the pattern dictated by the given regular expression
- For example, the grep utility returns the lines in text file(s) containing the pattern.

Basic Patterns

- a sequence of plain symbols: /urgl/
- disjunction: /[wW]oodchuck/
- select interpretation in the selection is a selection in the selection in the selection is a selection in the selection in the selection is a selection in the selection in t
- negation by caret (used with opening [): $[^A-Z]$
- 0 or 1 occurrence: /[wW]oodchucks?/
- 0 more occurrence: /ba*/
- 1 more occurrence: /ba+/ = /baa*/
- wildcard: /beg.n/ matches begin and began

Anchors

- the start of a line: /^The/
- **•** the end of a line: $/^{The} \operatorname{dog} . $/$
- word boundary: /\bthe\b/
- non-boundary: /\Bthe\B/

Precedence

- disjunction of strings: /dog|cat/ meaning?
- parenthesis: /pupp(y | ies) /
- Operator precedence hierarchy
 - 1. parenthesis: ()
 - 2. counters: * + ?
 - 3. sequences and anchors: the, $\ ^{\wedge}my$, end\$
 - 4. disjunction: |

An Example

Suppose we want to find the occurrences of the.

- The first thought is to use /the/.
- But we want The as well. So we use /[tT]he/.
- But we don't want other. So we use $/\b[tT]heb/$.
- But we want also _the_. So we use

$$/[^{a}-zA-Z][tT]he[^{a}-zA-Z]/.$$

Still, we are missing those beginning a line. So we use

$$/(^{\langle}|[^{\langle}a-zA-Z])[tT]he[^{\langle}a-zA-Z]/.$$

A More Complex Example

"any PC faster than 2 GHz, and less than \$1000"

- /\$[0-9]+. [0-9][0-9]/: \$199.99 but not \$199
- /\$[0-9]+(\.[0-9][0-9])?/
- /\b[2-9](\.[0-9]+)?\b*(GHz|[Gg]igahertz)/

Alias

- ▶ \d: any digit, same as [0-9]
- ▶ \D: any non-digit, same as $[^0-9]$
- \w: alphanumeric/underscore, [a-zA-Z0-9]
- $\forall w: non-alphanumeric/underscore, [^a-zA-Z0-9_]$
- \s: whitespace
- \S: non-whitespace

Numbers of Occurrences

- $\{n\}$: exactly *n* occurrences of the last expression
- {n,m}
- $\{n, \}$: at least n occurrences of the last expression

Special Characters

- \checkmark *: literal *
- \checkmark $\$. : literal .
- \blacktriangleright \?: literal ?
 - Note * , . , ? have non-literal meanings.
- \square \n: new-line
- \t: tab

Registers

- Parenthesis is used to delimit pattern.
- A matched pattern is stored in a number variable \n, e.g., \1 is the matched instance of the first pattern.
- examples
 - put brackets around the first woodchuck

 $s/(woodchuck)/<\1>/$

used with pattern matching

/the (.*)er they (.*), the \ler they $\langle 2/$

ELIZA

- This system responds by text substitution according to certain rules written by regular expressions.
- A session goes like this.
 - U: Men are all alike
 - E: IN WHAT WAY (s/.* all .*/IN WHAT WAY/)
 - U: They're always bugging us about something
 - E: CAN YOU THINK OF A SPECIFIC EXAMPLE
 - U: Well, my boy friend made me come here
 - E: YOUR BOYFRIEND MADE YOU COME HERE

Finite-State Automata

- After studying regular expressions, we now turn our attention to finite-state automata (FSA).
- Both regular expressions and finite-state automata describes the same set of languages.
- Specifically, if L = L(M) for some FSA M, then L = L(R) for some regular expression R. The converse is also true.
- They are said to be equivalent.

Components of an FSA

- A finite-state automata, say A, is characterized by a 5-tuple $\{Q, \Sigma, \delta, q_0, F\}$
 - Q: a finite set of states
 - Σ : a finite set of input symbols
 - $\delta(q, a) \quad \forall a \in \Sigma, q \in Q$: state transition function
 - q_0 : initial state
 - F: a set of final states

Mechanism of an FSA

- A begins with state q_0 .
- Given an input string w, it processes w from left to right, and make state transitions.
- Specifically, suppose the current input symbol is a and the current state is q, then the next state q' is determined by δ

$$q' = \delta(q, a).$$

When the end of input string is processed, the last state, say p, decides whether w is accepted.

The Language of an FSA

- A string w is said to be accepted, or recognized, by A if the last state is in the set of final states, $p \in F$.
- The language of A is the set of strings accepted by A, denoted by L(A).

An Example: Sheeptalk

The sounds of sheep can be modeled by

```
L = \{ baa!, baaa!, baaaa!, \ldots \}.
```

- L can be described by a regular expression /baa+!/.
- L can be described by a FSA, where
 - $Q: \{q_0, q_1, \ldots, q_4\}$
 - $\Sigma: \{b, a, !\}$
 - $q_0: q_0$
 - $F: \{q_4\}$
 - $\delta(q,i)$
- **Figure 2.10**

Dollar Amounts

- Suppose we want an FSA to model dollar amounts (in English), such as ten cents, three dollars, one dollar thirty-five cents, etc.
- It is more convenient to use words as symbols instead of letters.
 - Fig 2.15: accepting the numbers 1 to 99
 - Fig 2.16: including dollars and cents
- For larger amounts, we need to deal with hundred, thousand, million, and so on.
- You get the ideas.

Non-Deterministic FSA's

- In the definition of FSA, the state transition function δ is "complete", and the value is a single state.
 - Given an input string, there is only one path in the graph of the FSA.
- In a non-deterministic FSA (NFSA), there are *multiple choices* of next state given current state and input symbol. That is, the value of δ is a *set* of states.
- We also allow "spontaneous" state transition, one without consuming any input symbol.
 - multiple paths in the graph for a given input string

The Language of NFSA

- Given an NFSA N and an input string w, w is said to be accepted by N if any one of the state sequences ends in a final state.
- The set of strings accepted by N is the language of N, denoted by L(N).
- The sheeptalk can be recognized by NFSA (Figures 2.17, 2.18).

Acceptance/Rejection by Search

- Whether w is accepted by N is a search problem.
 - acceptance = there exists one path ending in a final state
 - rejection = looking at every candidate and none can be found
- To systematically exhaust all possibilities
 - at a point of multiple choices, the search proceeds with one and save the alternatives for later.
 - when no further progress can be made, the search backs up to a previous point of choice.

Search State

- For NFSA, at a point of choice, we need to store
 - the state
 - the input position
- The combination of state and input position is called a search-state.
- We look for a search-state with a final state and the end position to accept.

Order of Search

- depth-first search
 - next search-state: the most recent
 - search agenda: a stack
 - It is commonly referred to as a depth-first search, or Last-In-First-Out (LIFO).
- breadth-first search
 - next search-state: the least recent
 - search agenda: a queue
 - It is commonly referred to as a breadth-first search, or First-In-First-Out (FIFO).

- depth-first search
 - infinite loop
- breadth-first search
 - often use an enormous amount of memory

Recursive Definition

- The set of regular languages represented by regular expressions over an alphabet Σ can be defined by
 - \emptyset is a regular expression for \emptyset
 - $\forall a \in \Sigma \cup \{\epsilon\}, L(a) = \{a\}$
 - If E, F are regular expressions
 - E + F is a regular expression and $L(E + F) = L(E) \cup L(F)$
 - EF is a regular expression and L(EF) = L(E)L(F)
 - E^* is a regular expression and $L(E^*) = (L(E))^*$
 - (E) is a regular expression and L((E)) = L(E)

Closure Properties

intersection

 $L_1 \cap L_2$.

complementation

$$\overline{L} = \Sigma^* - L.$$

reversal

$$L^R = \{ w \mid w^R \in L \}.$$

difference (from intersection and complementation)

$$L_1 - L_2 = L_1 \cap \overline{L_2}.$$

Morphemes

- morpheme: minimal bearing unit of meaning
- for instance
 - fox: one morpheme fox
 - s cats: two morphemes cat and -s
- in the previous example
 - s cats is called the surface form
 - NOUN-cat + PL-s is called the lexical form

Morphological Parsing

given the surface form, find the lexical form

```
foxes \Rightarrow NOUN-fox + PL-es
```

For the nouns, there are quite a few rules in converting a singular noun to its plural,

```
book, fox, goose.
```

Similarly for the verbs.

A noun and a verb may have the same surface form, further complicating the problem.

Stems and Affixes

- two broad classes of morphemes
 - stems
 - affixes
 - prefixes: preceding a stem, undo
 - suffixes: following, eats
 - infixes: inserting inside
 - circumfixes: wrapping around, gesagt
- A surface form may have more than one affixes,

unlikely, rewrites.

Inflection and Derivation

- A surface form and its stem may be in the same or different part of speech (POS).
- Based on this, there are two types of morphological transformation
 - inflection: a stem is transformed into a surface form of the same POS
 - derivation: a stem is transformed into a surface form of a *different* POS

Inflectional Morphology

- English noun inflection
 - affix for plural: -s(cats), -es(brushes),
 -en(oxen)
 - affix for possessive: -'s(cat's), -'(cats')
- English verbal inflection
 - **regular**: -s(sends), -es(watches), -ing(watching), -ed(watched)
 - irregular: eat/ate, cut/cut

Derivational Morphology

- Nouns can be derived from adjectives or verbs, e.g., -ation(computerization), -ee(appointee), -er(killer), -ness(fuzziness), -ity(reality).
- Adjectives can be derived from nouns or verbs, e.g., -al(national), -able(doable), -less(clueless).

Morphological Parsing

example of morphological parsing

```
\begin{cases} \texttt{cats} \Rightarrow \texttt{cat} + \texttt{N} + \texttt{PL}, \\ \texttt{geese} \Rightarrow \texttt{goose} + \texttt{N} + \texttt{PL}, \\ \texttt{gooses} \Rightarrow \texttt{goose} + \texttt{V} + \texttt{3}\texttt{SG}. \end{cases}
```

- Specifically, a word in its surface form is parsed into its stem and a set of morphological features, such as
 - POS
 - plurality
 - 3SG
 - present participle, past participle, past tense, etc
Components of a Parser

- Iexicon: the lists of stems (with POS) and affixes
- morphotactics: a model (rules) of morpheme ordering in a word
 - to draw an analogy, syntax is a model of word ordering in a sentence
- orthographic rules: spelling rules when morphemes combine
 - e.g., $y \rightarrow ie$ when city + PL

Nominal Inflection

Iexicon

- reg-noun (cat, dog)
- -s (for plural).
- irreg-sg-noun (goose, mouse)
- irreg-pl-noun (geese, mice)
- **•** FSA (Fig 3.3)

Verbal Inflection

- **•** FSA (Fig 3.4)
- There are three classes for verb stems
 - stem (walk, impeach)
 - irreg-verb-stem (cut, sing)
 - irreg-past-verb-form (caught, sang)
- There are also four affix classes
 - –ed (for past tense)
 - -ed (for past participle)
 - _ -ing (for present participle)
 - -s (for 3SG)

Adjectives

• FSA (Fig 3.5)

- Iexicon: stems (such as big, cool), prefix (un-), and suffix (-er, -est, -ly)
- morphotactics: a stem, optional prefix, optional suffix
- However, it also accepts something like unbig ...
 - need to separate stems which allow prefix from those which do not allow prefix ...

Alphabet Set

- The alphabet (symbol set) of a morphological FSA contains "morphemes" so far.
- The FSA can be expanded so that the new alphabet contains letters.
- Fig 3.7 gives an toy example for noun FSA
 - the label of any path that starts at the initial state and ends at a final state is a noun
 - not exact, for example, the wrong word foxs is accepted

Finite-State Transducer

- A finite-state transducer (FST) maps an input string to an output string.
- A deterministic FST is defined by
 - Q: a finite state set
 - Σ : input alphabet
 - Δ : output alphabet
 - q_0 : the start state
 - F: the set of final states
 - $\delta(q, w)$: transition function, returning a state in Q
 - $\sigma(q, w)$: output function, returning a string in Δ^*
- For FST as a morphological parser, the input is a string of morphemes and the output is a string of letters.

Inversion and Composition

• The inversion of an FST T is another FST, T^{-1} , such that

$$T(w) = u \implies T^{-1}(u) = w, \ \forall w$$

• The composition of two FSTs T_1 and T_2 is an FST, $T_1 \circ T_2$, such that

$$\begin{cases} T_1(x) = y \\ T_2(y) = z \end{cases} \Rightarrow T_1 \circ T_2(x) = z, \ \forall x, y, z \end{cases}$$

One can also write

$$T_1 \circ T_2(x) = T_2(T_1(x)).$$

Apply FST to M-Parsing

- the two levels in m-parsing
 - Iexical level: concatenation of morphemes
 - surface level: concatenation of letters
- the two tapes of a m-parsing FST
 - (upper) lexical tape: for the concatenation of morphemes
 - (lower) surface tape: for the concatenation of letters

T_{num}

an FST for singular/plural inflection (Fig. 3.13)

- based on Fig. 3.3
- add morphological features, +N, +SG, +PL
- some features are mapped to the empty string, morpheme boundary marker # or word boundary marker [^], as they do not produce any segment on the surface tape
- Note in Fig. 3.13, input symbol is above a transition while output symbol is below; default input/output pair a : a is simply denoted by by a.

T_{lex}

- Fig. 3.13 needs to be expanded into letters, resulting in Fig. 3.14 for the lexicon immediately above.
- This FST is denoted by T_{lex} .
- For example, we have

c:c a:a t:t +N: ϵ +PL:^{\wedge}s#

The output string is not quite the surface form.

We put the output string in an intermediate tape.

Orthographic Rules

- We need yet another transduction process from the intermediate tape to the surface tape.
- Here we focus on the application of orthographic rules.
- an example for such a rule is the e-insertion.
 - rule notation

$$\epsilon \to e / \begin{bmatrix} x \\ s \\ z \end{bmatrix}^{\wedge} \underline{\quad} s \#$$

• implemented by an FST T_e (Fig. 3.17)

Putting It Together

- There maybe other rules, each may be implemented by an FST.
- The entire picture is given in Fig. 3.19.
- As an example, the transduction of foxes is shown in Fig. 3.20.

Language Models

- To develop computational linguistics, mathematical models for natural languages are required.
- A language model gives a probability to a sentence.
 - In speech recognition, this is combined with acoustic model score to decide optimal hypothesis.
 - In machine translation, this is combined with translation model score to decide optimal translation.
- Here we introduce the *n*-gram language models.

Word Prediction

A language model can help us in word prediction, the task of guessing next word. For example,

```
I'd like to make a collect ...
```

- WP can help saving significant typing efforts in certain situations
 - disabled users
 - Chinese input
 - mobile devices

n-Gram

An n-gram is an n-word sequence. For example,

- a bigram is a sequence of two words;
- a trigram is a sequence of three words;
- a **unigram** is a single word.
- For clarity, we also define the following terms
 - a type is a distinct sequence (n-gram);
 - a token is an instance of a type.
- Thus, in the string

reading a good book is a good thing

there are 6 unigram types and 8 unigram tokens.

The Probability of A Sentence

What is the probability of a sentence, say

 $S = w_1, \ldots, w_i?$

Applying the chain rule of probability,

 $Pr(S = w_1, \dots, w_i) = Pr(w_1)Pr(w_2|w_1)\dots Pr(w_i|w_1, \dots, w_{i-1}).$

- If we have all the probabilities, we can compute the probability of S.
- However, the size of the probability table

$$Pr(w_i|w_1,\ldots,w_{i-1})$$

grows exponentially with i.

n-Gram Language Model

- An n-gram language model is based on the following approximation (or assumption), that
 - the probability of a word following an (i 1)-gram depends at most on the last (n 1)-gram.

That is,

$$p(w_i = w | w_{1:i-1}) = p(w_i = w | w_{i-n+1:i-1}).$$

Note the notation $w_{m:n} = w_m, w_{m+1}, \ldots, w_n$.

How to Get Probability?

- Probability is based on counting.
- The basic idea is that of relative frequency.
- It is reasonable to assume

$$Pr(w_2|w_1) = \frac{o(w_1w_2)}{o(w_1)}$$

where o(t) is the number of occurrences of type t.

To obtain these numbers (counts), we need a collection of text, a.k.a. text corpus.

Text Corpus and LM

- Using one text corpus leads to an *n*-gram probability, while using another corpus leads to another.
- Put in another way, the language model is highly dependent on the text corpus.
- exemplar text corpora
 - Switchboard: telephone conversations, 20k types,
 2.4m tokens
 - Brown corpus: written texts, 60k types, 1m tokens

Data Sets

- The data used to learn the language models and the data to evaluate the learned models should be disjoint.
 - The learning data is called the training set.
 - The evaluating data is called the test set.
- Sometimes we need extra set to learn certain additional parameters. That is called the held-out set.
- Sometimes we have no test set but need one for evaluation. That is called the development test set, or devset.

Random Sentence Generation

- We can generate random sentences from the *n*-gram models estimated from the work of Shakespeare.
- randomly generated samples, Fig. 4.3
 - unigram
 - bigram
 - trigram
- The larger n, the more coherent are the generated sentences.
- Using *n*-grams trained by the Wall Street Journal corpus results in Fig. 4.4.
- Differnt training sets leads to different language models, generating different kinds of sentences.

LM Evaluation

- extrinsic evaluation: apply LM in an application, to see the performance of that application
 - e.g., measuring word error rate in speech recognition
- intrinsic evaluation: use a measure that is independent of any application
 - e.g., perplexity

Perplexity

• Given a LM, say p, the perplexity of a text

 $W = w_1, \ldots, w_N$

is defined by

$$\mathsf{PPL}(W) = p(W)^{-\frac{1}{N}}.$$

- average branching factor of next word
- For n-grams, often a larger n leads to a lower perplexity without data paucity.

Data Paucity

- The data paucity problem, a.k.a., the 0-occurrence problem, can be stated as follows.
 - Some *n*-grams may not occur in a given corpus and the estimated probability is 0.
 - If the test set contain any *n*-gram instance that does not occur in the training set, then the probability is 0.
- Indeed, as n gets large, the majority of n-gram types will have 0 counts with any realistic corpus.

LM Smoothing

- **•** trade-off of n in n-grams
 - Iarge n for accurate model, but non-robust parameter estimation
 - small n for robust parameter estimation, but inaccurate model
- Smoothing can hedge this problem.
 - A large n can be adopted, while some probability mass is re-distributed to the n-grams with 0 or very low counts.

Laplace Smoothing

- a.k.a. add-1 smoothing
- add 1 to every *n*-gram count; $0 \rightarrow 1$
- The smoothed probability is

$$\begin{cases} p^*(w) = \frac{o(w)+1}{\sum_{w'} o(w')+V}, & \text{unigram smoothing} \\ p^*(w|w_0) = \frac{o(w_0w)+1}{\sum_{w'} o(w_0w')+V}, & \text{bigram smoothing} \end{cases} \end{cases}$$

• The same idea can be generalized to add- δ , ($\delta > 0$). For type t,

$$p^*(t) = \frac{o(t) + \delta}{N + \delta V}.$$

Discounting

In add-1 smoothing, we are effectively changing the count of type t to be

$$c^*(t) = (o(t) + 1) \frac{N}{N+V},$$

and

$$p^*(t) = \frac{c^*(t)}{N}.$$

The actual number of occurrences is o(t), so we also say that each occurrence is discounted by

$$d(t) = \frac{c^*(t)}{o(t)}.$$

Example

- Fig. 4.1: bigram counts and unigram counts
- Fig. 4.2: bigram probability before smoothing
- Fig. 4.5: adding 1 to every bigram count in
- **Fig. 4.7:** $c^*(t)$ (multiplied by $\frac{N}{N+V}$)
- Fig. 4.6: add-1 smoothed bigram probability

$$p^*(w|v) = \frac{o(vw) + 1}{o(v) + V}$$

Iarge discount when V >> N.

Good-Turing Discounting

- described by Good, who credits Turing with the idea
- frequency of frequency: the number of types (first frequency) with a certain count (second frequency)

$$N_c = \sum_{t:o(t)=c} 1.$$

The new count c* (the count of a type which occurs c times in the training data) is replaced by

$$c \to c^* = (c+1) \frac{N_{c+1}}{N_c}.$$

Good-Turing Discounting

The total count is conserved, since

$$\sum_{c=0}^{\infty} c^* N_c = \sum_{c=0}^{\infty} (c+1) N_{c+1} = \sum_{c'=1}^{\infty} (c') N_{c'} = \sum_{c=0}^{\infty} c N_c.$$

Suppose this total count is *C*. The probability is for a type *t* with o(t) = c is simply

$$P^*(t) = \frac{c^*}{C}$$

Specifically, for the set of all unseen types U,

$$P^*(U) = \frac{N_1}{C}.$$

Example

- Fig. 4.8: GTD from two different corpora
- The count for $c \ge 1$ is reasonably discounted.
- Same idea can be applied to all low-count types, not just the 0-count types.
- Contrarily, we can also assume that o(t) > k is reliable for a threshold k.

n-Gram Hierarchy

- We have seen how to deal with the 0-occurrence problem with smoothing/discounting schemes.
- Another line of approach is to use the probability of a lower n-gram.
 - If the count of uvw is zero, we approximate p(w|uv) by p(w|v).
 - If the count of vw is also zero, we approximate by p(w).
- This is called *n*-gram hierarchy. We introduce schemes of
 - (deleted) interpolation
 - backoff

Interpolation

- Inear combination of n-gram probabilities of progressive n's
- For example, for trigrams,

$$\widehat{p}(w|uv) = \lambda_1 p(w|uv) + \lambda_2 p(w|v) + \lambda_3 p(w), \quad \sum_i \lambda_i = 1.$$

- λ_i is often learned from a held-out corpus.
- \checkmark λ_i 's may depend on u, v.

Backoff

- In the *interpolation* scheme, the lower-order *n*-grams are always used.
- In the backoff scheme, a lower-order n-gram is used only when the higher orders fail.
- For example, for a simple trigram backoff

$$\widehat{p}(w|uv) = \begin{cases} p(w|uv), & o(uvw) > 0, \\ \alpha \widehat{p}(w|v), & o(uvw) = 0. \end{cases}$$

• Note that those p(w|uv) with o(uvw) > 0 alone add up to 1, so \hat{p} is not a probability.

Normalization Constant

We can use a discount scheme, such as Good-Turing,

$$p(w|uv) \to \tilde{p}(w|uv).$$

• α is set so that the total probability is 1. Define the set $A = \{w | o(uvw) > 0\}$ with non-zero trigram count.

$$\begin{split} 1 &= \left(\sum_{w' \in A} + \sum_{w' \notin A}\right) \widehat{p}(w'|uv) = \sum_{w' \in A} \widetilde{p}(w'|uv) + \sum_{w' \notin A} \alpha \widehat{p}(w'|v) \\ &= \sum_{w' \in A} \widetilde{p}(w'|uv) + \alpha (1 - \sum_{w' \in A} \widehat{p}(w'|v)) \\ \Rightarrow \alpha &= \frac{1 - \sum_{w' \in A} \widetilde{p}(w'|uv)}{1 - \sum_{w' \in A} \widehat{p}(w'|v)}. \end{split}$$

Class-Based *n*-**Grams**

- The probability depends on the previous POS tags.
- More specifically, the conditional probability of the next word is

$$Pr(w_{1:i}) = \sum_{c_{1:i}} Pr(w_{1:i}|c_{1:i}) Pr(c_{1:i})$$
$$= \sum_{c_{1:i}} \prod_{j} Pr(w_j|c_j) \prod_{j} Pr(c_j|c_{j-n+1:j-1})$$

more reliable estimation of parameters as

|C| << |V|
Part-of-Speech

- The significance of parts-of-speech (a.k.a. POS, word classes, lexical tags) is the large amount of information they give about a word and its neighbors.
- In fact, grammatical rules are written in terms of word classes.
- The POS tag of a word in a sentence, e.g. noun, preposition, indicates its syntactical role.
 - The same word may be labeled by a different tag in a different context. For example, *book*.

English Word Classes

closed: POS categories with fixed members

- preposition, pronoun
- small sets
- function words
- open: POS categories with non-fixed members
 - noun, verb
 - large sets
 - content words

Noun

- a POS tag often given to words for people, places, things
 - *friend, restaurant, desk*
- also given to verb-like word according to the syntax
 - His writing is good.
- given to abstraction as well
 - quality, generalization
- miscellaneous
 - proper nouns, Chen, Kaohsiung
 - mass nouns vs. count nouns

Verbs

used to refer to actions and processes

- paint, count, deal
- morphological forms of a verb (sing)
 - 3rd-person-sg (sings)
 - progressive (singing)
 - past (sang)
 - past-participle (sung)

Adjectives and Adverbs

adjectives: describing properties or qualities
 color (*pink/white*), size (*large/small*), age (*old/young*), etc.

adverbs: modifying/specializing something

John walked home extremely slowly yesterday.

- locative adverbs (*home, there*)
- degree adverbs (*much, rarely, extremely*)
- manner adverbs (quickly, slowly)
- temporal adverbs (now, tomorrow, yesterday)

Closed Classes

- prepositions
- ø determiners
- pronouns
- conjunctions
- auxiliary verbs
- particles
- numberals

Prepositions and Particles

- preposition: used to indicate spatial or temporal relation
 - <u>under</u> the table, <u>before</u> noon
- particle: combined with a verb to form a larger unit called phrasal verb
 - call <u>off</u>, give up, give <u>in</u>
- Fig. 5.1 lists prepositions and particles.

Determiners

occurring with nouns, marking the beginning of a noun phrase

a book, the book, this book

- articles: a subtype of determiners, consisting of a, an, the
- extremely frequent in English

Conjunctions

used to join two phrases, clauses or sentences

- coordinating conjunctions: joining two elements of equal status (*and, or, but*)
- subordinating conjunctions: one of the element is of an embedded status (*that*)
- Fig. 5.3 lists conjunctions of English.

Miscellaneous Classes

- pronouns: I, my, who
- auxiliary verbs: be, have/do, can/may
- interjections: oh, ah, hey, man, alas
- negatives: no, not
- politeness markers: please
- greetings: hello
- existential there: there

POS Tagsets

- varies with application
- Penn Treebank tagset: see Fig. 5.6
- Each word token has a tag.

The/DT grand/JJ jury/NN commented/VBD on/IN a/DT number/NN of/IN other/JJ topics/NNS ./.

POS Tagging

- the process of assigning a POS tag to each word token in a corpus
 - Often a punctuation mark is considered a token.
- We are primarily interested in automatic taggers.

Ambiguity

- POS tagging is non-trivial due to ambiguity.
- Suppose the input word string is

Book that flight.

- Book: noun? verb?
- *that*: determiner? conjunction? pronoun?
- In Brown corpus, 11.5% word types are ambiguous, while 40% of word tokens are ambiguous.
 - most word types are unambiguous
 - but many common words are ambiguous

Tagging Algorithms

- simple tagger: assigning to a word token its most frequent tag
 - actually not too bad
- rule-based tagger: using a set of hand-written disambiguation rules
- stochastic tagger: computing the probability of POS tags in a sentence
 - MMH
 - Iog-linear model

Stochastic POS Tagging

Bayes criterion

$$T^* = \arg\max_T P(T|W).$$

- $T = t_1^n$: tag sequence
- $W = w_1^n$: word (token) sequence
- T* minimizes the probability of sequence-level error,
 over all candidates T,

$$1 - P(T|W).$$

Stochastic POS Tagging

Note that T* minimizes the expected number of sequence-level errors, as

$$E(N_s = I_{T \neq R}) = E(I_{T \neq R}) = (1 - P(T|W)).$$

In contrast, the total number of tag-level errors is

$$N_t = \sum_{i=1}^l I_{t_i \neq r_i}.$$

• To minimize $E(N_t)$, the criterion should be

$$t_i^* = \arg\max_t P(t_i = t | W).$$

Stringing t_i^* together does not necessarily yields T^* !

Prior and Likelihood

We can re-write the posterior probability as

$$P(T|W) = \frac{P(T,W)}{P(W)} = \frac{P(W|T)P(T)}{P(W)} \propto P(W|T)P(T)$$

• P(T) is called the prior probability of T

• P(W|T) is called the likelihood of W for given T

Note

$$\arg\max_{T} P(T|W) = \arg\max_{T} P(T)P(W|T),$$

since P(W) does not vary with T.

HMM Assumptions

- HMM (of order k) makes two assumptions
 - the probability of a word token, given its POS tag, is independent of any other things

$$P(w_1^n | t_1^n) = \prod_{i=1}^n P(w_i | t_i)$$

• the probability of a POS tag, given its (k-1) previous tags, is independent of any other things

$$P(t_1^n) = P(t_1^{k-1}) \prod_{i=k}^n P(t_i | t_{i-k+1}^{i-1})$$

Bigram HMM Taggers

- Suppose we have a bigram HMM tagger.
- The joint probability of (T, W) is

$$p(W|T)p(T) = p(t_1)p(w_1|t_1)\prod_i p(t_i|t_{i-1})p(w_i|t_i).$$

• With the neighboring fixed, the optimal tag t_i depends on t_{i-1}, t_{i+1} , and w_i ,

$$t_i^* = \arg\max_{t_i} p(w_i|t_i) p(t_i|t_{i-1}) p(t_{i+1}|t_i).$$

An Example

Consider the sentence W

Secretariat is expected to race tomorrow.

- Fig. 5.12 illustrates possible 2 state sequences for the given W.
- We know that race is a verb.
- Using bigram HMM, we need to compare

p(race|VB) p(VB|TO) P(NR|VB),p(race|NN) p(NN|TO) P(NR|NN).

Decoding HMM

- Given W, find T.
- Viterbi decoding
 - initialization, recursion, and termination

$$v_0(0) = 1;$$

 $v_m(j) = \max_i v_{m-1}(i)a_{ij}b_j(w_m);$
 $v_{n+1}(f) = \max_i v_n(i)a_{if};$

where m is the index of input position, state 0 and f are initial and final states.

- back-trace
- Fig. 5.18 depicts the algorithm.

Confusion Matrix

- Suppose there are N classes. The confusion matrix or the contingency table C is an $N \times N$ matrix, where C_{ij} is the number of instances of class i classified as class j.
- a useful tool for error analysis for classification problems
- can also be used to estimate (error) probability (each row can become a probability function)

Noisy Channel Model

- Spelling can be modeled as mapping from one (intended) string of symbols to another (spelled).
- One can imagine a channel that has the correct word as input and the observed string of letters as output.
- The channel is noisy, so input and output may differ (typo).
- The same idea, called noisy channel model, can be applied to model any input/output relations.

Spelling Error Patterns

- single-error mis-spellings
 - insertion: the \rightarrow ther
 - deletion: the \rightarrow th
 - substitution: the \rightarrow thw
 - transposition: the \rightarrow hte
- For typing, they occur due to typographic or cognitive factors.
- For OCR (optical character recognition), there are other error types, e.g. space deletion/insertion and multiple substitution.

Optimal Solution

- We are given observation O and want to decide an optimal \widehat{w} .
- The probability of error when deciding w, $P_e(w)$, is

1 - P(w|O).

• \widehat{w} that minimizes $P_e(w)$ must maximize P(w|O), so

$$\widehat{w} = \arg\max_{w} P(w|O) = \arg\max_{w} \frac{P(O, w)}{P(O)} = \arg\max_{w} P(O|w)P(w).$$

• We call P(O|w) likelihood and P(w) prior.

Example

- Consider a non-word error acress.
- actress? cress? caress? access? assess? ...
- Which is the most likely original word?
- How do we decide?
- What do we need to decide?

Single-Error Assumption

- To simplify the problem, we suppose typo t differs from the correct spelling c by a single-error mis-spelling.
- The Bayes decision rule is

$$\widehat{c} = \arg\max_{c} P(t|c)P(c).$$

- To decide \widehat{c} , we need two probabilities.
 - P(c)
 - P(t|c)
- The problem now is how to estimate P(c), P(t|c).

Kernighan's Idea

- Kernighan proposed to approximate P(acress|across)by S(e|o), the probability of substituting o by e.
- To estimate S(e|o), we use a corpus of spelling errors and count the number of times o is typed as e.
- Let the error counts be stored in a matrix sub[o, e].
- Define the counts of o to be the sum

$$count[o] = \sum_{\alpha} sub[o, \alpha].$$

$$S(e|o) = \frac{sub[o, e]}{count[o]}.$$

Confusion Matrices for Single Errors

- ins[x, y]: the count that x is typed as xy
- sub[x, y]: the count that x is typed as y
- trans[x, y]: the count that xy is typed as yx
- the single-error probabilities can be estimated by counts of a labelled corpus

$$\begin{cases} D(x|xy) = \frac{del[x,y]}{count[xy]}, & \text{deletion} \\ I(xy|x) = \frac{ins[x,y]}{count[x]}, & \text{insertion} \\ S(y|x) = \frac{sub[x,y]}{count[x]}, & \text{substitution} \\ T(yx|xy) = \frac{trans[x,y]}{count[xy]}, & \text{transposition} \end{cases}$$

Candidate List and Probability

- For each position p, we check if t can results from a real word c and a single-error mis-spelling.
- If so, we approximate P(t|c) by

$$P(t|c) = \begin{cases} D(t_{p-1}|t_{p-1}c_p), & \text{deletion of } c_p \\ I(t_{p-1}t_p|t_{p-1}), & \text{insertion after } c_{p-1} \\ S(t_p|c_p), & \text{substitution of } c_p \text{ by } t_p \\ T(t_{p+1}t_p|t_pt_{p+1}), & \text{transposition at } p:p+1 \end{cases}$$

Fig. 5.25 provides the details.

Markov Chain

A Markov chain is an FSA with the following properties

- state transition has a weight, representing transition probability
- input sequence = state sequence
- So a Markov chain is a kind of weighted finite-state automata (WFSA), specified by
 - a state set $Q = \{q_1, ..., q_N\}$
 - transition probabilities, $A = a_{ij}$, with

$$\sum_{j} a_{ij} = 1, \ \forall \ i$$

• q_0, q_F , the start and end states

Markov Chain Assumptions

- A Markov model is based on the following assumptions
 - conditional independence assumption

$$Pr(s_t|s_{t-1}, s_{t-2}, \dots, s_1) = Pr(s_t|s_{t-1})$$

time-invariance assumption

$$Pr(s_t = q_j | s_{t-1} = q_i) = a_{ij} \quad \forall t$$

Solution We sometimes single out $a_{0i} = \pi_i$, to represent the initial probability.

An Example

A starter W of New York Yankees

- state set: $Q = \{1 = A, 2 = B, 3 = T\}.$
- uniform initial probability
- transition probability

$$A = \begin{bmatrix} 0.6 & 0.1 & 0.3 \\ 0.4 & 0.3 & 0.3 \\ 0.5 & 0.3 & 0.2 \end{bmatrix}$$

What is the probability that W leaves with leads for the first 10 games he started, i.e. state = AAAAAAAAA?

Hidden States and Observations

- The performance of a starting pitcher is best measured by the state when he leaves the field, A/B/T.
- However, the win/loss result when the game is over is often easier to track.
- Suppose we have no data of the states but have the win/loss record.
 - A/B/T are called the *hidden states*
 - the win/loss records are called the observations
- It is clear hear that an observation depend on the corresponding hidden state.
- The above model constitutes a hidden Markov model.

HMM

- An HMM is specified by
 - a state set $Q = \{q_1, ..., q_N\}$
 - an observation sequence o_1, \ldots, o_T .
 - transition probabilities

$$A = a_{ij} = Pr(s_{t+1} = q_j | s_t = q_i), \quad \sum_j a_{ij} = 1, \ \forall \ i$$

observation likelihood,

$$B = b_i(o) = p(o|s = q_i).$$

- q_0, q_F , the start and end states
- Again, in some literature a_{0} is denoted by π .

Example: Ice Cream

- Fig. 6.3 gives an HMM which models the weather and the number of ice creams eaten by Jason.
- The weather is hidden, the number is observed.
- With this example, we introduce the fundamental problems in HMM.
 - likelihood computation
 - decoding
 - parameter estimation
Likelihood Computation

- Iikelihood computation: computing the likelihood of a given observation
 - What is the probability that Jason eats (2, 2, 2) ice creams in three days?
- We introduce the forward algorithm and the backward algorithm for this problem.

Decoding

- decoding: finding the most-likely state sequence for a given observation
 - Suppose in three days, Jason eat (2,2,2) ice creams. What is the most likely weather sequence?
- We introduce the Viterbi algorithm for this problem.

Parameter Estimation

- parameter estimation: estimating probability parameters A, B from data observation, say a long observation sequence or a set of sequences
- Note the state sequence is unknown.
- We introduce the EM algorithm for this problem.
 - The EM algorithm is based on the computation of the posterior probabilities of (hidden) states, which can be computed by the forward-backward algorithm.

Forward Probability

- Solution We have the initial probability π , the transition probability a_{ij} , and the observation likelihood $b_i(o)$.
- Define the forward probability, denote by $\alpha_j(t)$, to be the joint probability that the hidden state at time t is q_j and the observation sequence from 1 to t is o_1, \ldots, o_t ,

$$\alpha_j(t) = p(o_1, \ldots, o_t, s_t = q_j).$$

Forward Algorithm

- Recall q_0 and q_F are the start and end states. The forward algorithm evaluates $\alpha_j(t)$ progressively.
 - initialization

$$\alpha_j(1) = a_{0j}b_j(o_1)$$

recursion

$$\alpha_j(t) = \sum_{i=1}^N \alpha_i(t-1)a_{ij}b_j(o_t)$$

termination

$$\alpha_F(T) = \sum_{i=1}^N \alpha_i(T) a_{iF}$$

Backward Probability

Similarly, we can define the backward probability, denote by $\beta_i(t)$, to be

$$\beta_i(t) = p(o_{t+1}, \dots, o_T | s_t = q_i).$$

In other words, it is the conditional probability of the observation sequence from t + 1 to T is o_{t+1}, \ldots, o_T , given $s_t = q_i$.

Backward Algorithm

- The backward algorithm evaluates $\beta_i(t)$ in the reverse direction.
 - initialization

$$\beta_i(T) = a_{iF}$$

recursion

$$\beta_i(t) = \sum_{j=1}^N a_{ij} b_j(o_{t+1}) \beta_j(t+1)$$

termination

$$\beta_0(1) = \sum_{j=1}^N a_{0j} b_j(o_1) \beta_j(1)$$

Likelihood

If we multiply $\alpha_j(t)$ and $\beta_j(t)$ for the same state q_j at any time t, we get

$$\alpha_j(t)\beta_j(t) = p(o_1, \dots, o_t, s_t = q_j)p(o_{t+1}, \dots, o_T | s_t = q_j)$$
$$= p(o_1, \dots, o_T, s_t = q_j) = p(O, s_t = q_j).$$

The likelihood of the observation sequence is

$$p(O) = \sum_{j} p(O, s_t = q_j) = \sum_{j} \alpha_j(t)\beta_j(t)$$

Alternatively, the likelihood is also given by the forward probability or backward probability alone,

$$p(O) = \alpha_F(T) = \beta_0(1).$$

Viterbi Probability

- We define the Viterbi probability, $v_j(t)$, to be the maximum joint probability of o_1, \ldots, o_t and a state sequence s_1, \ldots, s_t with $s_t = q_j$.
- That is,

$$v_j(t) = \max_{i_1,\dots,i_{t-1}} p(s_1 = q_{i_1},\dots,s_{t-1} = q_{i_{t-1}}, s_t = q_j, o_1,\dots,o_t).$$

Note the relation

$$v_{j}(t) = \max_{i_{1},\dots,i_{t-1}} p(s_{1} = q_{i_{1}},\dots,s_{t-1} = q_{i_{t-1}},s_{t} = q_{j},o_{1:t})$$

$$= \max_{i_{t-1}} \left[\max_{i_{1},\dots,i_{t-2}} p(\dots,s_{t-2} = q_{i_{t-2}},s_{t-1} = q_{i_{t-1}},o_{1:t-1}) \right] a_{i_{t-1}j}b_{j}(o_{t})$$

$$= \max_{i} v_{i}(t-1)a_{ij}b_{j}(o_{t})$$

Viterbi Algorithm

v_j(t) can be computed by the Viterbi algorithm.
initialization

$$v_j(1) = p(s_1 = q_j, o_1) = a_{0j}b_j(o_1)$$

recursion

$$v_j(t) = \max_i v_i(t-1)a_{ij}b_j(o_t)$$

termination

$$v_F(T) = \max_i v_i(T)a_{iF}$$

Note its resemblance to the forward algorithm.

Q Function

We need the following auxiliary function

$$Q(\lambda, \lambda_0) = E[\log p(S, O|\lambda)] = \sum_{\mathbf{s}} p(S = \mathbf{s}|O, \lambda_0) \log p(S = \mathbf{s}, O|\lambda)$$

- λ_0 : current set of model parameters
- *O*: observed data
- The function Ω is maximized with respect to the unknown λ to yield a new set of model parameters.

Data Likelihood and $\ensuremath{\mathfrak{Q}}$

Note

$$\begin{aligned} &\mathcal{Q}(\lambda,\lambda_0) - \mathcal{Q}(\lambda_0,\lambda_0) \\ &= \sum_{\mathbf{s}} \left[p(S = \mathbf{s} | O, \lambda_0) \log p(S = \mathbf{s}, O | \lambda) - p(S = \mathbf{s} | O, \lambda_0) \log p(S = \mathbf{s}, O | \lambda_0) \right] \\ &= \sum_{\mathbf{s}} p(S = \mathbf{s} | O, \lambda_0) \left[\log p(O | \lambda) + \log p(S = \mathbf{s} | O, \lambda) \right] \\ &- \sum_{\mathbf{s}} p(S = \mathbf{s} | O, \lambda_0) \left[\log p(O | \lambda_0) + \log p(S = \mathbf{s} | O, \lambda_0) \right] \\ &= \log p(O | \lambda) - \log p(O | \lambda_0) - \sum_{\mathbf{s}} p(S = \mathbf{s} | O, \lambda_0) \log \frac{p(S = \mathbf{s} | O, \lambda_0)}{p(S = \mathbf{s} | O, \lambda)} \\ &= \log p(O | \lambda) - \log p(O | \lambda_0) - D(p_0 | | p_\lambda). \end{aligned}$$

• $D(p_0||p_\lambda)$ is called the relative entropy between p_0 and p_λ . It is always non-negative.

EM Algorithm

Suppose $Q(\lambda, \lambda_0)$ is maximized by λ^* , meaning

 $Q(\lambda^*, \lambda_0) \ge Q(\lambda_0, \lambda_0).$

We have

$$\log p(O|\lambda^*) - \log p(O|\lambda_0)$$

= $\Omega(\lambda^*, \lambda_0) - \Omega(\lambda_0, \lambda_0) + D(p_0||p_\lambda)$
 $\geq \Omega(\lambda^*, \lambda_0) - \Omega(\lambda_0, \lambda_0)$
 $\geq 0.$

That is, maximizing the expected log likelihood Q increases the data likelihood.

$\ensuremath{\mathbb{Q}}$ Function for HMM

From the independence assumption of HMM, we have

$$p(S,O) = p(S)p(O|S)$$

= $p(s_1) \prod_{t=2}^{T} p(s_t|s_{t-1}) \prod_{t=1}^{T} p(o_t|s_t).$

Taking the logarithm as required in the Q function

$$\log p(S, O) = \log p(s_1) + \sum_{t=2}^{T} \log p(s_t | s_{t-1}) + \sum_{t=1}^{T} \log p(o_t | s_t)$$

Putting Together

$$\begin{aligned} \mathcal{Q}(\lambda,\lambda_0) &= \sum_{\mathbf{s}} p(\mathbf{s}|O,\lambda_0) \log p(\mathbf{s},O|\lambda) \\ &= \sum_{\mathbf{s}} p(\mathbf{s}|O,\lambda_0) \log p(s_1|\lambda) + \sum_{\mathbf{s}} p(\mathbf{s}|O,\lambda_0) \sum_{t=1}^T \log p(o_t|s_t,\lambda) \\ &+ \sum_{\mathbf{s}} p(\mathbf{s}|O,\lambda_0) \sum_{t=2}^T \log p(s_t|s_{t-1},\lambda) \\ &= \sum_{i=1}^N p(s_1 = q_i|O,\lambda_0) \log \pi_i + \sum_{t=1}^T \sum_{i=1}^N p(s_t = q_i|O,\lambda_0) \log b_i(o_t) \\ &+ \sum_{t=2}^T \sum_{i=1}^N \sum_{j=1}^N p(s_{t-1} = q_i,s_t = q_j|O,\lambda_0) \log a_{ij} \end{aligned}$$

Words - p. 123

Posterior Probability

• posterior probability (given *O*) of $s_t = q_i$

$$\gamma_i(t) = p(s_t = q_i | O) = \frac{\alpha_i(t)\beta_i(t)}{\sum_j \alpha_j(t)\beta_j(t)}.$$

● joint probability of $s_t = q_i, s_{t+1} = q_j$ and *O*

$$p(s_t = i, s_{t+1} = j, O) = \alpha_i(t)a_{ij}b_j(o_{t+1})\beta_j(t+1).$$

• posterior probability of $\xi_{ij}(t) = p(s_t = q_i, s_{t+1} = q_j|O)$

$$\xi_{ij}(t) = \frac{p(s_t = q_i, s_{t+1} = q_j, O)}{p(O)} = \frac{\alpha_i(t)a_{ij}b_j(o_{t+1})\beta_j(t+1)}{\alpha_F(T)}$$

State Occupancy

If I is a Bernoulli random variable, then

$$E(I) = p(I = 1).$$

• Thus, given the observation sequence O, the expected number of occupancy in state q_i is

$$\sum_{t=1}^{T} \gamma_i(t)$$

State Transition

- Solution For the same reason, $\xi_{ij}(t)$ is expected number of transition from state q_i to state q_j , at time t.
- For the entire sequence, the expected number of transitions from state q_i to q_j is

$$\sum_{t=1}^{T} \xi_{ij}(t).$$

Parameters in Markov Chains

initial probability

$$\pi_i = \gamma_i(1).$$

transition probability

$$a_{ij} = \frac{\sum_{t} \xi_{ij}(t)}{\sum_{t} \gamma_i(t)}$$

Parameters in Gaussians

We note without proof that the parameters of Gaussian observation likelihood are updated by

mean

$$\mu_i = \frac{\sum_t \gamma_i(t) o_t}{\sum_t \gamma_i(t)}$$

covariance

$$\sigma_i^2 = \frac{\sum_t \gamma_i(t)(o_t - \mu_i)(o_t - \mu_i)'}{\sum_t \gamma_i(t)}$$

Maximum Entropy Models

- This is another commonly used probability model in speech and language processing.
- We will cover this subject in the following order
 - linear regression
 - Iogistic regression
 - classification based on logistic regression
 - maximum entropy models

Regression and Classification

- We discuss two distinguishable classes of problems.
 - When the output is real-valued, the task is called regression.
 - When the output is discrete, the task is called classification.
- The input of a regression or classification system is often called features, representing important quantities or attributes of raw input data.

Linear Regression

- A linear regression is the special case of regression where the input-output function is linear.
- In the simplest case, there is a single input x, and the output y is related to x by

$$\hat{y} = b + wx.$$

w is called weight and b is called bias.

• With multiple features, f_1, \ldots, f_n , we have

$$\hat{y} = b + \sum_{i=1}^{n} w_i f_i$$

Vectorial Form

Define the extended vectors of feature and weight

$$\mathbf{f} = (f_0, \dots, f_n) = (1, \dots, f_n)$$

 $\mathbf{w} = (w_0, \dots, w_n) = (b, \dots, w_n).$

The linear regression can be written as a dot product

$$\hat{y} = \mathbf{w} \cdot \mathbf{f}.$$

Learning Weights

- Suppose we have a data set of M instances $\{(y, \mathbf{f})\}_i^M$.
- Suppose the learning criterion is to minimize the sum of squared errors

$$\sum_{i=1}^{M} (\hat{y}_i - y_i)^2.$$

It can be shown that the optimal weight is given by

$$\mathbf{w}^* = (F^T F)^{-1} F^T \mathbf{y},$$

where *F* is the matrix whose *i*th column is f_i , and y is the vector whose *i*th component is y_i .

Classification

- Next we turn to a classification problem.
- Given feature f, we want to decide the class of the data x represented by f.
- In a classification problem, we are often content with a probability distribution of different classes given f.
- However, $\mathbf{w} \cdot \mathbf{f}$ cannot be a probability since the range is unbounded.

Odds

Consider a two-class classification problem

$$\begin{cases} y = 1, & \text{if } x \text{ is in class } 1 \\ y = 0, & \text{otherwise} \end{cases}$$

• The odds of y = 1, for a given x, is defined by

$$\frac{p(y=1|x)}{p(y=0|x)} = \frac{p(y=1|x)}{1-p(y=1|x)}.$$

 \checkmark The range of an odds is from 0 to ∞ ...

Logit Function

- We can apply a logarithm to an odds. The range of log odds is from $-\infty$ to ∞ .
- Then we can equate log odds to a linear regression of features

$$\log \frac{p(y=1|x)}{1-p(y=1|x)} = \mathbf{w} \cdot \mathbf{f}.$$

The lhs function is called the logit function

$$\operatorname{logit}(s) = \log \frac{s}{1-s}.$$

Logistic Function

Solving $logit(p) = \mathbf{w} \cdot \mathbf{f}$ for p, we get

$$\mathsf{logit}(p) = \log \frac{p}{1-p} = \mathbf{w} \cdot \mathbf{f} \implies p = \frac{e^{\mathbf{w} \cdot \mathbf{f}}}{1+e^{\mathbf{w} \cdot \mathbf{f}}} = \frac{1}{1+e^{-\mathbf{w} \cdot \mathbf{f}}}$$

Define the logistic function

$$\operatorname{logistic}(t) = \frac{1}{1 + e^{-t}}.$$

We have

$$logit(p) = t \implies p = logistic(t).$$

Logistic Regression

Putting all together, the probability is given by

$$p(y = 1|x) = \frac{1}{1 + e^{-\mathbf{w} \cdot \mathbf{f}}} = \text{logistic}(\mathbf{w} \cdot \mathbf{f}).$$

It is called a logistic regression.

Decision Boundary

- Given x, we decide it class based on comparing the probabilities p(y = 1|x) and p(y = 0|x).
- From the logistic function, we can see that

$$\begin{cases} \mathbf{w} \cdot \mathbf{f} > 0 \implies p(y = 1|x) > \frac{1}{2} > p(y = 0|x), \\ \mathbf{w} \cdot \mathbf{f} < 0 \implies p(y = 1|x) < \frac{1}{2} < p(y = 0|x). \end{cases}$$

So the decision boundary is a hyperplane in the feature space, decided by w.

A Different Perspective

In logistic regression, the posterior probability of sample x being in class 1 is given by

$$p(y = 1|x) = \frac{e^{\mathbf{w} \cdot \mathbf{f}}}{1 + e^{\mathbf{w} \cdot \mathbf{f}}} \propto e^{\mathbf{w}_1 \cdot \mathbf{f}}$$
$$p(y = 0|x) = e^0 \propto e^{\mathbf{w}_0 \cdot \mathbf{f}}.$$

The log probability of a class, say c, is proportional to a class-dependent weighted sum of features

$$\mathbf{w_c} \cdot \mathbf{f} = \sum_i w_{ci} f_i.$$

 w_c represents the weights for class c.

Multiple Classes

- We can use the same idea towards multi-class classification problem.
- Specifically, we can assume

$$p(y=c|x) \propto e^{\mathbf{w_c} \cdot \mathbf{f}} = \frac{1}{Z} e^{\mathbf{w_c} \cdot \mathbf{f}}$$

Z is a normalization constant to make total probability
1, so

$$\sum_{c} p(y = c | x) = 1 \implies Z = \sum_{c} e^{\mathbf{w}_{c} \cdot \mathbf{f}}.$$

For example, the two-class problem has $Z = 1 + e^{\mathbf{w} \cdot \mathbf{f}}$.

Stochastic Modeling

- In the problem of stochastic modeling, we want to construct a model to best characterize a random process.
- We have at our disposal some sample data from this random process.
 - baseball managers
 - stock brokers
 - nlp researchers
- We construct a model to "fit" the sample data. Put in another way, we exploit data to decide the model.

Initial Model

Suppose we want to model the translation of the word
in English to one of 5 candidates in French

dans, en, à, au cours de, pendant

- The only knowledge we know about the probabilities is that they sum to 1.
- Without further information, it is reasonable (and *wise*) to assume **uniform** probability for each candidate, i.e.,

$$p(dans) = \cdots = \frac{1}{5}.$$

Knowledge From Sample

- Suppose we have a sample of translation results by a human expert translator on the translation of in.
- Suppose in this sample, the expert chooses dans or en 30% of the time.
- If we think this is an important piece of information, we may require that our model has this *feature*.
- We now have two constraints for the probabilities, i.e.,

$$p(\textbf{dans}) + p(\textbf{en}) = p_1 + p_2 = \frac{3}{10}$$

 $p_1 + p_2 + p_3 + p_4 + p_5 = 1.$
More Knowledge From Sample

- Suppose in this sample, we further find out that dans or à are chosen 50% of the time.
- We may require the model to satisfy

$$p(\textbf{dans}) + p(\textbf{en}) = p_1 + p_2 = \frac{3}{10}$$
$$p(\textbf{dans}) + p(\textbf{\dot{a}}) = p_1 + p_3 = \frac{1}{2}$$
$$p_1 + p_2 + p_3 + p_4 + p_5 = 1.$$

Now it is not clear how p_i can be "uniformized". We need a mathematical measure for "uniformness".

Entropy

Suppose Y is a discrete random variable with probability

$$p(y) = Pr(Y = y), \ y \in \mathcal{Y}.$$

The entropy of Y is defined by

$$H(Y) = -\sum_{y \in \mathcal{Y}} p(y) \log p(y).$$

- H(Y) is really a function of p(y), not Y.
- If the base-2 logarithm is used, the unit of entropy is bit.
- For example, the entropy of a fair coin toss is 1 bit.

Entropy Bounds

• Assuming $\mathcal{Y} = \{y_1, \dots, y_K\}$, we can write the entropy H(Y) as a function of the variables (p_1, p_2, \dots, p_K)

$$H(Y) = -\sum_{i=1}^{K} p_i \log p_i.$$

The probailities must satisfy

$$p_i \ge 0, \quad \sum_i p_i = 1.$$

It can be proved that

$$0 \le H(Y) \le \log K.$$

Uniformness and Entropy

It can be shown that the maximum entropy is achieved when the distribution is uniform

$$p_i = \frac{1}{K} = \text{constant.}$$

So we have a mathematical measure of "uniformness": the larger the entropy, the more uniform the distribution.

Conditional Entropy

The entropy of a conditional probability is defined in the same way as entropy

$$H(Y|X = x) = -\sum_{y} p(y|x) \log p(y|x).$$

The conditional entropy of a random variable Y given a random variable X is defined by

$$H(Y|X) = -\sum_{x,y} p(x,y) \log p(y|x)$$
$$= -\sum_{x,y} p(x)p(y|x) \log p(y|x)$$

Training Data

Let the training sample data set be

$$\{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}.$$

- Here x_i is the *i*th phrase containing in and y_i is the translation of that in.
- *x* represents the contextual information relevant to the classification.

Empirical Distribution

The empirical distribution of (x, y) is based on the sample set

$$\tilde{p}(x,y) = \frac{1}{N} \sum_{i=1}^{N} I_{(x_i,y_i)=(x,y)}.$$

 \blacksquare I_s is the indicator function for statement s

$$I_s = \begin{cases} 1, & S \text{ is true} \\ 0, & \text{otherwise} \end{cases}$$

• Note $\tilde{p}(x, y)$ is just the relative frequency.

Statistics of Data

- We first decide certain statistics of the sample data set are important in constructing the stochastic model.
- For example, we have employed two such statistics, the number of instances of ans or en, as well as the number of instances of dans or à.
- Certain contextual information x may be important, such as
 - if April is the word following in, then the translation of in is en 90% of the time.

Feature Functions

We can define a binary-valued function

 $f(x,y) = \begin{cases} 1, & y = en \text{ and April follows in in } x \\ 0, & \text{otherwise.} \end{cases}$

- f(x,y) is called a feature function or just feature.
- The expected value of f(x, y) with respect to $\tilde{p}(x, y)$ is just the relative frequency in the sample set.

Expected Values

- f(x,y) is an indicator function.
- The expected value of f with respect to the empirical distribution is

$$\tilde{p}(f) = \sum_{x,y} \tilde{p}(x,y) f(x,y).$$

The expected value of f with respect to a model p(y|x) is

$$p(f) = \sum_{x,y} \tilde{p}(x)p(y|x)f(x,y).$$

Constraint Equations

For feature f, we request the expected value of f with respect to the model and to the empirical distribution to agree, i.e.,

$$\tilde{p}(f) = p(f).$$

- This equation is called a constraint equation, or simply constraint.
- We can see there is one constraint for each feature.

Feasible Set

- **•** Let *P* be the set of all probability distributions p(y|x).
- Suppose we are given *n* features f_i . We would like our model *p* to be in a set *C*

$$C = \{ p \in P \mid p(f_i) = \tilde{p}(f_i), \ i = 1, \dots, n \} .$$

• Let C_i be the set of distributions satisfying the *i*th constraint. Then

$$C = C_1 \cap C_2 \cap \cdots \cap C_n,$$

C is called the feasible set. It is often *infinite*.

Maximum Entropy Principle

- Among all feasible models, we wan to decide an optimal one.
- The conditional entropy of a model p = p(y|x) is

$$H(p) = -\sum_{x,y} \tilde{p}(x)p(y|x)\log p(y|x).$$

 $\tilde{p}(x)$ is the empirical distribution of x.

The maximum entropy principle is to choose the model with the maximum conditional entropy

$$p_* = \arg \max_{p \in C} H(p).$$

Lagrange Multipliers

• For each feature f_i , we introduce a Lagrange multiplier λ_i . Then we define the Lagrangian

$$\Lambda(p,\lambda) = H(p) + \sum_{i} \lambda_i (p(f_i) - \tilde{p}(f_i)).$$

• The unconstrained optimization of $\Lambda(p, \lambda)$ and the constrained optimization of H(p) have the same optimal value, i.e.,

$$\max_{\lambda} \max_{p} \Lambda(p, \lambda) = \max_{p \in C} H(p).$$

Dual Function

- **•** For a given λ ,
 - let p_{λ} be the model p that $\Lambda(p, \lambda)$ achieves maximum, i.e.,

$$p_{\lambda} = \arg \max_{p \in P} \Lambda(p, \lambda)$$

• let $\Psi(\lambda)$ be the value

$$\Psi(\lambda) = \Lambda(p_{\lambda}, \lambda)$$

• $\Psi(\lambda)$ is called the dual function.

Kuhn-Tucker Theorem

The dual problem is defined to be the unconstrained optimization problem

$$\lambda^* = \arg \max_{\lambda} \Psi(\lambda).$$

- Kuhn-Tucker
 - The dual problem has the same value as the primal problem.
 - Suppose λ* is the solution of the dual problem, then the solution of the primal problem is

$$p_* = p_{\lambda^*}.$$

Solving p_{λ}

• Equating the derivative of Λ with respect to p(y|x) to 0, one can show that, for a given λ ,

$$p_{\lambda}(y|x) \propto e^{\sum_{i} \lambda_{i} f_{i}(x,y)} = \frac{1}{Z_{\lambda}(x)} e^{\sum_{i} \lambda_{i} f_{i}(x,y)}$$

• The normalizing Z is given by

$$Z_{\lambda}(x) = \sum_{y} e^{\sum_{i} \lambda_{i} f_{i}(x,y)}$$

Note that this is a log-linear model.